
DRAFT  

 

Considering Risk Taking Behaviors in Second-Best Toll Pricing 

 

 

 
Xuegang (Jeff) Ban* 

CCIT, Institute of Transportation Studies (ITS) 
University of California - Berkeley 

2105 Bancroft Way, Suite 300 
Berkeley, CA 94720-383  

Phone: 510-642-5112 
Fax: 510-642-0910 

Email: xban@berkeley.edu 
 

 
 

Shu Lu 
Department of Statistics and Operations Research 

University of North Carolina at Chapel Hill 
210 Smith Building, CB#3260 
Chapel Hill, NC 27599-3260 

Phone:  919-962-1048 
Fax:    919-962-0391 

E-mail: shulu@email.unc.edu 
 
 
 
 

For Presentation  
87th Transportation Research Board Annual Meeting 

August 1, 2007 
 
 
 
 
# Word: 4,764 
 + (8 figures) =2,000 
TOTAL: 6,764 
 

* Corresponding Author 



Considering Risk Taking Behaviors in Second-Best Toll

Pricing

Xuegang (Jeff) Ban and Shu Lu

July 31, 2007

1 Abstract

In this paper, we study the second-best toll pricing problem that aims to better distribute traffic by
imposing tolls on a selected set of links in a network. We show that if the user equilibrium solution
is not unique, many previous toll pricing methods are risk-prone; particularly, one hopes that the
realized user equilibrium solution, after the “optimal” toll is imposed, is the same as what was
predicted by the model. However, from a robust design point of view, a better toll may be obtained
by optimizing over the worst case scenario when the user equilibrium solution varies. We therefore
propose a risk-averse second-best toll pricing approach, in contrast to the risk-prone approach by
previous researchers. Two examples are provided in this paper to illustrate the risk-prone and
risk-averse toll pricing schemes for static and dynamic second-best toll pricing respectively.

2 Introduction

The Second-Best Toll Pricing (SBTP) is to determine the optimal toll scheme for a given set of links
in a transportation network so that the traffic can be distributed more efficiently from the system
point of view. SBTP can be categorized as static SBTP and dynamic SBTP (DSBTP), depending
on whether traffic dynamics are considered or not. In this paper, we focus on the static SBTP
(which is referred to as SBTP thereafter in this paper). However, we provide a small example on
DSBTP in Section 5 as well.

SBTP research in the literature is rich and still growing. Many researchers have modeled
SBTP as bi-level problems or MPECs (mathematical programs with equilibrium constraints)[1],
[2], [3], [4]. The upper level is to optimize certain objective function from the transportation
system’s point of view and the lower level is a user equilibrium (UE) problem to account for the
route choice behavior of individual motorists. Therefore, most existing SBTP methods aim to find
“optimal” tolls (i.e., the so-called “upper level” decision variables) for the selected set of links so
that the upper level objective can be minimized or maximized. Meanwhile, by solving the bi-level
models, the lower level UE solution associated with the optimal tolls can also be obtained (which
is denoted as “predicted” UE solution in this paper). Hence the bi-level model implicitly assumes
that by applying the obtained toll pricing scheme, the resulting UE flow pattern is exactly what
is predicted by the model and thus the desired system objective can be achieved. This premise is
true if the UE solution is unique. However, if one relaxes the uniqueness assumption, the lower-
level UE may have multiple solutions. More importantly, once the tolls are imposed, there is no



other way in the context of toll pricing that one can “enforce” how drivers make their route choice
decisions. Therefore, it is very possible that the “realized” UE flow pattern may deviate from
what is predicted. If this is the case, the desired “optimal” objective may not be achieved and the
designed toll scheme may not be effective.

The non-uniqueness of UE solutions, hence, represents some uncertainty in the SBTP design,
which is not fully recognized in the literature. More specifically, many existing SBTP models
assume, explicitly or implicitly, that the realized UE solution is equivalent to the “predicted” UE
solution. In this paper, we show that these modeling methods for SBTP are “risk prone”, i.e.,
the toll obtained from these methods is designed in such a way that one “hopes for the best thing
to happen.” However, since one has no control which UE solution will be realized given a toll
setting, a more appropriate toll pricing scheme should be able to account for this uncertainty. In
particular, from a robust design point of view, one may want to design the toll so that it is optimal
for the “worst-case scenario” while the UE solution varies. This corresponds to the “risk-averse”
approach.

