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ABSTRACT

A simple Budyko-Sellers mean annual energy balance climate model with diffusive transport (North,
1975b) is extended to include a seasonal cycle. In the model the latitudinal distribution of the zonal average
surface temperature is represented by a series of Legendre polynomials, while its time-dependence is
represented by a Fourier sine-cosine series. The model has three parameters which are adjusted so that

the observed amplitudes of the Northern Hemisphere's zonal mean surface temperature are recovered. ’

In order to obtain the correct amplitude and phase of the surface temperature’s seasonal oscillation,
allowance must be made for the disparity between the thermal inertia of the atmosphere over continents
and that of the ocean’s mixed layer. Although the model parameters are adjusted to recover the surface
temperature fields of the Northern Hemisphere, a test of the model’s ability to produce the fields of the
Southern Hemisphere indicates that the model responds properly to changes in boundary conditions.
The seasonal model is used to reveal how the annual mean climate and its sensitivity to changes in
incident radiation differ from the predictions obtained with the corresponding mean annual model. Al-
though the zonal temperatures obtained with the seasonal model are 1~3°C higher than those obtained
with the mean annual model, the changes in the global average annual mean surface temperatures calcu-
lated with the two models are practically identical for a 1% decrease in solar constant. Furthermore, be-
cause the albedo changes in them are linked mainly to changes in surface temperature, both models
respond in the same manner to changes in the incident solar radiation caused by changes in the earth’s
orbit. The distribution of the incident solar radiation in the models is shown to be insensitive to changes
in the eccentricity and the longitude of perihelion and sensitive only to changes in the obliquity of the
earth. For past orbital changes, both the seasonal and the mean annual model fail to produce glacial

advances of the magnitude that are thought to have occurred.

3. Introduction

The recent interest in simple heat-balance climate
models is due mainly to Budyko (1969) and Sellers
(1969) who independently showed that the sensi-
tivity of the climate might be greatly enhanced by
the temperature-albedo feedback mechanism. In
fact, both authors pointed out that, according to
their models, if the solar constant were lowered by
only a few percent, a transition would be made to
an ice-covered planet. The possibility of such ex-
treme sensitivity to external controls and similarly
to internal parameters possibly influenced by man’s
activities has led to a large research effort directed
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toward understanding the planetary climate. A part
of this effort has been the study of climate and climate
change with a hierarchy of models, the Budyko-
Sellers versions being among the simplest members
of the hierarchy and global circulation models (GCM)
being the most complicated. The advantages gained
by using a spectrum of models are obvious— physi-
cal interpretation and solubility of simple models
and closeness to reality of the large models. The
philosophy of such an approach has been reviewed
by Schneider and Dickinson (1974).

The Budyko-Sellers models are highly parameter-
ized. The terms which enter the heat-balance equa-
tion have simple mathematical forms so that solutions
to the model are readily obtained. The models orig-
inally described by Budyko and Sellers were zonally
and seasonally averaged. They pertained only to
annual mean conditions. The purpose of this paper
is to relax the latter limitation so that the seasonal
cycle is included.
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The reason for such an extension is to see how
the seasonal oscillation can be simulated with a
minimum of free parameters. We hope to reveal the
leading mechanisms in the large-scale march of the
seasons; how the mean annual climate is affected
by seasonal residuals, such as the correlation be-
tween albedo and incident solar radiation at high
latitudes, and how the sensitivity of the seasonal
model dlffers from that calculated with the mean
annual model.

Seasonal models have been developed by a num-
ber of authors, including Adem (1962), Wetherald
and Manabe (1972), Sellers (1973 1976) and Suarez
and Held (1976). Our model is more modest in that
the physical mechanisms included in it are idealized.
In its way, however, our model is rigorous in that
the number of adjustable parameters is smalil and
these parameters are always explicit. We believe
that this study is useful as a guide for further experi-
mentation with more realistic models and because
it clearly isolates various causal relationships.

In this paper we will adopt a philosophy previously
discussed by one of us (North, 1975b): simple models
canbe expected to work on time scales that are long
compared with the time scales of weather fluctua-
tions and on spatial scales that are large compared
with the spatial scales of weather systems. As one
begins to ask questions about smaller space or time
scales the simple heat-balance model must fail be-
cause it neglects many physical processes; mean
motions, etc., which affect the small-scale structure
of the system. On the other hand, by taking averages
over large distances and long time periods, one gains
the advantages of adding together information that
is statistically uncorrelated and therefore similar
to an ensemble average. It is in this spirit, for exam-
ple, that the zonally averaged heat divergence is
modeled by diffusion. Of course, the principle sug-
gested here has no rigorous proof and is admittedly
an optimistic conjecture.

Since at best the model is appropriate to large
spatial scales and long time scales, it is advantageous
to adopt from the beginning a solution procedure
which starts with the largest and slowest scales and
adds on as corrections the finer scale information.
Fortunately, this separation of the large spatial and
slow time scales is easy to do with heat-balance
models, and it has been done in some earlier studies

(Fritz, 1960; Held and Suarez, 1974; North, 1975a,b).

If diffusion is the transport mechanism, and if the
flux of infrared radiation emitted is linear in the
surface temperature (Budyko, 1969; Cess, 1976),
Legendre polynomials form a natural basis set.
Becduse they diagonalize the diffusion operator,
the mode amplitudes of the Legendre polynomials
satisfy algebraic equations which are uncoupled.
Similarly, in the time variable, the appropriate basis
functions are sines and cosines with succeeding
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terms representing mean annual, annual harmonic,
semiannual harmonic, etc.
It has been suggested that the gross features of

. the mean annual climate can be represented by a

Fourier-Legendre series including contributions
from only the Py(x) and P,(x) terms (North, 1975b).
In this paper we extend this treatment by adding a
north-south asymmetric P,(x) term whose coeffi-
cient is first harmonic in time. An effort along these
lines was made years ago by Fritz (1960), but it was
done without the benefit of the parameterizations
introduced by Budyko and Sellers and the recent
satellite data which have been analyzed by Ellis
and Vonder Haar (1976).

Since the extent of ice caps predicted w1th mean
annual models has proven to be rather insensitive
to changes in the earth’s orbital parameters (Sellers,
1970; Budyko, 1969; Saltzman and Vernekar, 1971;
Coakley, 1979), it has often been conjectured that
the periodic glaciation of the earth must be influenced
by the seasonal cycle (Budyko, 1969; Kukla and
Kuklia, 1974). Hence, one motivation for construct-
ing a seasonal model is to check this hypothesis.
Therefore, we shall attempt to do this within the
confines of simple heat-balance schemes.

Our treatment begins by showing that the seasonal
zonally averaged fields of temperature, .infrared
radiation and albedo may be represented satisfac-
torily by only a few terms in the proposed series
of basis functions. The convergence is best when
the data are symmetrized so that the Northern and
Southern Hemispheres are made to appear identical.
In Section 3 it is shown that the distribution of inci-
dent solar radiation may also be satisfactorily repre-
sented by only a few terms in the series. Since the
driving terms and responses are simply represented
with an obviously diagonal transfer matrix, we can
easily generalize the mean annual model to include
a seasonal cycle. Such a model is constructed for
the Northern Hemisphere in Section 4 with examples
given.in Section 5. The model is then tested in Sec-
tion 6 by application to what amounts to a different
planet—the symmetrized Southern Hemisphere.
In Section 7 the seasonal'model climate is compared

‘to the mean annual model climate. After a suitable

albedo parameterization is adopted in Section 8,
it is-possible to test the sensitivity of the model to
changes in the solar constant in order to compare
the sensitivity with that of the mean annual model.
Section 9 contains the calculations of climatic change
caused by changes in the earth’s orbital parameters.
Conclusions are presented in Section. 10.

