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An Evadwation of Integer Programming
In Yorest Production
Scheduling Problems

1 ey Baee anp ELDoN L. NORMAN
I bient ol Forestry and Conservation

NP OF THE PRINCIPAL FUNCTIONS of a
forest munager is the preparation of cutting
sohdules, These schedules, essential to efficient
forent planming, transform the allowable cut deci-
Sl nto oo working plan of action. Therefore, the
forent muanager usually attaches significant im-
portunce to their development, If the manager
Visnslizes his scheduling problems in terms of
cither maximizing or minimizing an objective
function subjeet to a set of constraints, it is pos-
aitble tor him to develop optimum schedules over
o txed planning period. This, however, requires
Condbinrity with mathematiecal programming pro-
eodures,

Thisn bultletin describes a potentially useful
muthematicnl programming technique known as
mteper linear programming. While no new inte-
por propramming (IP) algorithm is developed, a
Hucnnnien of several known IP algorithms is un-
dortalen and one of the more recent ones is sub-
soquently applied to forestry oriented problems.

Although computational problems have ham-
peied the practical application of many mathe-
matwal programming techniques, the development
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of the wimplex method virtually solved the compu-
tational problems associated with linear program-
ming (L. Partly because of this, foresters have
nued L Tor selving problems dealing with the

planning and control of forest production schedul-
ing processes (Curtis 1962, Donnelly et al. 1963,
ICidd ot al, 1966, Leak 1964, Liittschwager and
Tehong 1967, Loucks 1964, Nautiyal and Pearse
1067, Norman and Curlin 1968, Theiler 1959, War-
die 1965). However, the optimal linear program-
ming solution often specifies that fractional por-
tions of o stand or compartment receive the impact
ol o management activity. In cases where forest
gltaunds or compartments are being managed as
homogeneous units, non-integral solutions are im-
practical. Thus, foresters must turn to a proce-
dure, such asg integer programming, where all

variables entering the optimal solution are re-
stricted fo integral values. The principal disad-
vantage of uding 1P is that an efficient algorithm

for handling large problems has yet to be de-
veloped,

Introduction to Integer Programming

This portion of the bulletin briefly reviews the
mitjor areas of thought which characterize the
past and present attempts to derive an efficient
integer programming algorithm. The discussion
of the following methods will be brief and intui-
tive in nature. A more detailed discussion may
be found in Ralinski (1965).

Cutting Hyperplanes

Acording to Young (1964), two distinct steps
characterize any cutting plane algorithm. The
first involves the generation of a basic trial solu-
tion to the linear programming problem using a
standard linear programming algorithm. The sec-
ond involves the generation of an additional con-
straint on the set of feasible solutions (called a
cutting hyperplane) if the LP solution does not
produce an optimum integer solution. Cutting
plane algorithms are distinguished by the charac-
teristics of the basic solutions they utilize and
the method used to generate cuts.

Initial efforts in this field by Dantzig et al.
(1954), Dantzig (19569), Markowitz and Manne
(1957), and Gomory (1958) shared a common
method of obtaining basic and trial solutions but
differed in their method of cut generation. Go-
mory’s work is distinguished because he: (a)
developed a proof of finiteness and (b) stimulated
the development of other IP algorithms which
were based on his work. His original algorithm
requires an optimum LP solution as an initial trial
solution. If this optimal solution does not satisfy
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the required integer property, the algorithm gen-
erates a hyperplane from a row with a fractional
solution variable. The resulting tableau which is
dual, but not primal, feasible is then re-optimized
using the dual simplex. This cycle is repeated
until an integer optimal solution is found, or until
all coefficients in the generating row are non-
negative—which implies infeasibility.