In this paper, we focus on SBTP when the solution of the underlying UE problem is not unique.
We start with a well-known fact that if the link cost function is only monotone (instead of strictly
monotone), the solution set of a UE is not a singleton but a nonempty, compact and convex set.
In other words, the UE solution is a set-valued map of the toll variable, rather than a one-to-one
mapping (which is the case if the UE has a unique solution). We show that in this case existing
bi-level “risk-prone” SBTP models can be converted into a single-level problem, which is defined
on the graph of the set-valued map. To account for the non-uniqueness of the UE solution, we
adopt the robust optimization technique [5]. In particular, from the robust design perspective,
the implemented toll should be optimal for the worst case scenario while the UE solution varies.
Following this concept, SBTP can be formulated as a “min-max” problem that corresponds to a
“risk-averse” design approach. We then provide a small SBTP example to illustrate the results of
risk-prone and risk-averse toll pricing approaches.

Most research efforts on SBTP so far are for static cases. Dynamic SBTP (DSBTP) or time-
varying tolls, however, has received more attention recently [6], [7], [8], [9]. In this paper, we show
via another small example that for DSBTP, risk-taking behaviors may also need to be considered.
This is particularly true since the solution for dynamic user equilibria (DUE) on which DSBTP is
built may be multi-valued as well.

This paper is organized as follows. Section 3 focuses on the derivations of the risk-prone and
risk-averse toll pricing approaches. It starts with the introduction of the VI-based UE model and
then discusses the risk-prone SBTP model that can be formulated as an MPEC. The risk-averse
model is also developed, which is formulated as a “min-max” problem. An illustrate example is
provided in Section 4. We show that at least for this small example, the risk-averse approach is
superior to the risk-prone approach. In Section 5, an illustrative example for DSBTP is provided.
We show that if the DUE solution is not unique, risk-taking behaviors can be considered for
DSBTP in a similar fashion as that for the static case. Some concluding remarks and future study
directions are given in Section 6.

3 Risk-Prone and Risk-Averse SBTP Approaches

This section discusses the risk-prone and risk-averse SBTP design approaches. The discussion
starts with the VI-based UE model.
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3.1 VI-Based UE Model

Assume a traffic network can be represented as a directed graph G(N, A) where N is the set of
nodes and A is the set of links. In this paper, we use index i or j to denote a node, and index a to
denote a link. Denote xa the total traffic flow on link a and x = (xa)a∈A the vector of link flows.
Further assume t(x) is the link travel time function defined on total link flow vector x. Then the
“baseline” UE model, denoted as UE(0), can be formulated as follows:

UE(0) t(x)T (q − x) ≥ 0,∀q ∈ K. (1)

Here K denotes the feasible set of link flow, which is a nonempty, compact, and convex set.
Note that “0” in the parenthesis in UE(0) indicates that there is no toll imposed (the base case).
It is well-known that if t is strictly monotone on K, then UE(0) has a unique solution (provided
the problem is feasible which is usually the case).

However, if t is only monotone (or even pseudo-monotone), UE(0) may not have a unique
solution. Denote the solution set of UE(0) as S(0). Facchinei and Pang [10] showed that in this
case, S(0) is nonempty, compact, and convex. This is formally stated in the following Lemma.
Notice that since this paper is mainly to propose and illustrate the two toll design approaches, we
provide several lemmas and theories for this purpose without detailed proofs.

Lemma 1 If t is continuous and monotone and K is nonempty, compact, and convex, then UE(0)
has a nonempty, compact and convex solution set.

Assume y is a given vector and UE(y) denotes the UE problem parameterized by y which is
defined as:

UE(y) (t(x) + y/θ)T (q − x) ≥ 0,∀q ∈ K. (2)

Here θ denotes the “value of time” so that t(x) + y/θ in (2) is the generalized travel time by
considering tolls, denoted as c(x, y). That is,

c(x, y) = t(x) + y/θ. (3)

Denote S(y) as the solution set of U(y), we have the following Lemma.

Lemma 2 If t is continuous and monotone and K is nonempty, compact, and convex, then UE(y)
has a nonempty, compact and convex solution set for any given and finite vector y.