2. Seasonal data

Zonally averaged fields of climatic interest such
as surface temperature, albedo, etc., are usually
presented in tables of month-long averages for var-
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ious latitude belts. For modeling these fields, how-
ever, it is more convenient to use their Fourier time
series since, in some cases, we may gain physical
insight from the relative sizes of the harmonics. In
addition, economy in describing the fields might
result if only a few harmonics are required for a good
fit. To characterize the zonal average fields, we use
just four amplitudes. These four amplitudes should
be contrasted with the 12 monthly values for each
latitude belt. We should recognize that this Fourier
series is an expansion whose low-order terms in-
volve large time scales and whose higher order terms
involve shorter and shorter time scales. This is in
line with our usual concept of a hierarchy of models;
we expect simple models to describe the low-order
harmonic terms and only the most sophisticated
members of the hierarchy to describe the high-order
harmonics.

We shall investigate here how well the fields may
be represented in latitude by Legendre polynomials
and in time by a Fourier series. The reason for using
Legendre polynomials is that these functions nat-
urally arise in the solution of certain zonally sym-
metric spherical boundary value problems.

Consider a zonally averaged field F(x,t), where
x is the sine of latitude and ¢ is time. We seek a
representation of the form

F(x,t) = Y (ay cos2zmkt + by, sin2akt)Pi(x).

k=0
The coefficients a,. and b, are to be found from least-
squares fitting to observations. This is equiva-
lent to computing the Fourier coefficients by the
standard integral formulas.

There are various ways of analyzing the data—
each having its own advantages and associated
insights. First we use data from both hemispheres —
this analysis will lead to global (G) amplitudes a,,,
by. Second, we gain valuable insight by reducing
the data in such a way that the asymmetry of the
hemispheres is ignored. We accomplish this reduc-
tion by symmetrizing the data from one hemisphere
only. For example, in the case of the Northern Hem-
isphere we use

F(=x,t) = F(x,t + ¥3), x> 0. (2

Data from the Northern Hemisphere for a particular
month are used for the Southern Hemisphere, but
for a period six months later. The coefficients ay,
by computed in this way will be referred to as *‘sym-
metrized northern’’ (SN). The symmetry condition
(2) forces many of the coefficients to vanish, e.g.,
aye, by, = 0ifl is odd (or even) and & is even (or odd).
We define ‘‘symmetrized southern”’ (SS) amplitudes
in a similar manner. :

The rms error ¢, x is a measure of the error in-
curred in truncating the series (1) at / =L and &
= K. It is obtained from

(1
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g =% r dx j At Fy g ) — Fee,H1?,  (3)
-1

where F,  is the subsum of (1) up to and including
the I =L, k =K terms. Note that ¢,, is the rms
deviation of the field from its global average mean
annual value.

The amplitudes for several fields are presented
in Tables 14, and the fits obtained with L = 2 and
k = 1 are illustrated in Figs. 1-4 for SN. As is evi-
dent from the figures, by truncating the series at
L =2 and K = 1, we capture the hemispheric and
seasonal structure of the fields. We fail to represent,
however, smaller scale features. In particular, for
some of the fields, we fail to accommodate the lati-
tudinal structure in the tropics. On the other hand,
owing to its simplicity the energy balance model
described here is probably unable to recover this
detail. In fact, in a later section we demonstrate
that the model used to calculate the meridional trans-
port of energy is inadequate for modes with [ > 2.
For these reasons we limit our examination of how
well the fields are represented to the representations
obtained with the series truncated at L =2 and
K=1.

In the following discussion, ¢ = 0 at 22 December,
the Northern Hemisphere's winter solstice. The
phase of the first harmonic (k = 1) is given in days;
it refers to the lag between the minimum of this
particular field and the minimum of the incident solar
radiation. The following paragraphs describe some
features of these decompositions.

a. Temperature

Table 1 shows amplitudes for the global (G), sym-
metrized northern (SN), and symmetrized southern
(SS) 1000 mb temperature fields. For the North-
ern Hemisphere, the temperatures are taken from
Crutcher and Meserve (1970), while for the Southern
Hemisphere they are taken from Taljaard er al.
(1969). The coefficient aq = 14.2°C in Table 1a is
the annual mean global average temperature. The
coefficients a,,, by, are an annual oscillation in the
global temperature which has an amplitude 2.0°C
and its maximum occurs 26.3 days after the northern
summer solstice. Paradoxically, the maximum oc-
curs just after the earth reaches its aphelion, about
two weeks after the Northern Hemisphere’s summer
solstice. Coefficients @, and a5, represent the mean
annual asymmetry between the hemispheres since
the functions P,(x) for [ odd are odd functions of
latitude. Coefficients a,, and b,, represent the bulk

- of the seasonal response in the temperature field.

Coefficient a,, is a rough measure of the mean annual
pole-to-equator temperature difference. Truncating
the series at L =2 and K = 1 leads to a 5°C rms
error in the global case.
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TaBLE 1. Fourier-Legendre modes for 1000 mb temperatures.
Phases are defined as follows: T,—,(t) = A cose(r + ¢) and
Ti=s(t) = A cos2w(t + ¢), where A < 0 and ¢t = 0 at the winter
solstice.

Phase
(days)

rms €rror

ag by Amplitude €1k

a. Modes for global surface temperature (°C)

0 0 14.2 14.2
1 -1.8 -09 -2.0 -26.3 15.1
2 0.0 0.0 0.0 20.9 151
1 0 1.7 1.7 15.0
1 -9.1 -5.8 -10.8 -32.9 14.4
2 -0.5 0.0 -0.5 1.1 14.4
2 0 -30.2 ~30.2 4.9
1 -32 =25 -4.1 ~38.6 4.7
2 1.0 0.6 -1.1 75.1 4.7
3 0 32 3.2 4.5
1 -34 -06 -3.4 -9.6 4.4
2 -0.5 0.3 -0.6 13.4 4.4
4 0 -8.6 —-8.6 3.4
1 2.5 0.8 ~2.7 165.0 3.3
2 1.5 0.1 ~-1.5 88.9 33

b. Modes for symmetrized Northern Hemisphere
surface temperature (°C)
0 0 14.9 14.9 14.2
2 -0.2 0.0 -0.2 0.7 14.2
1 1 -132 -8.1 -15.5 -32.1 12.7
2 0 -28.0 —28.0 2.0
2 0.3 0.8 -0.8 57.2 2.0
3 1 -37 -17 —4.0 ~24.8 1.7
4 0 -3.5 -3.5 1.3
2 1.0 0.3 —1.1 82.7 1.2
c. Modes for-symmetrized Southern Hemisphere
surface temperature (°C)

0 0 13.5 13.5 16.0
2 0.2 0.0 -0.2 82.9 16.0
-1 ~5.1 ~3.5 ~6.2 —34.9 15.8
2 0 -32.4 -32.4 6.2
2 1.6 0.4 ~-1.6 83.5 6.2
3 1 -3.1 0.5 -3.1 10.1 6.2
4 0 -13.6 . —13.6 4.2
2 20 -0.1 -2.0 -90.5 4.2

Turning to Table 1b we see that the convergence
is more rapid for the SN case and from the magnitude
of the rms error we see that the fit is better. For
example, truncating at L = 2 and K = 1 leads to an
rms error of only 2°C. This error is sufficiently smali
that we may write

I(x,t) = Ty + T()P((x) + ToPy(x), 4

where Ty = agy, Ts = asg, and T1(?) is a sine function
with amplitude 15.5°C and lags the incident solar
radiation by 32.1 days.