This algorithm has since been superseded by
other types of cutting plane algorithms which em-
ploy a common method of generating cuts, but
differ in the character of the basic solutions they
generate, The Gomory (1960) all-integer integer
algorithm which also uses the dual simplex to
locate trial and basic solutions, requires that all
of the a;; in the initial simplex tableau be integer.
This algorithm generates a sequence of basic solu-
tions which are integral and optimal (i.e., dual
feasible) but not primal feasible before the final
iteration, The basic idea involves the generation
of a hyperplane from a row with a negative solu-
tion variable in such a way that the pivot element
in the generated row is —1. The positive integer A,
by which the generating row is divided to form
the hyperplane, is chosen so that dual feasibility
is maintained.

Implicit Enumeration

Implicit enumeration algorithms may be defined
as methods which generate information, as the
enumeration of possible solutions proceeds, which
permit the elimination of large numbers of solu-
tions from further consideration. For this reason
they are also known as branch and exclude algo-
rithms. One of the earliest algorithms in this area
was that developed by Balas (1965).

The Balas additive algorithm, and implicit enu-
meration methods in general, have several advan-
tages over the previously discussed cutting hyper-
plane approaches. Several of these advantages
are:

a. addition is the only arithmetic operation re-

quired (hence no system of simultaneous
_ equations need be solved as in LP)

b. the rate of implicit enumeration can be
measured, thus allowing for informed stop-
ping rules

¢. only minor modifications are necessary for
the solution of nonlinear objective functions,

In the solution of the two scheduling problems
presented below, the Geoflrion (1967) algorithm
(a reformulation of the Balas procedure) is used.
Therefore, the following intuitive discussion of
implicit enumeration i only directed at the Geof-
frion alporithm.



Geoffrion’s implicit enumeration approach util-
izes the Balas (1965) algorithm with the modifi-
cation of the backtracking scheme proposed by
Glover (1965). His algorithm states that any
bounded integer programming problem can be
written as

Min cx
subject to
Ax + b >0
X; = 0or1l
where

c is an n-vector, b and 0 are m-vectors, A is
an mxn matrix, and x is a binary vector to
be chosen.

The reader may consult Geoffrion (1967) or Free-
man (1965) if interested in a brief digcussion
concerning conversion of non-binary integer vari-
ables with an upper bound to binary representa-
tion.

The basic idea of this and other implicit enu-
meration techniques is to explicitly enumerate a
subset of the 2" possible solutions in a non-redun-
dant fashion. However, there is no guarantee
that the number of solutions explicitly enumer-
ated will not approach 2". The key to an efficient
implicit enumeration technique lies in the scheme
which permits large groups of possible solutions
to be excluded (implicitly enumerated) from fur-
ther consideration.

Geoffrion’s algorithm involves the generation of
a sequence of partial solutions, and the subse-
quent completion of each. A partial solution is
defined as an assignment of binary values to a
subset of the n variables, with any variables not
assigned a value being designated as free. A comi-
pletion of a partial solution is defined as an assign-
ment of binary values to the free variables not
included in the partial solution. As feasible solu-
tions are discovered, that which minimizes ex is
retained as the incumbent solution., For a given
partial solution, the best feasible completion is
computed. If the resulting value of the objective
function is better than the value of the incumbent
solution, then it replaces the latter in memory.
Otherwise, the incumbent solution remains un-
changed. In either case, the above process is de-
fined as fathoming a partial solution. As the
fathoming process proceeds, it is possible to de-
determine whether the subsequent completion of
a particular partial solution will produce a better
value of the objective function than will the in-
rumbent solution. If no feasible solution exists
with a better value, then the remaining possible
completions are said to be implicitly enumerated

and the partial solution is fathomed. This proc-
ess is repeated until the optimum integer solution
is found.

Another facet of the implicit enumeration ap-
proach involves the concept of a filter on the pos-
sible branches of the tree search. Constraints are
generated using the solution of the continuous
dual of the primal problem. These constraints,
called surrogate constraints, are created by form-
ing linear combinations of the primal constraint
set and the optimum dual continuous variables.
The original filter concept is due to Benders
(1962). However, since Balas had not published
his original implicit search article at that time,
Benders was unable to link the filter with Balas’
implicit search technique. Balas (1967), Glover
(1965), and Geoffrion (1968) have since com-
bined the filter concept with implicit search tech-
niques to produce new algorithms.