3.2 Risk Prone SBTP - the MPEC Model

Denote y in UE(y) as the toll vector imposed on a traffic network. Since we are dealing with
SBTP, we set ya = 0, ∀a ∈ A \ P , where P is the set of tolled links. Traditionally the SBTP can
be formulated as the following MPEC, denoted as MPECSBTP :
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MPECSBTP min
y,x(y)

f(y, x(y)) (4)

s.t. y ∈ Ky (5)
x(y) solves UE(y). (6)

Here f(y, x(y)) denotes the objective function for toll design, which could be, e.g., the total
system travel time. It is assumed to be a function of both the toll vector y and the total link flow
vector x. The latter is itself a function of y. Further Ky = {y|yl ≤ y ≤ yu} is the bound constraint
of y and yl and yu are the lower and upper bounds of y respectively.

Suppose y∗ is the optimal solution to MPECSBTP in terms of y. If UE(y) has a unique solution
x∗ at y∗, one can expect that if the optimal toll pricing y∗ is imposed, the realized UE state will
be exactly x∗. In other words, the optimal system objective will be achieved as one would expect.

However, as stated in Lemma 2, if t is only monotone with respect to x, there may be multiple
UE solutions given the optimal toll vector y∗. In this case, the optimal UE solution associated with
y∗ in solving MPECSBTP (i.e., x∗) is called the “predicted” UE solution. Clearly x∗ ∈ S(y∗).
However, once the optimal toll y∗ is imposed, one has no control which UE solution in S(y∗) will
be realized. Therefore, the optimal upper level objective value may not be achieved (or can only
be achieved if the predicted UE solution x∗ is realized). In this sense, the MPECSBTP model
represents a “risk-prone” approach to design tolls: one “hopes” that the predicted UE solution
could be obtained when the optimal toll is imposed.

In case the UE solution is not unique, the solution set S(y) is a set-valued map of the toll vector
y (see [10]). The MPECSBTP model can thus be converted into a single level problem as follow:

SLSBTP min
y,x

f(y, x) (7)

s.t. (y, x) ∈ G. (8)

Here
G = {(y, x) | x ∈ S(y), y ∈ Ky}

is the graph of the set-valued map S(y). Denote the above model as SLSBTP which stands for
“Single-Level SBTP.”

The following Theorem first states that the graph G is compact, based on which the solution
existence condition for SLSBTP is established.

Theorem 1 If t is continuous and monotone with respect to x, f(y, x) is continous with respect
to (y, x), and K is nonempty, compact, and convex, then the following two statements hold.

(a) G is compact; and

(b) SLSBTP has at least one solution.

3.3 Risk Averse SBTP - The Min-Max Model

As aforementioned, once the designated toll (such as from solving MPECSBTP or SLSBTP in
Section 3.2) is imposed, one has no control on how individual motorists will make their route
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choice decisions. Therefore, if the UE solution is not unique, it will be uncertain which UE flow
pattern (solution) will be realized once the toll is imposed. Further, some of the realized UE
solutions may degrade the system objective in the upper level. Therefore, the toll design needs to
account for this uncertainty so that it is optimal no matter how the UE solution varies.

In this paper, we adopt the robust optimization concept and the optimal toll can be designed in
such a way that it is optimal for the worst case scenarios. This represents a “risk-averse” approach
for toll pricing, which can be expressed as a “min-max” problem (denoted as MMSBTP) as follows:

MMSBTP min
y∈Ky

max
x∈S(y)

f(y, x) (9)

We can see that MMSBTP aims to minimize, as y varies within Ky, the largest objective
function f(y, x) over all x’s in S(y). Assume y∗ the computed optimal toll by the risk-averse model
and x∗ ∈ S(y∗) its associated UE solution. We will have f(y∗, x∗) ≤ max∀x∈S(y) f(y, x), ∀y ∈ Ky.
In other words, the risk-averse approach generates a solution that is optimal for the worst-case
scenario (i.e., the largest possible objective value over the UE solution set is minimized).

Clearly there are other ways to account for uncertainties besides the robust optimization tech-
nique, such as stochastic programming [11]. However, the latter requires knowledge of the distri-
bution of the uncertainty which is hard to achieve in our case. That is, given a toll scheme, which
UE flow pattern will be realized is completely random; yet, it also seems unrealistic to assume
the probability of realization of a certain UE flow pattern (It may seem intuitive to assume the
probability of a specific solution is uniform across all possible solutions. However, for a general con-
vex solution set, an explicit representation for such a distribution may not be trivially obtained.).
Hence, we argue that robust optimization may more appropriately capture this type of uncertainty
compared with stochastic programming based approaches.