The amplitudes for SS are shown in Table 1c. The
amplitude of the seasonal mode is 6.2°C and the
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phase lag is 34.9 days. Note that the convergence
and the fit are much poorer for SS.

The earth is obviously asymmetric in its seasonal
response. The seasonal amplitude for SN is twice
that for SS. This difference accounts for the apparent
paradox in the annual harmonic a,, of the global
mean temperature referred to above.

Fig. 1 shows seasonally averaged temperatures
and the fit obtained by using (4) for SN.

b. Infrared flux

Table 2 shows G, SN and SS amplitudes for the
infrared flux obtained from satellite observations
(Ellis and Vonder Haar, 1976). We note that the
| = 1 (seasonal) amplitude is nearly in phase with

- the temperature. This relationship holds especially

well for the SN. It suggests that for modeling the
infrared flux we might use

I(x,1) = A + BT(x,1). (5)

By applying a least squares fit of (5) to the 00, 11
and 20 modes of Tables 1b and 2b we obtain A
=203.3W m2 and B=2.09W m2°C-!. These
values for A and B apply only to the SN case. Fig. 2
shows the seasonally averaged infrared fluxes for
SN and the fit obtained by using only the 00, 11 and
20 modes of Table 2b. It also shows the fit obtained
with (5).

The form of (5) was suggested by Budyko (1969),
and it was examined recently by Cess (1976). Cess
allowed for an additional term which was propor-
tional to the latitude-dependent cloud-cover frac-
tion. With the additional term, he found B=1.6 W
m~2°C~!. Without the additional term, Cess would
have obtained a larger value for B. The neglect of
cloud cover therefore partially accounts for the dif-
ference in the two values obtained for B. We note, .
however, that the value derived by using our proce-
dure contains contributions from seasonal changes
in cloud cover. Considering the difference between
our value and Cess’s value for B, we suspect that,
had we explicitly allowed for such seasonal changes
in cloud cover, the resulting value of B would not
have differed greatly from that given above.

c. Albedo

Table 3 shows amplitudes of the observed albedo
in percent (Ellis and Vonder Haar, 1976). The phases
are for the co-albedo (co-albedo =1 — albedo).
Fig. 3 shows the seasonally averaged albedo for
SN along with the fit obtained by using the 00, 11
and 20 modes of Table 3b.

Note that for the SN the { = 1 amplitude of the
co-albedo is in phase with the temperature. This
phase relationship suggests a direct correlation
between albedo and surface temperature. Two pos-
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F1G. 1. Observed surface temperature of the symmetrized Northern Hemisphere (dots) and the
representation of the surface temperatures obtained with the 00, 11 and 20 modes listed in Table 1b
(solid curves). The surface temperatures are for Northern Hemisphere winter and spring but because
the temperature fields have been symmetrized, the temperatures for summer and fall are obtained

by reversing the abscissas.

sibilities for this correlation are a snow line which
follows an isotherm and a cloud band which is more
or less attached to an isotherm. It seems unlikely
that the seasonal variation in albedo is dominated
by zenith angle effects (Lian and Cess, 1977). If it
were so dominated, then we would expect zero
phase lag.

The ! = 1 amplitude for the SS is only 3.6% com-
pared to 9% for the SN. The small amplitude is
consistent with the absence of land masses in the
Southern Hemisphere where snow might accumulate.

For our purposes the co-albedo may be written

a(x,t) = ay + a,(HP(x) + a,Pyx), (6)

where, from Table 3b for the SN, a, = 68.1%, a;
is a sine wave of amplitude 9.0% and phase lag of 37.8
days behind the solar illumination, and a, = —20.2%.

3. Incident solar radiation

In this section we discuss the Fourier-Legendre
expansion for the sunlight reaching the top of the
atmosphere. The form of the expansion is that of
(1) with F(x,1) = S(x,1), the fraction of the incident
solar flux received by latitude x at time ¢ and nor-
malized so that the mean annual fraction integrated
over the hemisphere is unity. This convention agrees
with earlier work on mean annual models (Chylek
and Coakley, 1974; North, 1975a,b). To obtain the
solar radiation absorbed, S(x,f) must be multiplied
by Qa(x,t), where Q is the solar constant divided
by 4 and a(x,t) is the coalbedo.

We devote this section to an analysis of the mode
amplitudes of S(x,7). This analysis will prove useful

in our discussion of the response of the model to
orbital changes in Section 9.

The daily mean incident solar radiation received
by latitude @ is given by Sellers (1965) as

4
Sx,8) = i [(1 — x*)Y2 cosd sinH + x sindH], (7)
T

where

]

—x tand/(1 —x®)?, 0= H < 7,
a/R2.

Here & is the solar declination, o, a constant, R the
earth-sun distance and, as in the previous section,
x = sind.

The declination angle § changes as the earth goes
around the sun. From geometry we obtain

cosH

®

i

g

®

where §, is the obliquity and A the longitude of the
earth in its orbit. We have chosen to set A =0 at
the Northern Hemisphere’s winter solstice.

We consider the expansion of $(x,) into a series
of P,(x). If we separate S(x,d) into its odd and even
parts, we find that the odd parts drive the seasons.
If we define W = H — #/2 and insert it into (8), we
obtain )

sind(f) = —sind, cos\,

=

sinW = =

T
—_— Ws=<—. (10
(1 ~ x2)rz 2 (10)
From (10) we see that W is an odd function of x.
Substituting the definition of W into (7) and using
(9), we also see that only one term is an odd function
of x; it is given by

tand(r), —721
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TABLE 2. Fourier-Legendre modes for emitted IR flux.
Phases defined in caption to Table 1.

) Phase  rms error
[ 4 ar by Amplitude  (days) €1k
a. Modes for global IR flux (W m~2)
0 0 236.0 236.0 32.2
1 -4.9 -33 -5.9 ~34.9 31.9
2 0.6 -2.0 -2.1 ~53.4 319
1 0 -0.5 -0.5 31.8
1 -26.0 —13.0 ~29.0 -26.9 29.5
2 -1.1 1.5 -19 64.9 29.5
2 0 -61.7 ~61.7 11.1
1 0.1 1.8 -1.8 94.6 11.1
2 4.7 -0.2 -4.7 -90.2 11.0
3 0 7.6 7.6 10.6
1 -13.5 -8.7 ~16.1 -33.1 9.7
2 -0.3 38 -3.8 433 9.7
4 0 -148 -14.8 8.3
1 6.2 5.4 -8.2 140.8 8.1
2 4.4 -1.8 -4.7 -79.9 8.0
b. Modes for s)'rmmetrized Northern Hemisphere
IR flux (W m™?%)
0 0 2344 234.4 30.9
2 -0.1 -1.7 ~1.7 —44.6 30.9
1 1 -337 -17.7 -38.0 -28.1 26.7
2-0 =556 —55.6 9.5
2 4.1 29 -5.0 72.9 9.3
3 1 -6.0 ~-1.4 -6.2 ~13.7 9.2
4 0 -114 -11.4 8.3
2 34 0.7 -3.5 84.3 8.2

c. Modes for symmetrized Southern Hemisphere
IR flux (W m~2%)

