Valuation of Timber and Carbon Sequestration: An American Call Option Technique

Stanislav Petrasek John Perez-Garcia Bruce Lippke B. Bruce Bare

School of Forest Resources
University of Washington, Seattle, WA

Third International Faustmann Symposium, 2009
Darmstadt, Germany
Outline

1. Model Formulation
 - Problem
 - Assumptions
 - Valuation Methodology

2. Illustrative Example
 - Parameter Values
 - Results
Problem Statement

Properties:
- Classical Faustmann problem: Choose rotation length to maximize bare land value over multiple harvest cycles subject to silvicultural and economic constraints.
- Modification: Introduce uncertainty via prices of timber and carbon.

Objectives:
- Determine the value of bare land value under uncertainty in prices of timber and carbon.
- Determine optimal harvest strategy in stochastic settings.
- Determine the impact of carbon sequestration on optimal time of stand harvest.
Stochastic Faustmann Problem as Real Option

IF Land ownership is viewed as the right to exchange timber for harvest cost and sell it in the market at prevailing price.

THEN Valuation of bare land value under price uncertainty parallels the valuation of a multi-period American call option.

<table>
<thead>
<tr>
<th>American Call</th>
<th>Bare Land Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying Asset</td>
<td>Timber and Carbon</td>
</tr>
<tr>
<td>Strike Price</td>
<td>Harvest Cost</td>
</tr>
<tr>
<td>Contract Length</td>
<td>Planning Horizon</td>
</tr>
<tr>
<td>Exercise Time</td>
<td>Harvest Time</td>
</tr>
</tbody>
</table>
Many techniques have been developed for valuation of American options.

Ibáñez and Zapatero algorithm is a good example:
- Allows multiple sources of uncertainty of asset prices.
- Explicitly calculates optimal exercise policy.

Ibáñez and Zapatero algorithm can be applied to the calculation of bare land value:
- Allows timber and CO$_2$ prices as sources of uncertainty.
- Calculates optimal harvest policy as function of prices and age.
Unmodified, Ibáñez and Zapatero algorithm would have limited application for bare land valuation:
- Assumes American option with one exercise opportunity
- Equivalent to assuming a single harvest cycle

Extending the algorithm enables broader application:
- Allows multiple exercise opportunities
- Equivalent to harvest cycles characteristic of the Faustmann problem

The extension produces results that are both more realistic and accurate
Basic Assumptions

- **Bare Land Value**: Calculated in USD per acre

- **Price Models**: Timber and carbon prices assumed to follow a logarithmic mean reverting process

- **Harvest Cost**: Fixed and known at all times

- **Discount Rate**: Fixed and known at all times

- **Silviculture**: Douglas fir regime with planting followed by a regeneration clear cut final harvest.

- **Yield Function**: Assumed high yield site in Western Washington State (No risk due to fire, disease or wind.)
Many models for price behavior are available.

The model used for this example is a log mean-reverting stochastic process:

\[dS_t = \kappa (\mu - \ln S_t) S_t \, dt + \sigma S_t \, dW_t, \]

Where: \(S_t \) is the price at time \(t \), \(\kappa \) is the rate of mean reversion, \(\mu \) is the log of long term price, \(\sigma \) represents price volatility and \(dW_t \) is an increment of the Wiener process.

The price model in equation 1 was used to model both timber and carbon prices.
Three basic carbon pools are considered in this study:

- **Forest Pool**: All carbon contained in a standing forest.

- **Product Pool**: All carbon contained in harvested wood products.

- **Substitution Pool**: All carbon not released into the atmosphere when harvested wood products displace fossil-based alternatives. (Avoided emissions)
Cash Flows

- Profit at time t:
 \[\pi_t = \max[CF_t^T + d_t \mathcal{F} \mathcal{H}; CF_C^t + \mathbb{E}[d_t \pi_{t+1}]] \]
 (2)

- Cash flow if harvest does not occur at time t:
 \[CF_C^t = \Delta Q_t P_C \]
 (3)

- Cash flow if harvest does occur at time t:
 \[CF_T^t = Q_t (P_T^t - \gamma (\alpha_F - \alpha_P - \alpha_S) P_C^t - C) \]
 (4)

Where: $Q_t =$ timber volume; $C =$ fixed harvest cost; α_F, α_P, $\alpha_S =$ fractions of carbon in forest, product and substitution pools; and $\gamma =$ scaling parameter that converts carbon in wood to atmospheric CO_2.
Carbon Scenarios