Note that here we assume that MMSBTP has at least one solution, which may not be necessarily
true. In case such a solution does not exist, MMSBTP can be replaced by the following “inf-max”
model instead:

IMSBTP inf
y∈Ky

max
x∈S(y)

f(y, x) (10)

The following theorem shows that the optimal objective function value of IMSBTP exists; in
other words, the values

max
x∈S(y)

f(y, x)

have a greatest lower bound as y varies within Ky.

Theorem 2 If t is continuous and monotone with respect to x, f(y, x) is continous with respect
to (y, x), and K is nonempty, compact and convex, then

inf
y∈Ky

max
x∈S(y)

f(y, x) > −∞. (11)

Hence, although the solution of IMSBTP may not be obtained on Ky, its optimal objective
value does exist (as shown in Theorem 2). This objective value provides the greatest lower bound
of the objective value of MMSBTP and thus valuable information for SBTP design.
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4 An Illustrative Example

To better illustrate the risk-prone and risk-averse design approaches, we provide a small example
in this section.

Figure 1 depicts a hypothetical network with one origin-destination (OD) pair (from node r
to node s) and three routes. A toll booth is located at the very beginning of route 2 and 3. The
distance between node r and i is very small so that the travel time can be ignored (assume toll is
automatically collected and therefore the delay at the toll booth can be ignored as well). Further
assume the total demand d = 10 and the route (also link) flow are x1, x2, and x3. For simplicity,
we assume the “value of time” θ = 1. Then the link generalized travel times, with toll imposed,
are assumed to be:

c1 = 2x1 + x2 + x3

c2 = 2x2 + 2x3 + y

c3 = 2x2 + 2x3 + y.

Here y is the toll and y ∈ Ky = {y|0 ≤ y ≤ 10}. Denote c = (c1, c2, c3)T and x = (x1, x2, x3)T .
It is easy to observe that c is monotone, but not strictly monotone, with respect to x. To see this,
we note that the Jacobian matrix of c over x is

J = ∂c/∂x =

[ 2 1 1
0 2 2
0 2 2

]
.

Clearly, J is not symmetric and we have

(J + JT )/2 =

[ 2 0.5 0.5
0.5 2 2
0.5 2 2

]
,

which is symmetric and positive semi-definite, but not positive definite. Therefore, c is mono-
tone with respect to x, but not strictly monotone.

INSERT FIGURE 1 HERE

We first look at the solution set of UE(y), i.e., S(y) for any given y ∈ Ky. Since we have
c2 = c3, there are three cases that we need to consider: i) only route 1 carries flow, ii) only routes
2 and 3 carry flow, and iii) all three routes carry flow. For case i), we have x1 = 10, x2 = x3 = 0.
This leads to c1 = 20 > c2 = c3 = y ≤ 10. Therefore, case i) is impossible. For case ii), we have
x1 = 0, x2 + x3 = 10. This leads to c1 = 10 < c2 = c3 = 20 + y ≥ 20, which is also impossible.
Therefore, all three routes must carry flow and we have c1 = c2 = c3. This gives us

S(y) = {x = (x1, x2, x3)T ≥ 0|x1 = (10 + y)/3, x2 + x3 = (20− y)/3}. (12)

Clearly, for any given y ∈ Ky, S(y) is a straight line (i.e., a nonempty polyhedral set)in the
three dimension space x1 − x2 − x3 as shown in Figure 2.
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INSERT FIGURE 2 HERE

To determine the “optimal” toll, we first assume the objective function for the upper level as
follows:

f(y, x) = t1x1 + 3t2x2 + t3x3. (13)

Note that in the above definition, we assign different weights to different links (routes). In
particular, the weight of link 2 is set as 3. This may be appropriate if route 2 goes through an area
which is more adversely impacted by traffic (in terms of vehicle-miles-traveled) than other areas.