0o 0 237.6 237.6 33.4
2 1.2 -2.4 -2.6 -59.4 33.4
t  -—183 -8.3 -20.1 . =247 32.3
2 0 -666 —66.6 12.4
2 5.2 ~3.2 —-6.1. -75.2 12.2
3 1 =211 ~-15.9 -26.4 -37.5  : 10.0
4 0 -183 -183 7.9
2 5.3 —4.4 -6.9 -71.3 7.7
Soda = —20x sind, cosA. (11)

The form of (11) shows that, except for [ =1, all
odd / coefficients in the expansion (1) vanish. Fur-
thermore, for a circular orbit, this coefficient has
only a first harmonic contribution. For elliptical
orbits time-dependent corrections to A and o will
contribute to higher harmonics. ,

The mode amplitudes of S(x,r) are listed in Table
4. These amplitudes were computed for the present
orbit. As will be demonstrated in Section 9, the
k =0 mode amplitudes and, to first order in the
eccentricity, the a,; mode amplitude are independent
of the eccentricity and the longitude of the peri-
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helion. The amplitudes given in Table 4 for these
modes therefore also apply to circular orbits.
For modeling purposes we may write

S(x,t) = 1+ 8, cos2atP(x)

+ (52 + 522 COS4ﬂ't)P2(x), (12)
where §;, = —0.796, S, = —0.477 and S,, =0.147.
The coefficient S,, has a simple physical interpreta-
tion. This term is nonzero at the equator and has
a semi-annual oscillation; it represents the passage
of the sun twice each year over the equator. One
might expect such a heating term to excite even
I/, semi-annual responses in the climate, but such
effects are probably too small to be accounted for
by the models discussed in this paper. For this rea-
son §,, will be neglected in this paper.

Fig. 4 shows the seasonally averaged incident

'solar radiation along with the fit obtained by using

the 00, 11 and 20 modes of Table 4.

4. Seasonal model

In this section we derive a seasonal model in
which there is a minimum of complexity. From the
derivation of the model and simple computations
with it one gains insight into the features which,
govern the large-scale seasonal response.

We consider the seasonal energy balance equa-
tion given by

oT
C(x,d)) E‘ (x ’d)’t) - D()VzT(x’d),t)

+ A + BT(x,¢,t) = OS(x,t)alx,t). (13)
This equation includes longitude dependence. As
in Fig. 5, we imagine a planet which has one conti-
nent whose borders are along meridians. For the
SN we might imagine that this continent occupies
40% of the area in any latitude belt. The explicit
treatment of a continent and an ocean is necessary
because of the contrast between C(x,$) over land
and over water. This ‘‘thermal inertia’ is an effec-
tive heat capacity per unit area. Over land we may
estimate it from the heat capacity of a column of
air, whereas over ocean we must also include the
mixed layer which is variable in depth but may be
taken here as 75 m. In the models to follow we take
the thermal response over land to be the heat capac-
ity of an atmospheric column divided by the radia-
tion constant, C,/B = 0.16 year. Likewise, over
water we take the thermal response to be the heat
capacity of the mixed layer divided by the radiation
constant, Cy/B = 4.7 years. Note that these are the
radiative relaxation times for the land and ocean
areas in the model. .
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F1G. 2. Observed infrared fluxes emitted by symmetrized Nonl;em Hemisphere (dots) and the
representation obtained with 00, 11 and 20 modes listed in Table 2b (solid curves). The dashed
curve shows the fit obtained by using the 00, 11, and 20 modes of the temperature field (Table 1b) in (5).

The second term in (13) represents the transport of
energy and is taken to be diffusive as in the annual
mean models (North, 1975a,b). The infrared terms
are the same as described earlier. The absorbed heat-
ing may include temperature dependence through
snow or cloud feedback, but such a dependence will
be introduced in Section 8.

If we integrate (13) around a latitude belt, we
obtain for the contribution from the land masses
(after dividing by f;, the fraction of land area)

oT, 3]
C x,t) — Dy —
L (x,t) b o
] D, OT |ttt
X (1=x0)—T, — — — + A + BT,
0x fi O |rient
= Qs(x ’t)aL(xyt)’ (14)

where 7, is defined as the average temperature over
land in the latitude beit. The third or gradient term
is the difference between the land and water temper-
ature divided by some effective angular distance
over which the transition occurs. The whole term
may be written

v
E (TL - TW)’ v > 0’

where v is a new adjustable parameter which ac-
counts for the land-sea interaction.

Repeating this procedure for the ocean, we obtain
two coupled equations given by

o7,
ot

(15)

Cy

4] ¢} v
- Dy — (1 = x%) ——T, + — (T, - T,
oax( x)axz, fL(L W)

+ A + BT, = QS(x,ayx,r) (16)

and

BTW 3 6 v

W D — (1 =x)—T, + —(Tw — T,
Cw a1 D, Bx( X)ax L fw(w L)

+ A + BTy = OS(x.,Hawlx,t). (17)

In (16) and (17) a distinction has been made
between a(x,t) over land and over ocean, but in most
of what follows this distinction will be ignored. In
the above formalism we have assumed, for sim-
plicity, that 7T, and T}, are functions only of latitude
and time. The zonally averaged temperature is
given by

Tx,t) = T, + fwTw,

where, as is shown in Fig. 5, f, and f;, are inde-
pendent of latitude.

One may now substitute simple truncated Legendre
expansions such as (4) for both T, (x,t) and Ty(x,?).
Taking a,(x,t) = ay(x,t), we obtain

(18)

A + BT, = QH,, (19)
LW
Cow ar’ | @D, + B)T-W
dt
+ o (IFY - T1) = QH:, (20)
Jiw
6Dy, + BT, = QH,, @n
where
Hy@t) = Y5[2a0 + a(0)S()Gona
+ a38:Goaz + . . .1, (22)
H(t) = %20a¢8,(6)G101 + a1(1)G110 + a25:()Gi2
+ a(t)8:Gre + . . .1, (23)
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TaBLE 3. Fourier-Legendre modes for albedo. Amplitude and
phase are for the co-albedo. The phase is defined in the caption
" to Table 1.

