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Infeger Programming 

Production 

I in~ Problems 

Il I I'; ND ELDON L, NORMAN 

Ir ..."d"'''''I1/ fll /,'ul'l'sfl'y and Conservat'ion 

I IH I'III~ PlUNCIPAL FUNCTIONS ofa 
I 11\;llIaJ.!:'CI' is the preparation of cutting 

'I'11l':4u sehedules, essential to efficient 
III 111 ~. transform the allowable cut deci­
I \ 'II 'j,inj.!," plan of action, Therefore, the 

111111 WeI' usually attaches significant im­
1111' 'II Ilwi I' development, If the manager 
11 I' Ii, :~('lll'c111ling problems in terms of 

III 1IIIi;c.inj.!," or minimizing an objective 
• II Id,jl'ct to a set of constraints, it is pos­
III 1'1111 to dl~velop optimum schedules over 

.t 1.1 Illning' period. This, however, requires 
I II III \' "illl mathematical programming pro­
hilI' 

I hi I}lilll·till llescribes a potentially useful 
111'1 I'" jl':t1 programming technique known as 

/ll 'I 11111':\1' programming. While no new inte­
I pI (r"llllllni'llg (IP) algorithm is developed, a 

I III JpJl "I' several known IP algorithms is un­
I I ,1·1"1, IllId one of the more recent ones is sub­

1'1111 II, 1\ i1)lplied to forestry oriented problems. 
, 1'11"11)' Ii (,olllputational problems have ham­

I ., I d I hi' prndi<.:al application of many mathe­
I I "I ':d pl'llgTamming techniques, the development 



I d i I'tually solved the compu­
o 'iated with linear program-

I'll i I LJ 'l::HIHe of this, forestel's have 
! 1\'111. problems dealing with the 
11111'( l or forest production schedul­

'Ill'	 is 1962, Donnelly et al. 1963, 
I. on, I.cak 1964, Liittschwager and 

I II I Lll1l('kA~ 1964, Nautiyal and Pearse 
I~ I • I I'J1I III /llld 'urlill 1968, Theiler 1959, War­
dl 1 " ). rII' 'WI', the optimal linear program­
lld II f II II J)11 r I'n specifies that fractional por­
In· I I I t II j Pi' ... IIlpartment receive the impact 
,,1' I IT 1111 l'nll'lll H,tivity, In cases where forest 
, . !lId IIr 'ull1pnl'hllents are being managed as 
hlllll(l 't'Il'r Ill'! Illlils, non-integral solutions are im­
lin " "d. 'l'llu:, foresters must turn to a proce­
rllll'I', II 'h ;1:' integtl1' programming, where all 
, ll'i I 11,·':i ('lIf -ring- the optimal solution are re­
~lrll'l·tt I." intn~;r;\J values. The principal disad­
'11nl.llfl' Ill' l1sing rp is that an efficient algorithm 

Cor !lllildlinp; large problems has yet to be de­
\' Ii 1 'l. 

Introduction to Integer Programming 

Tid: P"!" illn or the bulletin briefly reviews the 
Ill;I."D!' an':I:; of thought which characterize the 
P:lsj nJld !Jr'sent attempts to derive an efficient 
illtpg· 'r !lmgT:lrnming algorithm, The discussion 
oL Ull' ftlll11wing' methods will be brief and intui­
tiv in n:ltuJ'l.'. A more detailed discussion may 
b) found ill Haljnsl<i (1965). 

Cutting Hyperplanes 

Acording to YOllng (1964), two distinct steps 
characterize any cutting plane algorithm. The 
first involves the j!;eneration of a basic trial solu­
tion to the lineal' programming problem using a 
standard linear programming algorithm. The see­
ond involves the generation of an additional con­
straint on the set of feasible solutions (called a 
cutting hyperplane) if the LP solution does not 
produce an optimum integer solution. Cutting 
plane algorithms are distinguished by the charac­
teristics of the basic solutions they utilize and 
the method used to generate cuts. 