Given the above, the risk-prone approach (i.e., the current SBTP practice) is to solve SLSBTP.
First, since S(y) can be explicitly expressed in equation (12) for a given y, the upper level objective
function f(y, x) can be rewritten as:

f(y, x) = (40 + y)(10 + 2x2)/3. (14)

Obviously, for a fixed y ∈ Ky, f(y, x) is minimized when x2 = 0. Actually, x1 = (10+y)/3, x2 =
0, x3 = (20 − y)/3 is the unique and global minimizer of f(y, x) when y is given since f(y, x) in
(14) is linear for fixed y. This minimizer is the intersecting point of S(y) and the x1 − x3 plane.
Therefore, as y varies from 0 to 10, the trajectory of minimizers of f(y, x) is the line on the x1−x3

plane, as shown in Figure 2.

To find the solution to SLSBTP , therefore, we need to solve the following problem:

min
y∈Ky

f(y) = 10(40 + y)/3. (15)

This is a linear programming problem and we have y∗p = 0 the optimal solution. Here the
subscript “p” denotes “risk-prone”. The predicted UE solution is x∗p,1 = 10/3, x∗p,2 = 0, x∗p,3 = 20/3
and the associated objective value is z∗p = 400/3.

Most existing SBTP design methods will stop here with the above solution, which simply states
that no toll should be implemented. However, as the UE solution at the computed “best” toll y∗p = 0
is not unique, the realized UE solution can be any point in S(0), which is the line as shown in Figure
2. In particular, if the realized UE solution is on the x1−x2 plane (x1 = 10/3, x2 = 20/3, x3 = 0),
the objective value will be much higher as ẑ∗p = 2800/9. As shown later, ẑ∗p is actually the highest
possible objective value (the worst case) when y = 0. This clearly illustrates that the risk-prone
approach is not reliable when the UE solution is not unique.

For the “risk-averse” approach, we first find the maximizer of f(y, x) for a given y. This is
equivalent to maximize f(y, x) in equation (14) over set S(y). Clearly, this is achieved when x2 is
maximized at x2 = (20 − y)/3. Thus the unique and global maximizer of f(y, x) for a given y is
x1 = (10 + y)/2, x2 = (20− y)/3, x3 = 0, which is at the x1 − x2 plane.

Next, substitute x2 = (20− y)/3 to equation (14), we obtain the objective value for a given y
for the averse case as:

f(y) = (40 + y)(70− 2y)/9. (16)

Note that (16) is equivalent to the inner maximization problem in (9). Hence, to find the
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optimal solution of the risk-averse approach, one needs to minimize (16) over Ky. This can be
easily solved with a unique and global solution y∗a = 10. Here the subscript “a” denotes “risk-
averse”. The predicted UE solution is x∗a,1 = 20/3, x∗a,2 = 10/3, x∗a,3 = 0 and the associated
objective value is z∗a = 2500/9. Note that this value is less than that of the worst case scenario by
the risk-prone toll scheme y∗p = 0 (i.e., ẑ∗p).

Distinct from the risk-prone approach, the upper level objective value will decrease as the
realized UE solution varies under the risk-averse optimal toll y∗a = 10. In particular, if the UE
solution on the x1 − x3 plane (i.e., x1 = 20/3, x2 = 0, x3 = 10/3) is realized at y∗a, the objective
value is ẑ∗a = 500/3. Since this UE solution is at the x1 − x3 plane, the resulting objective value
is the lowest possible objective value (the best case) when y = 10.

To further compare the performance of the two toll pricing approaches, we compute the average
value (the average of the best and worst scenarios) and variation (the difference of the best and
worst scenarios) of the upper level objective value for a given toll. This is shown in Figure 3. The
risk-prone and risk-averse solutions have the same average value: 2000/9. The variation for the
risk-prone approach is |ẑ∗p − z∗p | = 2800/9 − 400/3 = 1600/9, which is higher than that for the
risk-averse approach: |ẑ∗a − z∗a| = 2500/9 − 500/3 = 1000/9. Clearly, y = 10 generates a set of
solutions whose average objective value is the same as those by y = 0, but with a smaller variation.
Therefore, at least for this small example, we may say that the risk-averse design approach is su-
perior to the risk-prone approach (which is currently the most popularly used approach for SBTP).