Phase rms error
l k ag by Amplitude (days) €L
a. Modes for global albedo (percent)
0 0 32.0 68.0 11.3
1 1.4 2.0 ~-2.4 —55.2 11.1
2 1.4 -0.7 ~1.6 14.1 11.1
1 0- -1.0 4.0 111
1 5.0 1.7 ~5.3 ~18.8 10.8
2 0.2 0.7 —0.8 ~36.1 10.8
2 0 23.1 —-23.1 3.3
1 -0.3 1.7 1.7 82.1 3.2
2 0.9 -1.5 -1.7 29.0 © 32
3 0 -3.6 3.6 2.8
1 0.8 0.8 -1.1, —47.3 2.8
2 -0.7 —1.1 -14 62.1 2.8
4 0 5.8 -5.8. 2.0
1 -1.1 =23 -2.6 117.3 1.9
2 ~1.2 -1.2 -1.7 69.4 1.9

b. Modes for symmetrized Northern Hemisphere
albedo (percent)

0 0 31.9 68.1 10.2
2 1.6 -0.3 -1.7 4.6 10.1
1 72 5.4 ~-9.0 ~37.8 9.4
2 0 20.2 -20.2 2.6
2 0.5 -1.5 -1.6 34.8 2.5
3 1 . -13 ~-0.5 —-1.4 161.3 2.5
4 0 3.7 -3.7 2.1
2 -14 ~2.8 -3.2 58.3 2.0
c. Modes for‘ symmetrized Southern Hemisphere
albedo (percent)
0 0 32.0 68.0 12.3
2 1.1 -1.2 -1.6 23.0 12.2
1 i 2.9 -2.0 -3.6 35.3 12.1
2 0 26.0 —-26.0 3.5
2 1.4 —-1.4 -2.0 23.7 34
31 2.8 2.1 ~3.5 ~37.5 3.3
4 .0 7.9 -7.9 1.9
2 -1.1 0.5 -1.2 ~78.9 1.9
Hy(t) = %2[asGaro + a085:Ga0a + a25:Goss
+ a ()8 ()G + . -], (24)
"
G = J PPGPLx)x. 25)
-1

The coupling coefficients G, are Gy, = 25, Gy
=25, Gy = Y15 and Gy = Y35. In modeling
calculations it is sufficient to replace products such
as a(t)S,(t) by their annual average and to ignore
second harmonic contributions [consistent with the
neglect of S, in (12)]. We then see that only H,()
has a time dependence and it is smusmdal The
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products a,(r)S,(t) in (22) and (24) generate seasonal
contributions (residuals) to the mean annual climate.

We note that (19) and (21) are identical to the
equations obtained for the annual model (North,
1975b). Because of the residual a,(t)S,(t), however,
H, and H, in the seasonal model will differ from
those in the annual model. The magnitude of these

tesiduals will be estimated later. The only other new

feature of the seasonal model is the seasonal
amplitude equation (20). '

Before exploring the solutions of the seasonal
climate model (19)~(21), we reconsider the assump-
tions and simplifications that have made it possible.
The most important assumption is that of the simple
continent with latitude-independent borders. Clearly,
this could have been avoided by taking C(x,¢) in
(13) to be a given function over the globe and solving
(13) numerically or possibly by introducing a spheri-
cal harmonic basis set. This procedure would also
eliminate the need for symmetrizing the data from
each hemisphere. An intermediate procedure would
allow f;, and fy, to be functions of x —which compli-
cates the mode analysis of the coupling term (15)
(Sellers, 1973). Other simplifications include taking
the same value of D, and a(x,?) over land and ocean;
these are undoubtedly compensated by using a lower
value of v in the coupling term.

of course, as mentioned earlier, the diffusion
hypothesis is a gross simplification. Note that for’
the observed albedos (Table 3b) we can use (21)
and (24) to adjust D, so that the model gives the
observed value for T, (a,, in Table 1b). If we now
use the resulting value of D, to caiculate T,, we find
that the calculated amplitude is almost an order of
magnitude too small (—0.5°C compared with the
observed amplitude —3.5°C in Table 1b). The fail-
ure of the model at this scale is probably due to its
simple diffusive transport parameterization. Lindzen -
and Farrell (1977) suggest that .such transport is
improper in the tropics. Indeed, forcing T, to agree
with observations by allowing D, to have a parabolic
x dependence requires a D,(x) which is large in the
tropics and small near the pole—in agreement with
Lindzen and Farrell. In any case the assumption
of constant D, seems to be invalid for scales repre-
sented by values of n = 2. Before proceeding to a
more sophisticated analysis, however, we must
recognize that the resulting zonally averaged sea-
sonal temperature field requires only a few param-
eters for its description and that every new mech-
anism introduced will carry more parameters that
can be subjectively tuned under a numerical smoke
screen. We note also that the numerical integration
of (13) also introduces the complication of waiting
for transient effects to die out. This can be very
expensive, since the relaxation time over the oceans
is on the order of years, and to investigate a per-
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FI1G. 3. Observed albedo of the symmetrized Northern Hemisphere (dots) and the representation of the
" albedo obtained with the 00, 11, and 20 modes listed in Table 3b (solid curves).

turbation one must wait through many e-folding
times (cf. Sellers, 1973, 1974). Using (14), however,
we may extract analytical ‘‘steady-state’’ solutions
directly. .

5. Present climate

This section will focus on a sequence of models
for the SN which illustrate the various components
that contribute to the present climate. The solutions
are easily extracted from (20) by substituting sinu-
soidal forms for 74 and TY and solving for the co-
efficients. In all cases the mean annual climate is
computed from (19) and (21). For ¢ = 340 W m2,
A=2033Wm% D =D,/B = 0.285, and the al-
bedo amplitudes in Table 3b, we obtain the observed
T, and Ty(age and ay, of Table 1b).

a. Model 1

This is an all-land planet with no ‘‘snow’’ feedback
fo =L Sfw=0,a/t) =0, v =0]. The value of C,
is simply adjusted to give the observed phase of
T,(2). The model then predicts an amplitude of T,(¢)
which is 41°C to be compared with the observed
value of 15.5°C (Table 1b). Alternatively, one can
choose C; so that the amplitude is correct and cal-
culate the phase; the result is a phase lag of about
70 days—about twice the observed value. Clearly,
no value of C,, is capable of giving both the ampli-
tude and phase correctly.

b. Model 2

This is an all-land planet which includes ‘‘snow”’
feedback [f, = 1, fw = 0, a(¢) given in Table 3b,
v = 0]. Again C is adjusted to give the proper phase
of T,(z). In this case the model predicts an ampli-

tude of 43°C. The snow feedback term a,(f) = 0
intensifies the seasonal response. The snow feed-
back may be due to seasonal changes in cloud cover
rather than to changes in snow cover. In any case
the albedo change increases the seasonal amplitude.

c. Model 3 v

This is a planet with the continent of Fig. 5 in-
cluding ‘‘snow”’ feedback but no land-ocean cou-
pling [f, = 0.4, fy = 0.6, C;/B = 0.16 years, C/B
= 4.7 years, v = 0]. The model then predicts an
amplitude of T,(fr) = 19°C with a phase lag of 41
days, to be compared with the observed 15.5°C and
32 days. Clearly, the most important effect is the
large thermal inertia of the ocean. The model leads
to an ocean amplitude | 7¥(¢)| about 3°C with phase
lag of nearly three months —the latter is character-

TABLE 4. Fourier-Legendre modes for distribution of incident
solar radiation S(x,7). The mode amplitudes are zero for /
= 2n + 1, where n > 0. Phases are defined in the caption to
Table 1.