Initial efforts in this field by Dantzig et al. 
(1954), Dantzig (1959), Markowitz and Manne 
(1957), and Gomory (1958) shared a common 
method of obtaining basic and trial solutions but 
differed in their method of cut generation. Go­
mory's work is distinguished because he: (a) 
developed a proof of finiteness and (b) stimulated 
the development of other IP algorithms which 
were based on his work. His origina~ algorithm 
requires an optimum LP solution as an initial trial 
~:l()lution. If this optimal solution does not satisfy 

2 

the required integer property, the algorithm gen­
erates a hyperplane from a row with a fractional 
solution variable. The resulting tableau which is 
dual, but not primal, feasible is then re-optimized 
using the dual simplex. This cycle is repeated 
until an integer optimal solution is found, or until 
all coefficients in the generating row are non­
negative-which implies infeasibility. 

This algorithm has since been superseded by 
other types of cutting plane algorithms which em­
ploy a common method of generating cuts, but 
differ in the character of the basic solutions they 
generate. The Gomory (1960) all-integer integer 
algorithm which also uses the dual simplex to 
locate trial and basic solutions, requires that all 
of the aij in the initial simplex tableau be integer, 
This algorithm generates a sequence of basic solu­
tions which are integral and optimal (i.e., dual 
feasible) but not primal feasible before the final 
iteration. The basic idea involves the generation 
of a hyperplane from a row with a negative solu­
tion variable in such a way that the pivot element 
in the generated row is -1. The positive integer /I., 

by which the generating row is divided to form 
the hyperplane, is chosen so that dual feasibility 
is maintained. 

Implicit Enumeration 

Implicit enumeration algorithms may be defined 
as methods which generate information, as the 
enumeration of possible solutions proceeds, which 
permit the elimination of large numbers of solu­
tions from further consideration. For this reason 
they are also known as branch and exclude algo­
rithms. One of the earliest algorithms in this area 
was that developed by Balas (1965). 

The Balas additive algorithm, and implicit enu­
meration methods in general, have several advan­
tages over the previously discussed cutting hyper­
plane approaches. Several of these advantages 
are: 

a.	 addition is the only arithmetic operation re­
quired (hence no system of simultaneous 
equations need be solved as in LP) 

b.	 the rate of implicit enumeration can be 
measured, thus allo'vving for informed stop­
ping rules 

c.	 only minor modificatiOJls arc necessary for 
the solution of nonlinear objective functions. 

In the solution or t.he two s 'hecluling problems 
presented below, ihe G 'ofTrion (1%7) algorithm 
(n reformulation of [III; J::li<ls procedure) is used. 
Therefore, ihe following inl11itive discussion of 
imV1il'it. l?J1llrn'1':! ion ic; only directed at the Geof­
frion algori hill, 



Geoffrion's implicit enumeration approach util ­
izes the Balas (1965) algorithm with the modifi­
cation of the backtracking scheme proposed by 
Glover (1965). His algorithm states that any 
bounded integer programming problem can be 
written as 

Min cx 
subject to 

Ax + b ?: 0
 
Xj = 0 or 1
 

where
 

c is an n-vector, band 0 are m-vectors, A is 
an mxn matrix, and x is a binary vector to 
be chosen. 

The reader may consult Geoffrion (1967) or Free­
man (1965) if interested in a brief discussion 
concerning conversion of non-binary integer vari ­
ables with an upper bound to binary representa­
tion. 

The basic idea of this and other implicit enu­
meration techniques is to explicitly enumerate a 
subset of the 2" possible solutions in a non-redun­
dant fashion. However, there is no guarantee 
that the number of solutions explicitly enumer­
ated will not approach 2". The key to an efficient 
implicit enumeration technique lies in the scheme 
which permits large groups of possible solutions 
to be excluded (implicitly enumerated) from fur­
ther consideration. 