INSERT FIGURE 3 HERE

5 An Example of DSBTP

Risk taking behaviors may also need to be considered when designing DSBTP. Since DSBTP
relies on dynamic user equilibria (DUE) which is more complicated than static UE, it is expected
that the uniqueness of the time-dependent link flow or inflow requires stronger conditions. On
the other hand, if the time-dependent link flow is not unique, the risk-prone and risk-averse toll
pricing approaches can be defined similarly as in Sections 3.2 and 3.3. In this section, instead of
investigating the detailed formulation of DSBTP (which may be found in [8] and [6]), we illustrate
the two toll pricing approaches using a small example.

Figure 4 shows a simple network with one OD pair (from origin r to destination s) and two
connecting links, Link 1 and Link 2. The free flow travel times of Link 1 and Link 2 are τ01 = 5
and τ02 = 10, respectively. The capacities of these two links are C1 = 20 and C2 = 50. We assume
the demand from r to s is d = 60 for a period of time T = 30.

INSERT FIGURE 4 HERE

A toll booth is located on Link 1 to control the traffic going through this link to the destination.
For illustrative purposes, we consider a special case of DSBTP: traffic dynamics of the network is
considered, while we assume the toll on Link 1 (denoted as y) is fixed during the entire period T .
We further assume 0 ≤ y ≤ 10 and the “value of time” parameter θ = 1.

We first look at the DUE solution of the network, which can be obtained via constructing the
queueing diagrams of the two links [7], [12]. It turns out that we have three cases, depending on
the value of y: 0 ≤ y < 5, 5 < y ≤ 10, and y = 5. Figure 5 depicts the queueing diagrams for
0 ≤ y < 5. The upper plot is for Link 1 and the lower one is for Link 2. The vertical axis of both
plots is the accumulative number of vehicles that have entered or left the link, while the horizontal
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axis is time. Assume that vehicles start to enter the simple network at t = 0. The bold solid lines
in this figure represent the entrance or departure curves to both links. In this paper, we assume
that although congestion may happen on both links, there is sufficient storage so that traffic will
not spill over to the origin r. Then it is easy to see that when 0 ≤ y < 5, all demands will be
assigned to Link 1 first because τ02 > τ01 + y and we assume motorists have perfect information.
Since the capacity of Link 1 is much smaller than the total demands, congestion will build on Link
1 and its travel time will increase. However, all traffic will still be assigned to Link 1 until the
travel time of Link 1 reaches τ02 − y. Denote the time when this happens is t01. Then from 0
to t01, the DUE solution, i.e., the time-dependent inflow rates to the two links, is x1(t) = d and
x2(t) = 0, ∀0 ≤ t ≤ t01. After t01, the inflow rate of Link 1 reduces to x1(t) = C1 and that of Link
2 increases to x2(t) = d− C1, ∀t01 ≤ t ≤ T . Therefore, the DUE solution for 0 ≤ y < 5 is unique.

INSERT FIGURE 5 HERE

For 5 < y ≤ 10, we can apply the similar analysis as shown in Figure 6. In this case, Link 2
will be selected first. One can see the DUE solution is also unique.

INSERT FIGURE 6 HERE

For y = 5, traffic will be assigned to both links at the very beginning. More importantly, since
C1 + C2 > d, the DUE solution is not unique. As shown in Figure 7, the bold solid lines represent
the solution

x1(t) = C1, x2(t) = d− C1, ∀0 ≤ t ≤ T.

The bold dash lines, on the other hand, illustrate another solution

x1(t) = d− C2, x2(t) = C2, ∀0 ≤ t ≤ T.

In fact, these two solutions represent two extreme cases; any solution in between them is also an
optimal DUE solution. That is to say, any dynamic flow that satisfies

d− C2 ≤ x1(t) ≤ C1, x2(t) = d− x1(t)

is an optimal DUE solution for y = 5.

INSERT FIGURE 7 HERE

We next look at the DSBTP solution. In this paper, we assume that the objective for DSBTP
is to minimize the total system travel time [6], which can be expressed as follows:

f(y, x) =
∫ T

0

(x1(t)τ1(t) + x2(t)τ2(t))dt. (17)

Here τ1(t) and τ2(t) are the travel times of Link 1 and Link 2 at time t, respectively.