Phase rms error

Ik Ay by Amplitude  (days) €15
0 0 1.000 1.000 0.393
1 0.033 0.007 -0.034 170.1 0.393

2 0.001 0.000 -0.001 77.4 0.393

1 0 0.600 0.000 0.393
1 -0.79 0.006 -0.796 0.4 0.221

2 —=0.026 —0.006 -0.027 -6.1 0.221

2 0 -0477 -0.477 0.056
1 -0.018 —0.003 -0.018 -93 0.030

2 0.147 —0.002 -0.147 -90.9 0.030
4 0 —-0.045 —0.045 0.026
1 -0.003 0.000 -0.003 -0.5 0.026

2 0.089 -0.001 -0.089 0.015

—90.9
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istic of an infinite Cy/B and is rather insensitive to
Cw/B so long as it is greater than about one year.
The amplitude of T} is roughly inversely propor-
tional to C and could be increased by reducing the
rather arbitrarily chosen mixed-layer depth. The
land temperature amplitude is about 41°C-—a value
that seems large. )
A Clearly, one can lower the amplitude of T4(¢) by
. taking » > 0. By increasing » one effectively couples

the land to a large thermal reservoir. The ocean:

amplitude is hardly affected, while the land ampli-
tude is reduced. A value of v/B = 0.226 brings the
‘amplitude of T, to the observed value of 15.5°C,
while the phase is late by about one week. The ob-
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F16. 5. Schematic showing the distributions of land, ocean,
permanent ice and snow in the seasonal model.

served and calculated amplitudes and phases are
listed in Table 5. Reducing C, by about 15% and
readjusting v/B, we obtain the observed phase and
amplitude. The model is sufficiently crude that in-
cluding more effects seems unjustified.

6.. Model test

While the previous section provides support for
the notion that simple models can simulate the large-
scale features of the climate, one has the uneasy
feeling that too many parameters have been ad-
justed. In this section we investigate a different
planet; the symmetrized Southern Hemisphere (Ta-
ble 1¢). For this study we use f, = 0.2 and the albedo
for the Southern Hemisphere (Table 3¢). Asis shown
in Tabie 6, the model predicts an amplitude of 7.8°C
for T,(t) with a phase lag of 40 days to be compared
with the observed values of 6.2°C and 35 days. The -
values of T, and T, are also within 2°C of the ob-
served values. The value obtained for T, becomes
12.4°C if A of the radiation formula is adjusted for
the Southern Hemisphere temperature and cloud
data (Cess, 1976). It seems that these results agree
sufficiently to warrant use of this type of model to
study climatic sensitivities.

TABLE 5. Observed and calculated mode amplitudes and phase
for SN surface temperature. The amplitudes were computed for
the albedo (Table 3b) and land area fraction of SN. The model
parameters A, D and v were adjusted to give the observed
magnitudes of Ty, 7, and T,.

Calculated Observed
I, . - 14.9 14.9
T, —15.5 cos(wt — 37.9) —15.5 cos(wt — 32.1)
T, -28.0 ~28.0
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TABLE 6. Observed and calculated mode amplitudes and phase
for SS surface temperature. The amplitudes were computed with
the albedos (Table 3¢) and the land area fraction of SS but with the
model parameters, A, D and » adjusted to give the observed
magnitudes of Ty, 7, and T, of SN.

Calculated Observed
T, 14.8 13.5
T, —7.8 cos(wt — 40.3) —6.2 cos(wt — 34.9)
T -31.5 -32.4

7. Seasonal effects on the mean annual climate

One obvious use of a seasonal climate model is to
estimate the errors involved in using a mean annual
model. While hardly a foolproof procedure, one can
nonetheless make some quantitative statements
about differences between annual mean and sea-
sonal model results. In this section we investigate
the magnitude of such differences.

Differences are due to what may be termed the
snow feedback effect. This effect involves the resid-
ual interaction terms proportional to a,(¢)§,(z) in
the heating components H, and H, [Eqs. (22) and
(24)]. From (19) and (22), the change in the average
annual mean temperature is given by

AT, = Qa1 S:()) Gon/2B, (26)

where the angle braces represent the annual average
—{a()S(1)) = Y2a,5, cosd, where ¢ is the phase
difference (38 days for the SN). The result is AT,
= 1.5°C for SN. The seasonal oscillation in albedo
causes a warming due to the fact that the hemisphere
is snow free in summer and therefore absorbs well,
while in winter when snow advances, the polar cap
is tilted away from the sun so that its high reflectivity
matters less. We therefore have a warmer hemi-
sphere than might have been obtained with a mean
annual snow line. Of course, within the framework
of this simple model, the same applies if the time
dependence in a,(¢) is due to cloud movements. It is
important to note that (26) does not assume any
model for a,(¢). A similar warming effect was ob-
served in GCM results obtained by Wetherald and
Manabe (1972).

The cross term a,(1).5,(¢) also appears in H, {Eq.
(24)] leading to a change in 7, which may be esti-
mated from (21):

AT, = *£Q(a()S(t)) G2, /(6D, + B), (27)

which has a magnitude of about 1.1° for the SN,
compared to 7, = —28.0°C. The mean annual
equator-to-pole temperature difference in the two-
mode approximation is —%7, so the term (27) re-
duces this difference by about 1.6°C. The combined
effects of (26) and (27) lead to a pole warmer by
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2.6°C and an equator warmer by 1.0°C. The resuits
of these calculations are compared with those ob-
tained with a GCM (Wetherald and Manabe, 1972)
in Fig. 6.

The estimates made above are merely meant to
be illustrative of the order of magnitude of seasonal
residuals on the mean annual climate. There are
surely other residuals. For example, one might ex-
pect a seasonal part of D, to interact with 7, or a
change in the mixed layer depth and thus in Cy to
interact with T,. Without a physical model for such
interactions, however, estimates of the correspond-
ing residuals could be subject to large uncertainties.

8. Sensitivity to changes in solar constant

In the previous sections, a model was developed
which was capable of simulating the large-scale fea-
tures of the zonally averaged seasonal cycle. In this
section and the next section we use the model to
study departures from the present climate. These
results will be compared with those of the corre-
sponding mean annual model. In studying climate
change, however, a set of time scales may be in-
volved which differ from those important in the sea-
sonal oscillation. As a result, feedback mechanisms
so far not considered may become active. In any
case the set of assumptions must be augmented.

For our study we choose to alter only the tem-
perature-albedo feedback. We allow for a seasonally
varying snow line on land and for an ice cap whose

T T T T
—-= GCM (Watherald and Manabe, [972)
i == Energy Balance Modei

)

w»
T
-
. |

{Seasonal Model Ternperature-Annual Mean Model Temperature)
o)
T

ANNUAL MEAN SURFACE TEMPERATURE DIFFERENCE

L I !
45 30 15 0

LATITUDE

1
80 60

Fi6. 6. Differences between annual mean surface temperatures
computed with seasonal and annual mean models.
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TABLE 7. Amplitudes for the absorbed flux of solar radiation
calculated with the seasonal model and taken from satellite
observations analyzed by Ellis and Vonder Haar (1976).
Amplitudes are in W m~2 and phases are in number of days from
the Northern Hemisphere’s winter solstice.

Observed Calculated
QH, 241 236
QOH, ~181 cos(at — 5.9) —193 cos(wt — 1.5)
QH, -161 —143

area is determined by mean annual conditions. With
these features the model becomes nonlinear. To ob-
tain exact solutions it is therefore necessary to use
an iterative method. However, we shall continue to
use the truncated spectral approach so that the de-
pendent variables are the first few mode amplitudes
of the temperature field. As before, this procedure
eliminates the transient effects and extracts the
steady-state periodic solutions. The procedure, of
course, acts as a filter, removing small-scale infor-
mation in space and time. That the small-scale struc-
ture has little influence on the large-scale structure
must be thought of as an essential assumption in
the present model.

