
Assume the atmosphere is transparent to the insolation (mainly visible and ultraviolet) so

that the energy reaching the planet averaged over a day is

€ 

S0Λ(x, t) (1)

where 

€ 

S0  (the solar “constant”) depends on solar luminosity and distance from the sun

and is ~1370 W/m
2
 today, and

€ 

Λ(x, t)  takes into account the angle of incidence as a

function of latitude (= arcsin(x)) which depends on time of day, time of year, and

Milankovich components eccentricity, precession and obliquity.

In the simplest case where all energy arriving at the earth’s surface is absorbed, the

absorbed energy is that energy hitting the disk cross section (shadow area) of the earth

€ 

S0πr
2

(2)

where r is the radius of the planet.

A fraction of the incident energy is reflected back to space.  (This fraction is called the

albedo (

€ 

α ).  The planetary albedo is generally taken to be 0.3.)  So we must modify (2) to

take this into account; hence energy absorbed is

€ 

S0πr
2 1−α( ) (3)

In equilibrium, the net energy absorbed must be balanced by the net energy lost to space.

Assuming that the earth is a perfect blackbody, the radiation to space is

€ 

σTg
4 4πr2( ) (4)

where 

€ 

Tg  is the ground temperature (annual, globally averaged) and the Stephan-

Boltzman constant 

€ 

σ  is 5.67 * 10
-8
 Wm

-2
K

-1
.

The entire energy balance for an atmosphere-free earth is therefore

€ 

σTg
4 =

S0
4
1−α( )

Approximate the atmosphere as a thin radiating slab with temperature 

€ 

Ta  and with a

selection of greenhouse gases such at the net emission 

€ 

ε is some fraction of that of a

blackbody at the same temperature.  The net energy emission from the atmosphere is

therefore

€ 

εσTa
4 4πr2( )



where 

€ 

ε is some “bulk emissivity”.

Taking into account the fact that the slab atmosphere will radiate to both to space and

back down to earth, we can now write the full energy balance for the ground temperature,

for a “realistic” earth with greenhouse gases:

€ 

S0πr
2(1−α) + 4πr2εσTa

4 = 4πr2σTg
4

S0(1−α)
4σ

+ εTa
4 = Tg

4
(5)

The atmosphere in our model gets no direct energy from the sun, and recognizing that

partial emitters are partial absorbers, the atmosphere gets only some of the energy emitted

by the ground, so that the energy balance for the atmosphere requires that

€ 

−2εσTa
4 +σεTg

4 = 0

Tg
4 = 2Ta

4
(6)

So the solution for the ground temperature is:

€ 

Tg
4 =

S0(1−α)
4σ 1−ε /2( )

(7)

Without an absorbing atmosphere, the ground temperature would be

€ 

Tg =
S0(1−α)

4σ
4 =  255 K =  -18ϒ C (8)

The increase in surface temperature due to greenhouse gases is therefore

€ 

Tg
Tg (ε =)

= 1− ε2( )4 (9)

The observed ground temperature is obtained using ε = -.76.

Climate sensitivity is defined as a climate change due to some external forcing, 

€ 

Z .

€ 

λ ≡
dTg
dZ

=
∂Tg
∂Z

+
∂Tg
∂y j
j∑

∂yi
∂z

(10)

where y
j 
are variables that are parameterically related to Z.

Equations (11), (12), (13) (you solve ‘em!) give sensitivity to various forcings (.e.g.

changing S or ε).



We can make the EBM time dependent as follows:

€ 

Ca
!Ta
!t

= εσTg − 2εσTa
4

(14)

€ 

Cg

∂Tg
∂t

=
S0(1− a)
4

+ εσTa
4 −σTg

4
(15)

where the left hand sides show the rate of change of energy storage in the atmosphere

(14) and ocean (15) (treating the earth to first order as all “ground” is ocean).

To simplify, these equations can be linearized about a reference temperature 

€ 

Tr = 273.15 .

€ 

Ta = Tr + ′ T a (16)

€ 

Tg = Tr + ′ T g (17)

so that (14) and (15) become

€ 

Ca
∂ ′ T a
∂t

= −εa + εb ′ T g − 2bεb ′ T a (18)

€ 

Cg

∂ ′ T g
∂t

=
S0(1−α)
4

− a(1−ε) + εb ′ T a − b ′ T g (19)

where 

€ 

a =σTr
4  and b = 4a

Tr

a = 316 W/m
2
 and b = 4.6 W/m

-2
K

-1

The heat capacity of the atmosphere is

€ 

Ca ≡ Cp
a Δp
g

=103 Jkg−1k−1104kgm−2 =107 Jm−2k−1

Let the heat capacity of the ocean approximate the heat capacity of the surface

(“ground”).  h = depth of the mixed layer = 75 m.

€ 

Cg ≡ Cocean = Cp
oceanhρH 2O = 4 *103 * 75*103 = 3*108m−2k−1

So Cg/Ca in (18) and (19) = 30.  Note that on the timescale of the annual cycle, the heat

capacity of land (as opposed to ocean) is about C
a
/4.  The point is that over the ocean, Cg

= Co, and because Co>>Ca over the ocean we can assume the atmosphere is in

equilibrium with respect to changes in the “ground” (sea surface) temperature.  This

allows us to set the left-hand side of (18) to zero and obtain:

€ 

2εb ′ T a = εb ′ T g −εa (20)



and the ground temperature (that is, the sea surface temperture) equation simplifies to

€ 

Co

∂ ′ T g
∂t

=
S(1−α)
4

− A − B ′ T g (21)

where A = a(1-ε/2)=195 W/m
2
 and B = b(1- ε/2) = 2.9 Wm

-2
K

-1
.

The equilibrium solution to (20) and (21) is

€ 

′ T g =
1370
4
(1− .3) −195) /2.9

 

 
 

 

 
 =15.4ϒC

It is useful to rearranging 21 to define the forcing, F as

€ 

F ≡
S(1−α)
4

− A = Co

∂ ′ T g
∂t

+ B ′ T g (22)

which has the time-dependent solution

€ 

′ T = e−t /τ F(t)
Co0

t

∫ e t /τdt (23)

where

τ = C
o
/B (24)

is the characteristic response (adjustment) time of the system.  This is about 3.3 years for

thermal changes due to forcing of the upper ocean-atmosphere system.  Over land, it is <

2 weeks.

For an instantaneous switch-on of a constant forcing,

€ 

F =
0 t ≤ 0
Fo t > 0
 
 
 

€ 

′ T g (t) =
Fo

B
1− e−t /τ( ) (25)