Geoffrion's algorithm involves the generation of 
a sequence of partial solutions, and the subse­
quent completion of each. A partial solution is 
defined as an assignment of binary values to a 
subset of the n variables, with any variables not 
assigned a value being designated as free. A com­
pletion of a partial solution is defined as an assign­
ment of binary values to the free variables not 
included in the partial solution. As feasible solu­
tions are discovered, that which minimizes cx is 
retained as the incumbent solution. For a given 
partial solution, the best feasible completion is 
computed. If the resulting value of the objective 
function is better than the value of the incumbent 
solution, then it replaces the latter in memory. 
Otherwise, the incumbent solution remains un­
changed. In either case, the above process is de­
fined as fathoming a partial solution. As the 
fathoming process proceeds, it is possible to de­
determine whether the subsequent completion of 
a particular partial solution will produce a better 
value of the objective function than will the in­
cumbent solution. If no feasible solution exists 
with a better value, then the remaining possible 
completions are said to be implicitly enumerated 

and the partial solution is fathomed. This proc­
ess is repeated until the optimum integer solution 
is found. 

Another facet of the implicit enumeration ap­
proach involves the concept of a filter on the pos­
sible branches of the tree search. Constraints are 
generated using the solution of the continuous 
dual of the primal problem. These constraints, 
called surrogate constraints, are created by form­
ing linear combinations of the primal constraint 
set and the optimum dual continuous variables. 
The original filter concept is due to Benders 
(1962). However, since Balas had not published 
his original implicit search article at that time, 
Benders was unable to link the filter with Balas' 
implicit search technique. Balas (1967), Glover 
(1965), and Geoffrion (1968) have since com­
bined the filter concept with implicit search tech­
niques to produce new algorithms. 

Another recently developed approach involves 
the use of probability theory in an implicit search 
(Graves and Whinston 1967). Its strength lies 
in a more powerful means of determining the po­
tential future effect, with respect to the problem 
constaints, of bringing an additional variable into 
solution. 

Two Sample Scheduling Problems 

The first sample scheduling problem concerns a 
forest which has been subdivided into m compart­
ments with each compartment to receive a single 
harvest cutting over the next n years. Let Vlj 

equal the total cubic foot volume received from 
compartment i if harvested in year j, and let 
X jj be a binary variable which equals 1 if com­
partment i is harvested in year j and 0 otherwise. 
Hence, we wish to: 

n III 

(1) 

In addition, there are minimum and maximum 
restrictions on the number of acres that may be 
harvested anyone year. Using the notation of 
Liittschwager and Tcheng (1967), let at equal 
the number of acres in compartment i, and bill"' 

.I 
and bOIl" equal the maximum and minimum num­

) 

bel' of acres which may be harvested each year. 
Thus, the following inequalities are obtained: 

(2) 

j = 1, 2, .... n 
I1l min 

i ~ 1 ai Xij ?: bj (3) 

The problem may be further simplified by setting 
bmo and blllin 
'J 

, 
j 

equal to the acreage of the largest 

3
 



and smallest compartments respectively. Thwl, 
b';"'" and b';'in will be constant over all n years in 

the planning horizon. 

Two additional constraints are needed to com­
plete the mathematical formulation. As stat'd 
above, each compartment must be harvested ont·(· 
and only once during the planning horizon. Writ ­
ing this as an equality we obtain: 

n 

~ X" = 1 i = 1, 2, .... m, Xij = 0 or 1 (4)
.J =1 

This problem formulation involves (mxn) hi· 
nary variables and 2n + m constraints. ThQ~, ; 
simple scheduling problem involving the harv :'l • 

ing of 5 compartments over a planning hori7.1 I 

of 5 cutting periods, with only one compartmllli 
being harvested per cutting period, involves 2, 
binary variables and 15 constraints. Table 1 ('of!. 

tains the volumes and acreages of the five ['I In 

partments for the total planning horizon.'~ l\ J. 
though this problem involves only 15 constraiJJ'1 • 
the algorithm (Geoffrion's) used to solve the) 1';)11 

lem does not permit the use of equality 1'0)) 

stl'aints. Thus, the following two constraintR (ill 
stead of one) are required for each equalil. 
constraint: 

( ),~ Xu ~ 1 and .-~ 1 Xu :? -1 
j = 1	 J= 

or 
11	 n 

",,'	 
~Xu :? 1 and -~ Xij -1 G

j .::... 1	 j = 1 

Therefore, the actual size of the constraint m:l1l'i 
for this problem is (25 X 20). Howev>]', II) II 

Balas (1965) and Reiter and Rice (l9Gfi) :,t rill' 
that the efficiency of the integer progl'nmlllirH 
algorithm seems to increase as the numlll'r 01' 
constraints increase. 