To compute the albedo-temperature feedback the
following model is used for the albedo. A permanent
ice line is located at the —10°C isotherm of the zonal
average annual mean temperature. Ice cover pole-
ward of the ice line is common to both land and
ocean areas in the model. The ice line remains fixed
throughout the annual cycle. On land, snow cover
extends to the 0°C isotherm of the land surface tem-
perature and, in this way, seasonal changes in the
snow cover of the continents is modeled. Seasonal
changes in the position of the ice line are not allowed
in the model. Surface albedos and zenith-angle-de-
pendent reflectivities for the ocean surface and for
clear skies are obtained from the parameterizations
described by Coakley .(1979). The zenith-angle-de-
pendent reflectivity of cloudy skies is taken from
Lian and Cess (1977). The cloud cover fraction is
set to be constant at 50% for all latitudes and over
both land and ocean areas. With the parameters of
the seasonal model adjusted to give the observed
temperatures, as is described next, this simple model
for the albedo yields results which agree well with
observations. The calculated and observed ampli-
tudes of the low-order modes for the absorbed solar
radiative flux are listed in Table 7.

The sensitivity of energy balance models depends
on the values used for the model parameters, and the
parameters of both the seasonal model and its cor-
responding annual mean model in this study were
adjusted so that both models produced the observed
amplitudes of the mean annual temperature modes.
In the seasonal model, A, D, and v were adjusted to
giveT, = 14.9°C, | T,| = 15.5°Cand T, = —28.0°C,
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as given in Table 1b. These amplitudes were ob-
tained when Q =340 Wm=2, A =204.6 Wm™2, "
D,/B = 0.238 and v/B = 0.387. Because the land and
ocean areas have different albedos in this version of
the model, a value of v larger than that used earlier
(v/B = 0.226) was required to obtain the observed
T,. In this version the depth of the ocean mixed
layer was also reduced from 75 to 50 m in order to
simulate more closely the amplitude of the seasonal
surface temperature change over oceans. With the
reduced mixed layer depth, this amplitude was
about 6°C. » '

The parameters of the corresponding annual mean
model were adjusted to give the observed T, and
T,. The resulting constants were A = 202 W m™?
and Dy/B = 0.264. These constants differ from those
for the seasonal model because the snow line and inci-
dent solar radiation change with time in the seasonal
model, whereas they are fixed at their mean annual
levels in the annual mean model. For the same lati-
tudinal distribution of annual mean temperatures,
these differences cause the two models to compute
different fluxes of absorbed solar radiation. The dif-
ference between constants reflects the difference be-
tween the radiation budget components of the two
models. ‘

The change in T, for a 19 decrease in Q was
found to be —1.67°C for the seasonal model and
—1.63°C for the annual mean model. Thus, the two
models exhibit essentially the same sensitivity.

The temperature change obtained with both
models was much smaller than the —4 to —-5°C
changes obtained by Budyko (1969), Sellers (1969)
and North (1975b) using earlier annual mean models.
As was shown by Lian and Cess (1977) and by
Coakley  (1979), this difference in sensitivities is
caused primarily by differences in the albedo param-
eterizations and to a lesser extent by differences
in B.

Often solutions for simple energy balance models
are displayed in terms of the position of the perma-
nent ice line as a function of the solar constant.
Fig. 7 shows the ice-line position for both annual
mean and seasonal models. The solution to the sea-
sonal model jumps to an ice-covered earth solution
when Q/Q, = 0.89, where Q, is the present solar
constant, and that for the annual mean model jumps
for Q/Qy = 0.91. As the figure shows, the two
models behave nearly identically for changes in the
solar constant. :

9. Sensitivity to changes in orbital parameters

Milankovitch argued that changes in the incident
solar radiation caused by changes in the earth’s orbit
forced the periodic glaciation of the earth. So far,
however, attempts to support this hypothesis with
simple annual mean energy balance models have
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failed (Coakley, 1979). Whereas the ice-line reached
60°N during the 18 000 YBP glacial maximum, a
jatitude difference of almost 15° from the present
ice-line, annual mean models produced advances of
only 2—-4° for the change in obliquity thought to be
responsible for the glaciation. On the other hand,
Budyko (1969) noted that changes in the orbital pa-
rameters caused only small changes in the latitudinal
distribution of the annual mean incident solar radia-
tion and that seasonal changes could be two to three
times as large. In this section we use the truncated
model described in the last section to check this
hypothesis.

Past changes in the eccentricity e, the longitude
of the perihelion relative to the winter solstice II,
and the obliquity &,, can affect the distribution of
solar radiation reaching the earth, S(x,?). In keeping
with the class of models discussed in this paper, we
shall only investigate effects on the mean annual and
first harmonic in time and on the n =0, 1, 2
Legendre polynomial mode amplitudes of S(x,?).
These will in turn force changes in the lowest modes
of the temperature field.

If the orbital changes are due to the perturbations
of other planets, the overall solar constant changes
by a factor of approximately (1 + +2Ae?), where
Ae? is the change from the present value (Vernekar,
1971; Berger, 1978). We see that as e varies from
0 to 0.06, the effective solar constant varies by less
than 0.4%. This effect may then be dismissed in the
present class of models since it would lead to
changes in T, of only 0.7°C. In the last 25 000 years
the change in ¢ was less than 0.001, which would
cause a change in T, of about 0.02°C for the present
parameterization of the mean annual model.

With regard to the mode amplitudes of S(x,?) we
consider the seasonal forcing §,(#) which was com-
puted analytically in Section 3 [Eq. (11)]. We shall
show that to first order in the eccentricity a,, in
Table 4 is independent of both ¢ and II. The first
harmonic amplitudes are given by the standard for-
mula for Fourier coefficients

1
(“u) _ _J dtdox sind, cos)\(c?szm), (28)
by o 2

szt
where

o = o[l + e cos(A — ID/re, (29)

with constants o, and r,. Both A and ¢ are zero at
northern winter solstice. It is convenient to change
variables in (29) from time ¢ to longitude A. From
conservation of angular momentum we obtain
mry?

a constant.
(1 + e cos(x — II))? dr

(30)
Thus,

(bu) -
b

27
—Qx sind, f d\ COSA

0

(0?52171()\)) 3D
sin2t(\)

GERALD R. NORTH AND JAMES A. COAKLEY, JR.

1201
T ] 1
——— SEASONAL MODEL
1.0~ _ _ ANNUAL MEAN MODEL 7
ost §
=
[72]
(@)
a.
z
Z o8} 1
u
o
0.7F .
] | 1
065 0.90 0.95 1.00
Q/Q0

F16. 7. Sine of latitude of permanent ice line (—10°C isotherm
of annual mean temperature field) as a function of incident solar
radiative flux Q for seasonal model (solid curve) and for annual
mean model (dashed curve). Q, is the solar constant.

where Q is a constant. Eq. (30) may be integrated to
obtain the relationship between A and 7. The result
may be written as a power series in e:

cos27rt) _ (cosh) — % (— sin)\)
(sinZwt sinA + CosA
X [sin(A — II) — sinlT} + O(e?) ... . (32)

Direct substitution of (32) into (31) shows that, to
first order in e, a,, is independent of e and II. These
two quantities therefore do not affect the component
of S(x,t) which was responsible for forcing the
seasons.