Another recently developed approach involves
the use of probability theory in an implicit search
(Graves and Whinston 1967). Its strength lies
in a more powerful means of determining the po-
tential future effect, with respect to the problem
constaints, of bringing an additional variable into
solution.

Two Sample Scheduling Problems

The first sample scheduling problem concerns a
forest which has been subdivided into m compart-
ments with each compartment to receive a single
harvest cutting over the next n years. Let vy
equal the total cubic foot volume received from
compartment i if harvested in year j, and let
X;; be a binary variable which equals 1 if com-
partment i is harvested in year j and 0 otherwise.
Hence, we wish to:

n m

Max | 3 o 3,
j=1 1=1

Viy Xy (D)
In addition, there are minimum and maximum
restrictions on the number of acres that may be
harvested any one year. Using the notation of
Liittschwager and Tcheng (1967), let a; equal
the number of acres in compartment i, and b‘i"“-‘
and b”;‘" equal the maximum and minimum num-
ber of acres which may be harvested each year.
Thus, the following inequalities are obtained:

m max

> a; Xj; £ ba (2)
1=1
i=12,....n
'}—4 a; Xy = bj] (3)
i=1
The problem may be further simplified by setting
b';"" and b';‘“‘ equal to the acreage of the largest
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and smallest compartments respectively. Thus,
b';‘"* and b';““ will be constant over all n years in

the planning horizon.

Two additional constraints are needed to com-
plete the mathematical formulation. As stated
above, each compartment must be harvested once
and only once during the planning horizon. Writ-
ing this as an equality we obtain:

.Elxijzl 1i=1,2,....mXx;=00r1 (4)

This problem formulation involves (mxn) bi-
nary variables and 2n -+ m constraints, Thus, a
simple scheduling problem involving the harvest-
ing of 5 compartments over a planning horizon
of 5 cutting periods, with only one compartment
being harvested per cutting period, involves 204
binary variables and 15 constraints. Table 1 con
tains the volumes and acreages of the five com
partments for the total planning horizon.* Al
though this problem involves only 15 constraints,
the algorithm (Geoffrion’s) used to solve the prob
lem does not permit the use of equality con
straints. Thus, the following two constraints (in
stead of one) are required for each equalily
constraint:

jil xy <1 andj—_j‘1 Xy = -1 (H)
or
jil Xy = 1 amdj—i‘1 X < —~1 (6)

Therefore, the actual size of the constraint matrix
for this problem is (25 x 20). However, both
Balas (1965) and Reiter and Rice (1966) state
that the efficiency of the integer programming
algorithm seems to increase as the number of
constraints increase.

A computer program version of Geoffrion’s ul-
gorithm written for the CDC 6500 was used fo
solve this problem in 32 geconds. The optimal
value of the objective function was 2467M cu. ft.,
and is associated with the optimal harvest sched
ule shown in Table 2, It is interesting to note that
the first feasible solution, found in 314 seconds,
provided an objective function value which was
98.6% of the optimal value.

* The compartment acreages used in this sample prob-
lem prohibit more than one compartment from being
harvested in any given cutting period. Therefore, con-
straint equations (2) and (3) become redundant, and the
problem can be solved by using a transportation algorithm.
However, if different compartment acreages are chosen
it is likely that it will not be possible to formulate this as
a transportation problem. Thus, for increased flexibility,
sample problem one was not considered as a transportation
problem,
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Table 1 Bats tor sample problem one

Compt Avivage Cubie toot volume per compt.
My Asrer) {thousand cu. ft.)
| 2 8 4 5
" 100 180 491 500 501
) ) 510 510 490 480
" 140 370 380 385
i T 161 150 440 420 400
’ 564 581 600 620 620
I wus nol oo surprising to obtain the final
optimim sodution in o siuch a short time since both