A computer program version of Geoffrioll';.! ill. 
gorithm written for the CDC 6500 was Il:-Wl! Ie 
solve this problem in 32 seconds. The opl imlll 

value of the objective function was 24H7M l'U. r " 
and is associated with the optimal harVt'st Hd ·d 
ule shown in Table 2. It is intel'esti ng La noLe thai 
the first feasible solution, found in ~~ l~ SCt'oIlI!H, 

provided an objective function valu' \"hil'll \VOI:-; 

98.67r of the optimal value. 

,;, The c?l1!partment acreages used in this salnp'I,· pro!>. 
lem prohIbIt more than one compartment from IWjlll~' 

har,,:ested in. any given cutting period. TherefoJ'(', ('0))·' 

stra1llt equatlOns (2) and (3) become redundant anI'! LIII' 
problem can be solved by using a transportation aig-oriLhm. 
However, if different compartment acreages arc chosen 
it is likely that it will not be possible to formulate th is as 
a transportation problem. Thus! for increased flexibility,
sample problem Oill! was l).ot consldered as II t1'1lnSpol'tHtion 
problem. 

4 

roblem one 

..t	 '001 volume per compt. 
Ithousand cu. ft.) 

2 3 4 5 

Itlll 491 500 501 
~ J I) 510 490 480 
~-10 370 380 385 
150 440 420 400 
81 600 620 620 

. ­

1l1'l'iMing to obtain the final 
II Ill' h a short time since both 

Jl J 1"l'el;rnan (1965) report that 
II " Ii ro r i lhm seems to work well 

II IfI 'illgllp to 30 variables. In ad­
II ,ItI 111 WHS fairly well constrained, 
I • I IH,V\' ..;;eems to increase compu-

I rill, ' 

/1'1 't.~t·d the number of compartments 
" 111111 l' ,d' cutting periods to ten. This 
III J It ('hf'duling problem involved 100 

, 11 I II'. ,:llld 30 constraints. After 30 
'I 1(' ()r)()() central processor time no 

"lilli, n \vas obtained. Even more alarm­
tIll! r ';\sible solution (obtained in 38 

) \ II \ inlin 9% of the value obtained 
Ill. 11 Iddilional 1762 seconds of computing. 
III IIhltll'lll, t he last solution obtained was only 

llhlll ,., r M t.he known optimal feasible solu­
t I III. 

I I llf'll 11111, shown in Table 2, it was observed 
ria \ h' (lljl.:dive function was quite insensitive 
II t!ll!l'l' '1:1 harvesting schedules. Thus, a sub­
I 1\ lit! I'" I'd-ring of the harvest schedule only 
It ,Ill. iiII'· ·ted the value of the objective func-

I ,11. 'I'hi" riiay indicate that an intuitive subjec­
'h 'uul(~ is not too far from the optimum. 

'I lli' 11 "1 lid sample scheduling problem concerns 
II II 1'1 sL \·vhic.:h has been subdivided into ill stands 
,'tfh I'll('h stand being subjected to n possible har~ 
"M i, v: alteTnatives. Let ru equal the residual 
llhll' of stand i if harvesting alternative j is 

,o.;t·I,·!'tl'd. and let Xu equal 1 if stand i is subjected 

Table 2, Optimal schedule for sample problem one, 

Cutting Period Compartment to Harvest 

1 4 
2 2 
3 1 
4 5 
5 3 



III 

to harvesting aJtcmative j, and 0 otherwise. 
Henr.e", we wish to : 

(7) 

In addition, there is a maximum volume which 
may be removed during the harvesting operation. 
Let Vij equal the volume available for harvesting 
from stand i if harvesting alternative j is se­
lected. To maintain an adequate growing stock, 
a harvest volume of no more than Y bd.ft. may 
be removed. This gives rise to to the following 
inequality: 

(8) 

There is an additional constraint concerning the 
stumpage value of the stands to be harvested. 
Let Sjj equal the stumpage value of stand i if 
harvested by alternative j. The stumpage val ue 
for the entire harvesting operation must be great­
er than or equal to Z dollars. 