For 0 ≤ y < 5, the above objective function, denoted as F1(y), is also the summation of the
three areas, marked as “1”, “2”, and “3” in Figure 5 between the entrance and departure curves
of Link 1 and Link 2. We thus have:

F1(y) = f1 + f2 + f3, (18)

f1 =
(τ01 + τ02 − y)t01d

2
, (19)

f2 = (τ02 − y)(T − t01)C1, (20)
f3 = (T − t01)(d− C1)τ02. (21)
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Substitute f1, f2, f3 into F1(y), we obtain:

F1(y) =
(τ01 + τ02 − y)t01d

2
− (T − t01)yC1 + (T − t01)τ02d. (22)

And from Figure 5, t01 can be computed as

t01 =
(τ02 − τ01 − y)C1

d− C1
. (23)

Substitute equation (23) into (22), and noting that τ01 = 5, τ02 = 10, C1 = 20, C2 = 50, d = 50,
we have:

F1(y) = 5(y − 55)2 + 2500. (24)

For 5 < y ≤ 10, one can obtain the objective function in a similar fashion from Figure 6. This
is denoted as F2(y):

F2(y) = −100(y − 55/4)2 + 24156.25. (25)

Note that for any given 0 ≤ y < 5 or 5 < y ≤ 10, the objective value can be uniquely determined
via equations (24) or (25) since the DUE solution is unique.

The objective function for y = 5, denoted as F3(y, x), can be calculated as:

F3(y, x) =
∫ T

0

[x1(t)τ01 + (d− x1(t))τ02] dt = τ02Td−
∫ T

0

(τ02 − τ01)x1(t)dt. (26)

Note that since the DUE solution is not unique for y = 5, the objective value is also a function
of x as shown in (26). Further, since τ02 > τ01, F3(y, x) is minimized when x1(t) = C1 and
maximized when x1(t) = d − C2. Denote the minimum and maximum values of F3 as Fmin

3 and
Fmax

3 , respectively. We have:

Fmin
3 = τ02Td− (τ02 − τ01)C1T = 15000, (27)

Fmax
3 = τ02Td− (τ02 − τ01)(d− C2)T = 16500. (28)

In summary, the DUE solution is unique for 0 ≤ y < 5 and 5 < y ≤ 10, but not unique for
y = 5. For y = 5, however, there is a unique maximizer and minimizer for the objective function
F3. It is easy to check that Fmin

3 and Fmax
3 can also be achieved by substituting y = 5 into

equations (24) and (25), respectively. In other words, the possible objective values for 0 ≤ y ≤ 10
is actually continuous, but not differentiable due to the “kinks” at y = 5. This is shown in Figure 8.

INSERT FIGURE 8 HERE

As shown in the figure, the risk-prone solution can be obtained via minimizing the non-smooth
curve in Figure 8 and we can observe that it is y∗p = 5. To obtain the risk-averse solution, however,
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one needs to find the minimum of the largest possible objective values among all 0 ≤ y ≤ 10. Due
to the non-smoothness at y = 5, we can see that such a solution does not exist for this particular
example. However, we can see that as y converges to 5 from the left, the objective value can be
infinitely close to the minimum at y = 5, i.e., 15000. In practice, a toll that is smaller than but
sufficiently close to 5 should work reasonably well.

This example illustrates the difference of the risk-prone and risk-averse toll pricing for DSBTP.
Notice that DUE solution may be multi-valued even for small size networks, as shown in [12].
Furthermore, we show that the risk-averse solution may not exist in certain cases, depending on
the actual network configuration and demand profiles. However, the lower bound of such a solution
may exist, which could still provide insights on selecting proper dynamic tolls for a given network.

6 Conclusion

In this paper, we studied the risk-taking behaviors in second-best toll pricing (SBTP) when user
equilibrium (UE) solution is not unique. We first argued that previous studies on SBTP assumed,
explicitly or implicitly, the underlying UE solution is unique. We then relaxed the uniqueness
assumption and showed that previous BSTP models are risk-prone in the sense that one hopes the
realized UE solution, after the optimal toll is imposed, is exactly the same as what was predicted
by the model. As a contrast, we proposed a risk-averse SBTP approach that can produce optimal
tolls no matter how the UE solution may change (or the toll is optimal for the worst case scenario).
We further presented two examples, one for the static SBTP and the other one for DSBTP, to
illustrate the two toll pricing approaches.

The purpose of this paper is mainly to differentiate and define, further to illustrate, the risk-
prone and risk-averse toll pricing approaches. The authors are now investigating the properties of
the proposed risk-averse model and its solution algorithm. Results in this regard will be reported
in subsequent papers. Also, we showed via the second example that in certain cases, the risk-averse
solution may not exist for DSBTP. This may also happen to the static SBTP. This property and
its implication to SBTP merits further investigations.

