ChemE 436: Course objectives

To develop or expand upon your:

- Understanding of fundamental chemical engineering concepts
- Experimental skills
- Ability to function as a team
- Technical writing skills
- Oral presentation skills

Specifically, you will:

- Learn to deal with open-ended team assignments
- Plan and execute safe and efficient experiments
- Analyze and interpret experimental data using statistics
- Make appropriate conclusions and recommendations
- Write persuasive technical reports and give effective talks

Expectations

- Be on time
- Make full use of the lab sessions (replicate, replicate, replicate)
- Behave professionally
- Learn to deal with team dynamics and other issues
- Fulfill all requirements
 - Planning reports
 - Oral reports
 - Written reports

Grading

- The class will be divided in teams of 3 students
- Each team will perform 3 different experiments
- Grade will be assigned as follows:
 - Planning Report (team)60 (leader) / 20(teammates)
 - Oral report (individual)60 (leader) / 0 (teammates)
 - Final Written report (team)80 (leader) / 30 (teammates)
 - Maximum possible: 300 pts $(60 + 60 + 80 + [2 \times 20] + [2 \times 30])$

Experiment	Planning report	Oral report	Final report
1	а	b	С
2	b	С	а
3	С	а	b

Things to keep in mind

- Be there
 - There are no make up provisions
 - You will need to attend all oral presentations
- Don't be late
 - Any late report is penalized at -10% per 24h
- There are no revisions
 - Make sure you do your best the first time around
- Grades will be normalized for variability in TA grading
 - Target mean 75 +/- 15
- Make sure that you do not fall 2 x SD below the mean

Plagiarism

Acceptable:

- Working and consulting with team members
- Discriminate use of the web and other references to find equations, theory, data, experimental ideas, etc.
- Using material produced by one of your teammates

Not acceptable:

- Using material produced by another team
- Copying text from references and passing it as your own
- Copying any part of previous reports
- Letting your teammates do all the work
 - Talk to Prof. Baneyx if needed

Personal protection

- Google/safety glasses with side protection windows must be worn at all times
 - We have a limited number of loaners available on a first come first serve basis but they may be scratched and damaged
 - Consider buying a pair at a hardware store
- Wear long pants or long skirts
- No open toe shoes
- Available safety equipment in BNS35 includes:
 - Eyewash station
 - MSDS and lab safety book
 - Spill kits
 - Fire extinguisher

Other considerations

- No food or drinks in the lab
- Dispose of chemicals by approved methods only
- Dispose of sharps in designated red sharp containers
- Avoid loose fitting clothing around rotating machinery
- Shut down equipment on time; leave safe and clean
- Save 10 min on the end of each second lab to sketch the next experiment
- No lab access outside your scheduled class time
- Do your own background research and cite your own sources
- Writing centers are available:
 - Odegaard Writing Center (http://depts.washington.edu/owrc/)
 - Center for Learning and Undergraduate Enrichment (http://depts.washington.edu/clue/dropintutor-writing.php)

In practice

Step by step guide
 http://faculty.washington.edu/baneyx/436/Step_by_step.html

Experimental schedule
 http://faculty.washington.edu/baneyx/436/Lab_schedule.html

Reference material
 http://faculty.washington.edu/baneyx/436/Reference.html

Uncertainty

- Reported values of physical quantities have little value without a statement of uncertainty
 - Average age is 30 What is the sample size?
 - f = 0.4732751 at Re = 100 How confident am I in this number?
 - f = 0.47 ± 0.03 provides much more information
- Assessment of uncertainty requires:
 - 1. A determination of the internal consistency of the data (replicates)
 - 2. A critical analysis of the experimental design (improvements)
 - 3. A knowledge of the instruments range and limitations
 - 4. An analysis of how the error in measured quantities is propagated into final *calculated* results

Types of errors

• Two types: random (precision) and systematic (bias)

Random errors

- "Scattering" in data caused by random variables
- Can be quantified statistically
- Not due to faulty calibration but caused by:
 - Inability to discriminate between readings (e.g., manometer)
 - Environmental fluctuations (e.g., vibrations)
 - Variation in electrical field (e.g., pumps)
 - Instrument dead band and hysteresis
 - Analog to digital conversion
- How to reduce random errors?
 - Improve instrument
 - Improve experimental environment (vibrations, temperature, etc)
 - Increase the number or measurements

Systematic errors

- Even if randomness is eliminated by taking an infinity of measurements, the measured value may still differ from the "true" value
- These systematic errors are due to:
 - Flawed experimental technique
 - Characteristic of an instrument and how it is used
- Examples:
 - Calibration errors (rotameter, orifice, thermocouples)
 - Uncompensated instrument drift
 - Leakage of materials
 - Incomplete fulfillment of assumed conditions (e.g., steady state, 1D problem...)
 - Consistent operator error (e.g., parallax)
- How to reduce random errors?
 - Pay close attention to experimental details (instrument capabilities and limitations, data collection process and experimental design)

Dwyer Series 450 Carbon Monoxide Monitor

Range: 0-2000 PPM. Resolution: 1 PPM.