- Scenarios constructed from three sets of values of α_i in equation 4:

$$CF^t_T = Q_t (P^t_T - \gamma (\alpha_F - \alpha_P - \alpha_S) P^t_C - C)$$ \hspace{1cm} (4)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>α_F</th>
<th>α_P</th>
<th>α_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>0.80</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>No. 2</td>
<td>0.80</td>
<td>0.25</td>
<td>1.0</td>
</tr>
<tr>
<td>No. 3</td>
<td>0.80</td>
<td>0.35</td>
<td>2.0</td>
</tr>
</tbody>
</table>

- No. 1: $\alpha_F > \alpha_P + \alpha_S \Rightarrow$ Increased total harvest cost
- No. 2: $\alpha_F < \alpha_P + \alpha_S \Rightarrow$ Increased harvest revenue
- No. 3: $\alpha_F \ll \alpha_P + \alpha_S \Rightarrow$ Increased harvest revenue
These parameter values were used in all simulations unless stated otherwise.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Timber</th>
<th>Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Price S_0</td>
<td></td>
<td>400 ($/MBF)</td>
<td>25 ($/ton)</td>
</tr>
<tr>
<td>Long-term Price</td>
<td>$</td>
<td>665</td>
<td>33</td>
</tr>
<tr>
<td>Reversion Rate κ</td>
<td>%/year</td>
<td>0.33</td>
<td>4.0</td>
</tr>
<tr>
<td>Volatility σ</td>
<td>%/year</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Correlation ρ</td>
<td>%</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Harvest Cost C</td>
<td>$/MBF</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Discount Rate r</td>
<td>%/year</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Simulation Horizon T</td>
<td>years</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Harvest Time</td>
<td>year</td>
<td></td>
<td>Anytime before T</td>
</tr>
</tbody>
</table>
Convergence in Number of Harvest Cycles
Scenario 2

- Harvest Cycle Contribution
- Number of Harvest Cycles
- Expected Bare Land Value ($/acre)
Optimal Harvest Boundaries for Ages 30−60 Years – Scenario 2

Stand Age Held Fixed Along Each Curve

- Red: Stand Age = 30 Years
- Blue: Stand Age = 60 Years
- Green: Long–Term Carbon Price

Delay Region

Harvest Region

Timber Price – Fixed ($/MBF)

CO2 Price ($/ton)
Optimal Harvest Boundaries for Ages 30–60 Years – Scenario 2

Stand Age Held Fixed Along Each Curve

- Harvest Region
- Delay Region

- Stand Age = 30 Years
- Stand Age = 60 Years
- Long-Term Timber Price

CO2 Price – Fixed ($/ton)

Timber Price ($/MBF)
Bare Land Value: Carbon Pool Sensitivity

Bare Land Value Sensitivity to Changes in $\alpha_p + \alpha_s$

- CO2 Credits as Revenue
- CO2 Credits as Cost

Value of $\alpha_p + \alpha_s$ (%)

Bare Land Value ($/Acre$)

- 5200
- 5400
- 5600
- 5800
- 6000
- 6200
Harvest Time Distributions for 25 Values of Long-Term CO2 Price
Scenario 2

Frequency of Harvest Ages

Stand Age (Years)

$10/CO2 Ton
$250/CO2 Ton
Harvest Time Frequency: Timber Price Sensitivity

Harvest Times Distribution for 17 Values of Long-Term Timber Price
Scenario 2

<table>
<thead>
<tr>
<th>Frequency of Harvest Ages</th>
<th>Stand Age (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$200</td>
<td></td>
</tr>
<tr>
<td>$800</td>
<td></td>
</tr>
</tbody>
</table>
Harvest Times Distribution for 14 Values of Timber Price Volatility
Scenario 2

- Frequency of Harvest Ages
- Stand Age (Years)

Legend:
- Blue: 5%/Year
- Red: 70%/Year
Harvest Time Frequency: Faustmann

Harvest Times for 13 Values of Long−Term Timber Price

Faustmann (Very Low Timber Price Volatility)

Stand Age (Years)

Frequency of Harvest Ages

- $200
- $800
Bare Land Value: Long Term Timber Price

Bare Land Values as Function of Long–Term Timber Price
Several Management Scenarios

- Faustmann
- Timber Only
- Scenario 1
- Scenario 2
- Scenario 3

Carbon Contribution
Option Premium
Summary

- Modified Ibáñez and Zapatero algorithm provides a practical methodology for determining expected bare land value under stochastic timber and CO$_2$ prices.
- Future harvest cycles make a significant contribution to expected bare land value under stochastic timber and CO$_2$ prices.
- Profitability of carbon sequestration determined jointly by CO$_2$ price and credit policy.

Outlook

- More realistic price models
- Additional sources of uncertainty
- Faster, more efficient computation