References

[1] S. Lawphongpanich and D. Hearn. An mpec approach to second-best toll pricing. Mathematical
programming B, 101:33–55, 2004.

[2] S. Lawphongpanich, D.W. Hearn, and M.J. Smith. Mathematical And Computational Models
for Congestion Charging. Springer, 2006.

[3] H. Yang and H.J. Huang. Mathematical and Economic Theory of Road Pricing. Elsevier,
2005.

[4] H.M Zhang and Y.E. Ge. Modeling variable demand equilibrium under second-best road
pricing. Transportation Research B, 38:733–749, 2004.

[5] A. Ben-Tal and A. Nemirovski. Robust optimization - methodology and applications. Math-
ematical Programming, Series B, 92:324–343, 2002.

[6] T.L. Friesz, C. Kwon, and R. Mookherjee. A computable theory of dynamic congestion pricing.
In Proceedings of 17th International Symposium on Traffic and Transportation Theory (in
press), 2007.

11



[7] H. Yang and H.J. Huang. Analysis of the time-varying pricing of a bottleneck with elastic
demand using optimal control theory. Transportation Research B, 31:425–440, 1997.

[8] X. Ban and H.X. Liu. A link-node discrete-time dynamic second-best toll pricing model with
a relaxation solution algorithm. Submitted to Networks and Spatial Economics, 2007.

[9] Y. Yin and Y. Lou. Dynamic tolling strategies for managed lanes. Submitted to ASCE Journal
of Transportation Engineering, 2006.

[10] F. Facchinei and J.S. Pang. Finite-Dimensional Variational Inequalities and Complementarity
Problems: Vol. I, II. Springer, 2003.

[11] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, 1997.

[12] W.H. Lin and H.K. Lo. Investigating braess’ paradox with a dynamic platform. Submitted to
Transportation Science, 2007.

12



List of Figures

Figure 1 An Illustrative Example
Figure 2 Solution Set of SBTP
Figure 3 Comparison of Risk-Prone and Risk-Averse Solutions
Figure 4 Example Network for Dynamic Second Best Toll Pricing
Figure 5 Queuing Diagram (0 ≤ y < 5)
Figure 6 Queuing Diagram (5 < y ≤ 10)
Figure 7 Queuing Diagram (y = 5)
Figure 8 DSBTP Objective Values

13



r i
s

1

2

3toll

Figure 1: An Illustrative Example

14



x1

x2

x3

10

10

10

10/3

20/3

S(y)

S(0)

S(10)

minimizer

maximizer

y*a

y*p

Figure 2: Solution Set of SBTP

15



y

f

0 10

400/3

500/3

2000/9

2500/9

2800/9

range of objective
values for y=0

range of objective
values for y=10

Figure 3: Comparison of Risk-Prone and Risk-Averse Solutions

16



r
s

2

d=60

toll
1

Figure 4: Example Network for Dynamic Second Best Toll Pricing

17



τ01

τ02-y

C1

C1

d

τ02

d-C1 d-C1

τ02

t

t

Accumulative
# of vehicles
(Link 1)

Accumulative
# of vehicles
(Link 2)

T

T

t01

t02

O

O

1

2

3

Figure 5: Queuing Diagram (0 ≤ y < 5)

18



τ02

τ01+y

C2

C2

d

τ01

d-C2 d-C2

τ01

t

t

Accumulative
# of vehicles
(Link 1)

Accumulative
# of vehicles
(Link 2)

T

T

t01

t02

Figure 6: Queuing Diagram (5 < y ≤ 10)

19



τ
01

τ
01

C
1

τ
02

d-C
1 d-C

1

τ
02

t

t

Accumulative
# of vehicles
(Link 1)

Accumulative
# of vehicles
(Link 2)

T

T

C
1

C
2

d-C
2

Figure 7: Queuing Diagram (y = 5)

20



0 1 2 3 4 5 6 7 8 9 10
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
x 10

4

Toll (y)

T
ot

al
 S

ys
te

m
 T

ra
ve

l T
im

e

The Objective Value vs. Toll

Figure 8: DSBTP Objective Values

21