Potorsen 01009 and Ireeman (1965) report that
the anipinal Hales algorithm seems to work well
for problems involving up to 80 variables. In ad-
dition, the problem was fairly well constrained,
which an sluted nbove seems to increase compu-
tntionn! eMelency,

Nent we dnereased the number of compartments
el the number of cutting periods to ten. This
vather wimple scheduling problem involved 100
binury variables and 30 constraints. After 30
minutes of D 6500 central processor time no
optimal solution was obtained. Even more alarm-
g, the initinl feasible solution (obtained in 38
weondr) was within 9% of the value obtained
alter wn additional 1762 seconds of computing.
In nddition, the last solution obtained was only
within 22% of the known optimal feasible solu-
tion

Although not shown in Table 2, it was observed
that the objective function was quite insensitive
lo difterent harvesting schedules. Thus, a sub-
alantial reordering of the harvest schedule only
slightly aflected the value of the objective func-
tion. This may indicate that an intuitive subjec-
Live schedule is not too far from the optimum.

The second sample scheduling problem concerns
a forest which has been subdivided into m stands,
with cach stand being subjected to n possible har-
vosting alternatives. Let ry; equal the residual
value of stand 1 if harvesting alternative j is
selected, and let xi; equal 1 if stand i is subjected

Table 2. Optimal schedule for sample problem one.

Cutting Period Compartment to Harvest

b wN o~




to harvesting alternative j, and 0 otherwise.
Hence, we wish to:

Max =T j;l T Xij (7)
In addition, there is a maximum volume which
may be removed during the harvesting operation.
Let vi; equal the volume available for harvesting
from stand i if harvesting alternative j is se-
lected. To maintain an adequate growing stock,
a harvest volume of no more than Y bd.ft. may
be removed, This gives rise to to the following
inequality :

m
g

L ; Vi X3 <Y (8)
i=1 ]

[ 14

1

There is an additional constraint concerning the
stumpage value of the stands to be harvested.
Let s; equal the stumpage value of stand i if
harvested by alternative j. The stumpage value
for the entire harvesting operation must be great-
er than or equal to Z dollars.

Writing this an an inequality we obtain:

'il jil Sij Xy =2 (9)
Two additional constraints are needed to complete
the problem formulation. Each stand must be com-
pletely harvested if any cutting is done in the
stand, and x; must equal either 1 or 0, i.e., equa-
tion set (4).

Assume that we have 10 stands with 9 harvest-
ing alternatives per stand. This gives rise to a
problem involving 90 binary variables and 12 con-
straint equations. For reasons noted in equations
(5) and (6), we must increase the number of con-
straints to 22. Further, we have a maximum har-
vesting volume of 850,000 bd.ft. and we must sell
a minimum of $10,000 worth of stumpage. For
this problem we know the optimum LP solution,
but not the optimum IP sgolution.

Using the same computer program version of
Geoffrion’s algorithm referred to above, an opti-
mum solution was not found after 20 minutes of
computing. However, the incumbent solution after
12.5 seconds was only 3.66% less than the opti-
mum linear programming solution. It is not known
whether this is the optimum integer solution
since all solutions were not implicitly enumerated
in the 20-minute time limit set for the run. Be-
cause the optimum integer solution must be less
than or equal to the optimum LP solution, this IP
solution may be optimal.

Table 3, which contains the LP and IP harvest-
ing schedules for this problem, illustrates several
interesting aspects of the problem. In comparing

Table 3. Solution comparisons for sample
problem two

Geoffrion
Optimum LP Schedule
Schedule Alterna-
Alternative Residual tive Residual
Stand Number Yalue Number Value
1 4 5,625 1 6,950
2 3 2,899 7 1,321
3 ] 4,798 3 4,661
4 6 4,324 6 4,324
5 3-51¢, 599 5 0
4-49 ¢,
6 4 3,155 6 2,485
7 4 8,533 3 9,737
8 3 4177 3 4,177
9 2 2,239 7 1,415
10 3 2,398 3 2,398
Max . I Y. $38,983 $37,468

the LP and Geoffrion solutions, it again appears
that the objective function is not particularly sen-
sitive to the variables in the solution set since the
Geoffrion schedule produced a similar value of
the objective function with only three of the ten
selected variables in common. This indicates that
a large number of near optimum solution sets
probably exist.