Writing this an an inequality we obtain: 

(9). ~ 1 . ~ 1 Sij
1= J = 

Two additional constraints are needed to complete 
the problem formulation. Each stand must be com­
pletely harvested if any cutting is done in the 
stand, and Xji must equal either 1 or 0, i.e., equa­
tion set (4). 

Assume that we have 10 stands with 9 harvest­
ing alternatives per stand. This gives rise to a 
problem involving 90 binary variables and 12 con­
straint equations. For reasons noted in equations 
(5) and (6), we must increase the number of con­
straints to 22. Further, we have a maximum har­
vesting volume of 850,000 bd.ft. and we must sell 
a minimum of $10,000 worth of stumpage. For 
this problem we know the optimum LP solution, 
but not the optimum IP solution. 

Using the same computer program version of 
Geoffrion's algorithm referred to above, an opti­
mum solution was not found after 20 minutes of 
computing. However, the incumbent solution after 
12.5 seconds was only 3.667r less than the opti­
mum linear programming solution. It is not known 
whether this is the optimum integer solution 
since all solutions were not implicitly enumerated 
in the 20-minute time limit set for the run. Be­
cause the optimum integer solution must be less 
than or equal to the optimum LP solution, this IP 
solution may be optimal. 

Table 3, which contains the LP and IP harvest­
ing schedule.s for this problem, illustrates several 
interesting aspects of the problem. In comparing 

Table 3. Solution comparisons for sample 
problem two 

Geoffrion 
Optimum LP Schedule 

Schedule Alterna-
Alternative Residual tive Residual 

Stand Number Value Number Value 

1 4 5,625 1 6,950 
2 3 2,899 7 1,321 
3 I 4,798 3 4,66 ] 
4 6 4,324 6 4,324 
5 3-51 ('t, 599 5 0 

4-49";, 
6 4 3,155 6 2,485 
7 4 8,533 3 9,737 
8 3 4,177 3 4,177 
9 2 2,239 7 1,415 

10 3 2,398 3 2,398 

Max ,. 
~i ~.i r ij Xu $38,983 $37,468 

-­

the LP and Geoffrion iOolutions, it again appearR 
that the objective function iR not particularly sen­
sitive to the variableI' in the solution set since the 
Geoffrion schedule produced a similar value of 
the objective function with only three of the ten 
selected variables in common. This indicates that 
a large number of near optimum solution setR 
probably exist. 

Conclusions 

To completely evaluate the performance of some 
of the proposed integer programming algorithms 
it would be necessary to solve many different types 
of scheduling problems. Moreover, the two spe­
cific harvest scheduling problems discussed in this 
bulletin should be solved by some of the other 
integer programming algorithms. However, even 
this approach would not necessarily permit one to 
draw general conclusions concerning the efficiency 
or usefulness of a specific algorithm for solving 
the harvest scheduling problem. The reasons for 
this are: (a) one algorithm may be more efficient 
for solving one specific formulation while a second 
algorithm may be more efficient for solving an­
other formulation, and (b) the efficiency of the 
proposed algorithms is directly related to the size 
of the problem. However, as Freeman (1965) 
states, "as with any enumeration procedure com­
putational experience is the best indicator of its 
worthiness." Thus, additional computational ex­
perience may be warranted for the purpose of 
determining the most efficient algorithm to use 
for a specific formulation of the hllfvllflt f!cheduI­
ing problem. 