However, there are e-dependent, first-harmonic
contributions to S(x,r) which are nonvanishing.
Note, for example, that b,, = —a,(2¢ sinIl). An-
other first-harmonic amplitude also appears in the
global average mode Sy(¢). It has an amplitude which
is given by 2e cos(2at — II), and it is clearly iden-
tifiable as the coefficients ao, and by, in Table 4. A
similar (order e) first harmonic term is present in
S»(1). These are the only dependences on e and I
that should be considered in the present truncated
model. The mode amplitudes of S(x,?) do acquire
higher harmonics which are proportional to higher
powers of ¢, but we do not allow these in the model.
The magnitudes of these terms are extremely small
and hence the decision to omit them is justified.

The eccentricity and longitude of perihelion do not
affect the mean annual components of S(x,#). This
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" can be seen by integrating S(x,?) over time before
doing the latitudinal analysis. After changing to the
A\ variable as before, we have

2

S&x)=Q f i dN[(1 — x®)V2 cosS(N) cosW(N)

0

— x sind, cosAW(A)], (33)

which does not depend on e or II.

Finally, we note that the obliquity &, occurs in
both the seasonal forcing [as sind, in Eq. (28)] and
in a more complicated way in the mean annual com-
ponent S,. The latter affects mean annual models
and is the primary perturbation used by previous
authors (e.g., Coakley, 1979) to estimate such
responses. .

We now consider how the seasonal model re-
sponds to these perturbations in the forcing. The
nonlinear model of the previous section is used but,
in fact, most results are easily interpreted from the
discussion of seasonal residuals in Section 7. The
changes due to various effects are small enough that
they may be considered one at a time and the cor-
responding responses added.

First consider the obliquity. For a decrease in the
obliquity, high latitudes receive less solar radiation
and low latitudes receive more. Because of the al-
bedo-temperature feedback at high latitudes, it
would seem that low obliquity orbits would favor
the development of large glaciers. Lowering the ob-
liquity from the present 23.45° to the 25 000 YBP
22.25°, which is thought to have spurred the last
glacial advance, causes S, and S, in (12) to change,
S, = —0.732 and S, = —0.491. This change in the
distribution of incident solar radiation moves the ice
line in the seasonal model only 3° of latitude equator-
ward. For the same change in the annual mean model
the ice line moves 2° equatorward. The larger change
in the seasonal model is primarily caused by.the
residuals in the absorbed solar radiation [Eqs. (26)
and 27)].

Now consider model responses to changes in e
and II. In a model which retains first harmonics
these changes can enter, for example, the Sy, and
S,; modes of the heating. The largest residual we
can imagine contributing to H, (22) leads to a change
in T, given by

ISmt |‘101(

, (34)

where S,; and a,, are the seasonal components of
the global incident radiation and co-albedo. The
latter might come about if we allowed for the north—~
south asymmetry in the model. The cross-term
Soi(t)ag(?) is not represented in (22) because in a
symmetric model ay; = 0. As we have shown, I Sm|
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=~ 2e¢ (=0.03 at present) and, from Table 3, ay,
=~ 0.09/4, where the denominator is obtained by as-
suming no albedo change in the Southern Hemi-
sphere and area weighting the albedo over the globe.
Thus, AT, ~ 0.06°C. Changes in the P,(x) and P,(x)
temperature modes are readily shown to be of similar
magnitude. Such changes should be compared with
the enhancement in the seasonal model obtained
for the change in obliquity. The enhancement is ob-
tained from (26) and is given by

_ olaslal
6B

With |AS,| = 0.06 and | a,| =~ 0.09, we obtain AT,
= (.1°C. Thus, changes in the longitude of perihe-
lion could cause a difference in the response of the
two models, which is at most only comparable to the
difference obtained above for the change in obliquity.

The responses obtained with the seasonal and an-
nual mean models are comparable to those obtained
by others (Budyko, 1969; Suarez and Held, 1976;
Coakley, 1979). They are much smaller, however,
than the 15° shift in latitude that occurred between
the 18 000 YBP glacial maximum and the present.
Since the models fall so short of explaining the gla-
cial advances by changes in the earth’s orbital ele-
ments, we are forced to look for new low-frequency
feedback mechanisms.

We should remember, however, that the model
studied here is admittedly simplistic. For one thing,
it contains snow and ice lines which are tied to iso-
therms. Perhaps a more realistic approach has re-
cently been undertaken by Pollard (1978), who com-
bines a seasonal model similar to ours with the
glacial model of Weertman (1976). Since a snow
budget is retained, both the local radiative heating
and the local temperature affect melting rates and
thereby snow cover. This type of coupling between
solar insolation and snow melt could increase the
sensitivity of the model to orbital perturbations. Per-
haps another improvement would be to use a model
for the ocean mixed layer that is more realistic than
the passive thermal reservoir model used here. By
adding to his energy balance model a simple model
for the mixed layer, Budyko (1974) obtained glacial-
type conditions in response to past orbital changes.

AT, 35)

10. Conclusions

The purpose of this paper has been to extend the
simple mean annual Budyko-Sellers climate models
to include the seasonal cycle. It was shown that ob-
served fields (if symmetrized so that both hemi-
spheres behave identically) could be represented by
just afew terms in an expansion employing Legendre
polynomials in latitude and sinusoidal harmonics in
time. :
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Once it was established that the forcing (solar
input) and responses (temperature field) were repre-
sentable by such a simple truncated series, it was
easy to derive the transfer matrix relating the two.
The single most important control on the seasonal
amplitude was the fraction of the planetary surface
covered by water.

It was noted that several phase relationships were
important in the reduced data fields: the temperature
field lagged the solar input by about one month,
while the infrared radiation emitted to space and the
co-albedo were in phase with the temperature.

We showed that residuals due to the time-depend-
ent albedo and incident solar radiation caused the
global average mean annual temperature to be about
1.5°C higher in the seasonal model than in the mean
annual model. The residuals also caused the pole-
tc-equator temperature difference to be about 1.6°C
smaller.

Combining a simple parameterization of the al-
bedo with a variable snow line attached to the 0°C
isctherm on land and an ice cap edge attached to the
—10°C mean annual isotherm, we solved the model
numerically and examined its sensitivity with re-
spect to changes in the solar constant. Even with
the seasonally varying snow line, we found no ap-
preciable difference in sensitivity with the corre-
sponding mean annual model.

The model was used to check the Milankovitch
hypothesis that advances of the polar ice caps are
related to changes in the earth’s orbital elements.
After we analyzed the mode amplitudes of the solar
forcing for changes due to changes in the orbital
elements, we estimated the changes in the tempera-
ture mode amplitudes. The largest response was due
to changes in obliquity with the responses due to
changes in eccentricity and longitude of perihelion
being smaller. Even so, the responses in global av-
erage temperature were a factor of 5-10 smaller
than the changes thought to have occurred during
the last million years. Although empirical evidence
seems o be mounting that there is a Milankovitch
connection (Hays et al., 1976), our null results agree
with previous studies of mean annual models in fail-
ing to provide a satisfactory mechanism.

However, we should caution the reader that our
results are not a strict test of the Milankovitch
theory, since in this study many idealizations have
been made in the interest of tractibility and clarity.
Furthermore, we have chosen only one type of domi-
nant jow-frequency feedback mechanism (tempera-
ture-albedo) in our study. We feel, however, that
the methodology introduced here can be used as a
framework for further discussion of this interesting
proeblem.
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