Conclusions

To completely evaluate the performance of some
of the proposed integer programming algorithms
it would be necessary to solve many different types
of scheduling problems. Moreover, the two spe-
cific harvest scheduling problems discussed in this
bulletin should be solved by some of the other
integer programming algorithms. However, even
this approach would not necessarily permit one to
draw general conclusions concerning the efficiency
or usefulness of a specific algorithm for solving
the harvest scheduling problem. The reasons for
this are: (a) one algorithm may be more efficient
for solving one specific formulation while a second
algorithm may be more efficient for solving an-
other formulation, and (b) the efficiency of the
proposed algorithms is directly related to the size
of the problem. However, as Freeman (1965)
states, “as with any enumeration procedure com-
putational experience is the best indicator of its
worthiness.” Thus, additional computational ex-
perience may be warranted for the purpose of
determining the most efficient algorithm to use
for a specific formulation of the harvest schedul-
ing problem.




The implication Ia that there is no “bhest” inte-

ger progranming algorithm even for problems of
a similar structure. Perhaps the future will reveal
a method similar to the simplex procedure which
will have wide applicability. However, the trend
seems o be to develop implicit enumeration tech-
niques which work very efliciently for problems
of a certain sfructure, but very inefficiently for
problems of o different structure. In addition,
computational times vary almost exponentially
with the size of the problem.

Two encouraging items which we observed
were: (a) an initial feasible integer solution was
obtained in a very short time, and (b) the value
of the objeetive function associated with the ini-
tial solution was often quite close to the value of
the objective function associated with the opti-

mum solution. However, the problem containing
100 binary variables did not follow this pattern
because the initial and final (not optimal) objec-
tive function values were not even close to the
optimum value.

A major limitation of the implicit enumeration
approach is due to the fact that the optimum is
unknown, even though it may have been found,
before all solutions have been implicitly enumer-
ated. Although it is difficult to generalize on the
basis of two tests, this suggests that one could
merge an implicit enumeration algorithm with
another IP solution procedure to obtain a more
efficient computational algorithm. This observa-
tion was also noticed by Freeman (1965).

Another observation is that integer program-
ming tends to place more emphasis on careful
problem formulation. Hence, to reduce the num-
ber of decision variables, attempts should be made
to delete alternatives which are of minor impor-

tance to the problem. Also, as previously noted,
the Geoffrion algorithm increases the size of the
problem when equality constraints are used. In
addition, and more important computationally, is
the fact that Geoffrion’s algorithm is designed for
minimization problems. Therefore, when maxim-
ization problems of the type discussed in this bul-
Jetin are encountered, a transformation (x; = 1
—Xx;) is required. This increases the number of
variables in a partial solution, and thus slows
down the computational efficiency of the algo-
rithm. Methods for alleviating this problem are
currently under study.

It is apparent that, at present, the relatively
large nature of practical forest scheduling prob-
lems and the efficiency of existing integer pro-
gramming algorithms are not compatible. How-
ever, the characteristics of the general structure
of many forest scheduling problems indicate that
the problem is amecnable to solution. Since the
coefficient matrix is tied over all variables by
relatively few constraints, and since the matrix
tends to be uniform and independent in blocks
across the variables, it lends itself to decomposi-
tion. The potential of this procedure should be
evaluated.

From the preceding description of the constraint
matrix, it follows that the density is generally
low. Simplex algorithms have taken advantage of
this characteristic, but as yet implicit enumera-
tion methods have not. We concur with Lemke-
Speilberg (1967) who feel that the area of im-
plicit enumeration is in the infant stage and
eventually will become much more successful as
more sophisticated search methods are developed.
In addition, the newer filter methods and the
probability approach should be evaluated through
computational experience.
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