Accuracy: (using 2000 PPM calibration gas) ±3% of reading, ±

the accuracy of the calibration gas.

Response Time: <30 seconds to 90% of reading.

Operating Temperature: 32 to 104°F(0-40)°C).

Humidity Conditions: 0-90% Relative Humidity Non

Condensing.

Adjustments: Zero and Span via keypad.

Pressure Range: 5.0 inches w.c.d. (1.24 kPa). Maximum Working Pressure: 6.89 Bar.

Output Signals: 4-20 mA.

Zero Output: 4 mA.

Span: 16 mA.

Performance @ 70°F (21.1°C)

Accuracy: ±0.5% Full Scale (non-linearity,

hysterisis, nonrepeatability).

Stability: ±1%/year.

Warm-up Time: 10 minutes.

Operating Temperature: 5 to 50°C. Temperature Effects: 0.025%/°F.

- Range
- Accuracy
- Sensitivity
- Linearity
- Detection limit (threshold)
- Resolution
- Hysteresis and dead band
- Impedance

Input: bounds for measurements

Output: bounds for sensor/transmitter output

Span: difference between upper and lower limits

Zero: lower limit of range

Example: digital thermometer

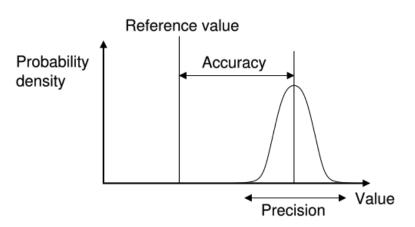
Input range \rightarrow -10 to 110°C

Output range (transmitter) → 4 - 20 mA

Input span → 120°C

Output Span → 16 mA

Input Zero →-10°C


Output Zero →4 mA

- Range
- Accuracy
- Sensitivity
- Linearity
- Detection limit (threshold)
- Resolution
- Hysteresis and dead band
- Impedance

Nearness to the "true" value. Unrelated to precision which is a measure of internal consistency

Range

Change in output over change in input

Sensitivity

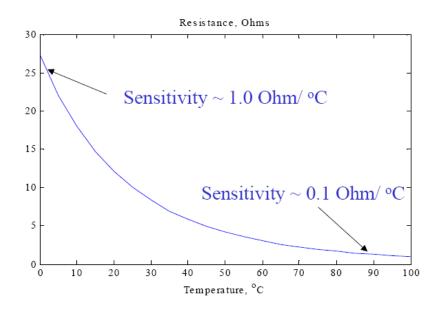
Accuracy

- Linearity
- Detection limit (threshold)
- Resolution
- Hysteresis and dead band
- Impedance

Example: Hg vs H₂O manometer

Hg manometer provides a 760 mm change over 101 kPa

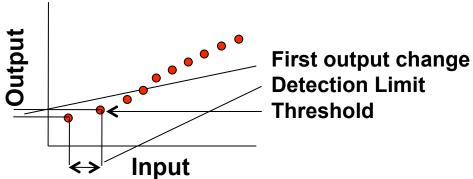
Sensitivity = 760/101 = 7.52 mm/kPa


H₂O manometer provides a 13.5 mm change over 7.52 kPa

Sensitivity = 13.5/7.52 = 102 mm/kPa

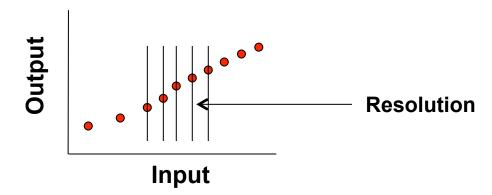
- Range
- Accuracy
- Sensitivity
- Linearity
- Detection limit (threshold)
- Resolution
- Hysteresis and dead band
- Impedance

Proportionality of output to input


Radio Shack 271-110 thermistor

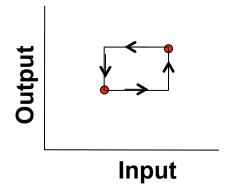
- Range
- Accuracy
- Sensitivity
- Linearity

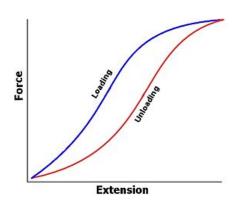
low end of range


Smallest detectable change in measurement in the

- Detection limit (threshold)
- Resolution
- Hysteresis and dead band
- Impedance

- Range
- Accuracy
- Sensitivity
- Linearity
- Detection limit (threshold)
- Resolution
- Hysteresis and dead band
- Impedance


Smallest detectable change over the full range of measurements



Range

Dead band: region where there is no effective response

- Accuracy
- Sensitivity
- Linearity
- Detection limit (threshold)
- Resolution
- Hysteresis and dead band
- Impedance

Hysteresis: retardation of an effect upon induced change

- Range
- Accuracy
- Sensitivity
- Linearity
- Detection limit (threshold)
- Resolution
- Hysteresis and dead band
- Impedance A measure of the opposition to current in an AC circuit