5 



The impjioal II II' 110 "I es1;" inte­
ger progl':Ir1IIIl!11 'I I' Jill '\(On I'llI' problems of 
a similar xil'IIl'IIII't, "Ill. II' Ii.· fulilre will reveal 
a method :-lin1 III' I I It hllpl. pl'o('cc!ure which 
will ha\'1' \ ILI(' lippi,' IlJlil,. Ilnwpvcl', the trend 
seel1l:-t 10 IJ\.: [n iiI ',IIII) il1lpli ·il ('numeration tech­
niquPI-\ \ hidl od (J'Y ,jJil'ielltly for problems 
or it '1'1'1:1!11 Mlllll'[III'I', hut very inefficiently for 
problf'lIJH , " II dill' 'I'('ut structure. In addition, 
c01ll1 1I :11.i0l1jtl 11m '1-\ V:ll'y almost exponentially 
wit.h lhl' /'liz.' oj" f 11(' pl'obJem. 

Twp 1'11l'tJllragi Ilg" items which we observed 
\VOl": (:1) all initial feasible integer solution was 
(1)1:lill'd 'III a VHy short time, and (b) the value 
of thl' 01 .i ,dive function associated with the ini­
tial ~-i(>IIl! ion was often quite close to the value of 
U1I' (,lJ.i 'dive function associated with the opti­
l1WIl1 :.;olution. However, the problem containing 
100 bi nary variables did not follow this pattern 
bC('(llll'; ~ the initial and final (not optimal) objec­
I.i ve function values were not even close to the 
optimum value. 

A major limitation of the implicit enumeration 
approach is due to the fact that the optimum is 
unknown, even though it may have been found, 
before all solutions have been implicitly enumer­
ated. Although it is difficult to generalize on the 
basis of two tests, this suggests that one couijd 
merge an implicit enumeration algorithm with 
another IP solution procedure to obtain a more 
efficient computational algorithm. This observa­
tion was also noticed by Freeman (1965). 

Another observation is that integer program­
ming tends to place more emphasis on careful 
problem formuTation. Hence, to reduce the num­
ber of decision variables, attempts should be made 
to delete alternatives which are of minor imp01'­

tance to the problem. Also, as previously noted, 
the Geoffrion algorithm increases the size of the 
problem when equality constraints are used. In 
addition, and more important computationally, is 
the fact that Geoffrion's algorithm is designed fur 
minimization problems. Therefore, when maxim­
ization problems of the type discussed in this bul­
letin are encountered, a transformation (Xi = 1 
- Xi) is required. This increases the number of 
variables in a partial solution, and thus slows 
down the computational efficiency of the algo­
rithm, Methods for alleviating this problem are 
currently under study. 

It is apparent that, at present, the relatively 
large nature of practical forest scheduling prob­
lems and the efficiency of existing integer pro­
gramming algorithms are not compatible. How­
ever, the characteristics of the general structure 
of many forest scheduling problems indicate that 
the problem is amenable to solution. Since the 
coefficient matrix is tied over all variables by 
relatively few constraints, and since the matrix 
tends to be uniform and independent in blocks 
across the variables, it lends itself to decomposi­
tion. The potential of thi::-; procedure should be 
evaluated. 

From the preceding description of the constraint 
matrix, it follows that the density is generally 
low. Simplex algorithms have taken advantage of 
this characteristic, but as yet implicit enumera­
tion methods have not. We concur with Lemke­
Speilberg (1967) who feel that the area of im­
plicit enumeration is in the infant stage and 
eventually will become much more successful as 
more sophisticated search methods are developed. 
In addition, the newer filter methods and the 
probability approach should be evaluated through 
computational experience. 

6 



Literature Cited 

Balas,E. 1965. An Additive Algorithm for Solving Linear 
Programs with Zero-One Variables. J. Operations 
Res. 13(4) :517-549. 

Balas, E. 1967. Discrete Programming by the Filter 
Method. J. Operations Res. 15 (5) :915-957. 

Balinski, M. 1965. Integer Programming: Methods, Uses, 
Computation. Mgt. Sci. 12 (3) :253-313. 

Benders, J. F. 1962. Partioning Procedures for Solving 
Mixed-Variables Programming Problems. Numerische 
Mathematik 4 :238-252. 

Curtis, F. 1962. Linear Programming the Management of 
a Forest Property. J. For. 60:611-616. 

