Numerical differentiation

Goal: We have gathered experimental measurements and want to
obtain a derivative

— If we have a physical reason to believe that the data will follow a straight line or
a parabola, it is best to use a best fit approach

— If not, need to take the derivative directly
2-point differentiation:
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2-point differentiation neglects all terms of 2" and higher order!

Numerical differentiation

How about 3 point differentiation?
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Five point differentiation is even better
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Example

Consider a sphere falling into a fluid: calculate velocity at t = 10s
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5 points differentiation
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Numerical integration

Goal: We have gathered experimental measurements and want to
obtain a the area under the curve or integrate the function

— Trapezoidal rule

— Simpson’s rule

— Both require constant Ax
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Numerical integration

Trapezoidal rule

— Discretize by assuming a straight line between 2 consecutive points and
sum the area of the resulting trapezoids

— Low accuracy (as little as 15t order)
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Numerical integration

* Simpson’s rule

— Assume a parabola between 3 consecutive points and sum the area
under each paraboloid

— Requires odd number of points

— Higher accuracy (as much as 3" order)
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Example: Pitot traverse

*  We want Q (m3/s) flowing through a pipe from discrete V(r) measurements
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Need to integrate r.V(r) not V(7)
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Example: Pitot traverse

*  We want Q (m3/s) flowing through a pipe from discrete V(r) measurements

1% r.V(r)
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0~ 2:1(0.1)[5(0)+5(3.8)+5(8.6)+5(10.5)+§(8.0)+§(10.5)+§(1.2)] 23 m /s

Example: Pitot traverse

* What if we average velocities

\ 4 r.V(r)
2 —
(m/s) (m2/s) V=2£=(4O+38+46+§5+20+10+2)=26.9 mis
n

0=V.A=269%x7(0.6)* =304 m’ /s

This approach overestimates Q by 30%!

Alternative: if we are in the laminar range, we know that the
velocity profile should be parabolic => do a parabolic fit or linearize
by taking the logarithm and do a best fit
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Order of magnitude estimates

Engineers often need to estimate quantities
— How long to reach steady state?

— How long, wide, thick... should something be?

Always look for quick ways to estimate quantities
Consider the transient heating of a semi-infinite slab

T =T(x,t) and 1D conduction

T=T, T.=T, At time t = 0, change the temperature
of the x =0 face from T, to T,
T(x,0)=T,
10T &°T 0=,
x=0 aof ox T0,)=T,
T(%,1)=T,

Order of magnitude estimates

The solution is:
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T * How long will the heat front take
h
to reach a particular position
(e.g., x=5cm)?
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Order of magnitude estimates

* Make linear assumption and assume that when the heat front
reaches x the temperature at this point is:

T TG =Lt
2
T, B
T(x,t)=T0+T" %
t
T(x,)-T, 1
X T,-7T, 2
From PDE solution:
T(x,t)—Th= X =l 2
7,-T, ) X
X _ LA x_ at
e 048 = o 023 = — 0.92

Order of magnitude estimates

* Now, look at how long it will take to reach x =5 cm with rods made
up of different materials

For a glass rod: o = 0.0034 cm?/s =t 2 _7353 s=2h
a 0.0034
x5
: = 2 t=—=—"——=21475s
For a copper rod: a. = 1.17 cm?/s o117

We can use the same approximation to determine how far a heat front
will move over a given period of time (e.g., t = 100s)

X e = Var =+/0.0034x100 = 0.6 cm
x. =+at =1.17x100 =10.8 cm

copper
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Order of magnitude estimates

Thus, the time required to reach steady state in a rod of length L can be
estimated using:

So, for a brass rod that is 10” (25 cm) in length and using
Olprass = 0.314 cm?/s
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