Dantzig', G. B., D. R. Fulke son, and S. Johnson. 1~Jfj4. 
Solution of a Large-Scale Traveling-Salesman Prob­
lem. J. Operations Res. 2: 393-410. 

Dantzig, G. B. 1959. Note 011 Solving Linear Programs in 
Integers Naval Res. Logistics Ql'tly 6 :75-76. 

Donnelly, R. H., R. W. Gardner, and H. R. Hamilton, 1963. 
Integrating Woodlands Activities by Mathematical 
Programming. Battelle Memorial Institute (for Amer­
ican Pulpwood Association). 

Freeman, R. 1965. Computational Expel'ience with the 
Balas Integer Programming Algorithm. RAND Corp. 
1'-3241. 

Geoffrion, A. 1967. Integer Programming by Implicit Enu­
meration and BalaH' Method. SIAM Review. 9 (2) :178­
190. 

Geoffrion, A. 1968. An Improved Implicit Enumeration 
Approach for Integer Programming. Western Mgt. 
Sci. Inst. Wol'1<ing Paper No. 137. 

Glover, F. lOGS. A Multiphase-Dual Algorithm for the 
Zero-One Integer Pl'ogramming Problem. J. Opera­
tions Res. 13 (6) :879-919. 

Gomory, R. E. 1958. An Algorithm for Integer Solutions 
to Linear Programs. Princeton-IBM Math. Res. Proj­
ect Tech. Report 1. 

Gomory,	 R. E. 1960. All-Integer Integer Programming 
Algorithm. IBM Res. Report RC-189. 

Graves, G. W. and A. B. Whinston. 1967. A New Approach 
to Discrete Mathematical Progl·amming. Grad. School 
Ind. Adm. Purdue Univ. 

Kidd, W., E. Thompson and P. Hoepner. 1966. Forest 
Regulation by Linear Programming. J. For. 64(9): 
611-613. 

Leak, W. B. 1964. Estimating Maximum Allowable Timber 
Yields by Lineal' Programming. Northeast For. Expt. 
Sta. Res. Paper 17. 9 pp. 

Lemke, C. E. and K. Spielberg. 19Ci7. Direct Search Al­
gorithms for Zero-One Mixed-Integer Programming. 
J. Operations Res. 15 (5) :892-914. 

Liittschwag-er, J. and T. Tcheng. 1967. Solution of a 
Lnrg:(;-Scah' ForcRt Scheduling Problem by Linea,' 
Programming Decomposition. J. For. 65 (9) :644-646. 

Loucks, D. 1964. Development of an Optimal Program for 
Sustained Yield Management. J. For. 62 (7) :485-490. 

Markowitz, H. M. and A. S. Manne. HJ57. On the Solution 
of Discrete Programming Problems. Econometrica 
25:84-110. 

Nautiyal, J. C. and P. H. Pearse. 1967. Optimizing' the Con­
version to Sustained Yicld-A Programming- Solu­
tion. For. Sci. 13: 131-139. 

Norman, E. L. and J. W. Curlin. 1968. A Linear Program­
ming Model for Forest Production Control. Oak Ridge 
National Laboratol'y Repol·t No. 4349. 

Petersen, C. 1967. Computational Experience with Vari­
ants of the Balas Algorithm Applied to the Selection 
of R&D Projects. Mgt. Sci. 13 (9) :736-750. 

Reiter, S. and D. Rice. 1966. Discrete Optimizing Solution 
Procedures for Linear af'd Nonlinear Integer Pro­
gramming Problems. Mgt. Sci. 12 (11) :829-850. 

Theiler, T. 1959. Linear Programming and Optimal Cut­
ting Pl·actices. Paper Industry. 41 (6). 

Wardle, P. 1965. Forest Management and Operational Re­
search, A Linear Programming Study. Mgt. SCl. 
11(10) :260-270. 

Young, R. D. 1964. A Primal (All Integer) Integer Pro­
gramming Algorithm. Working Paper 52. Grad. School 
Bus. Stanford Univ. 

4-69-25C 

7 

View publication statsView publication stats

https://www.researchgate.net/publication/284290506

