Numerical differentiation

- Goal: We have gathered experimental measurements and want to obtain a derivative
 - If we have a physical reason to believe that the data will follow a straight line or a parabola, it is best to use a best fit approach
 - If not, need to take the derivative directly
- 2-point differentiation:

$$\left. \frac{\partial y}{\partial x} \right|_{x} \approx \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Intuitive but inaccurate

Consider Taylor series expansion

$$y_{i+1} \approx y_i + \frac{\partial y}{\partial x}\bigg|_{X_i} \left(x_{i+1} - x_i\right) + \frac{1}{2} \frac{\partial^2 y}{\partial x^2}\bigg|_{X_i} \left(x_{i+1} - x_i\right)^2 + \dots$$

2-point differentiation neglects all terms of 2nd and higher order!

Numerical differentiation

• How about 3 point differentiation?

$$\begin{aligned} y_{i+1} &\approx y_i + \frac{\partial y}{\partial x} \bigg|_{x_i} \left(x_{i+1} - x_i \right) + \frac{1}{2} \frac{\partial^2 y}{\partial x^2} \bigg|_{x_i} \left(x_{i+1} - x_i \right)^2 + \frac{1}{3!} \frac{\partial^3 y}{\partial x^3} \bigg|_{x_i} \left(x_{i+1} - x_i \right)^3 + \dots \\ y_{i-1} &\approx y_i + \frac{\partial y}{\partial x} \bigg|_{x_i} \left(x_{i-1} - x_i \right) + \frac{1}{2} \frac{\partial^2 y}{\partial x^2} \bigg|_{x_i} \left(x_{i-1} - x_i \right)^2 + \frac{1}{3!} \frac{\partial^3 y}{\partial x^3} \bigg|_{x_i} \left(x_{i-1} - x_i \right)^3 + \dots \end{aligned}$$

$$y_{i+1} - y_{i-1} \approx \frac{\partial y}{\partial x}\Big|_{X} (x_{i+1} - x_{i-1}) + \theta \Big(\Delta x^3\Big)$$
 if $\Delta x = x_{i-1} - x_i = x_{i+1} - x_i$ constant!

if
$$\Delta x = x_{i-1} - x_i = x_{i+1} - x_i$$
 constant!

$$\frac{\partial y}{\partial x}\bigg|_{X_i} = \frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}} = \frac{y_{i+1} - y_{i-1}}{2\Delta x}$$

Five point differentiation is even better

$$\frac{\partial y}{\partial x}\Big|_{x_i} = \frac{2y_{i+2} + y_{i+1} - y_{i-1} - 2y_{i-2}}{10\Delta x}$$

Example

• Consider a sphere falling into a fluid: calculate velocity at t = 10s

i	t _i (s)	x _i (mm)
0	0	0
1	2	25
2	4	67
3	6	172
4	8	288
5	10	387
6	12	575
7	14	756
8	16	961
9	18	1188

2 points differentiation

$$\frac{\partial x}{\partial t}\bigg|_{t=10s} = \frac{y_{i+1} - y_i}{\Delta x} = \frac{575 - 387}{2} = 94 \ cm/s$$

3 points differentiation

$$\left. \frac{\partial x}{\partial t} \right|_{t=10s} = \frac{y_{i+1} - y_{i-1}}{2\Delta x} = \frac{575 - 288}{2 \times 2} = 71.8 \ cm/s$$

5 points differentiation

$$\begin{split} \frac{\partial x}{\partial t}\bigg|_{t=10s} &= \frac{2y_{i+2} + y_{i+1} - y_{i-1} - 2y_{i-2}}{10\Delta x} = \\ \frac{\partial x}{\partial t}\bigg|_{t=10s} &= \frac{2(756) + 575 - 288 - 2(172)}{10\times 2} = 72.8 \ cm/s \end{split}$$

Example

t _i (s)	2 pt dif	3 pt dif	5 pt dif
0	12.5	X	X
2	21.5	17.0	Χ
4	52.0	36.8	36.2
6	58.0	55.0	47.2
8	49.5	53.8	61.5
10	94.0	71.8	72.8
12	90.5	92.3	85.8
14	102.5	96.5	99.4
16	113.4	108	Х
18	Х	X	Х

Chaotic v. smooth

At $t \ge 10s$, dx/dt = 99.4 cm/s

Numerical integration

- Goal: We have gathered experimental measurements and want to obtain a the area under the curve or integrate the function
 - Trapezoidal rule
 - Simpson's rule
 - Both require constant Δx

Numerical integration

- Trapezoidal rule
 - Discretize by assuming a straight line between 2 consecutive points and sum the area of the resulting trapezoids
 - Low accuracy (as little as 1st order)

$$\int_{x_0}^{x_n} y(x) dx \approx \Delta x \left[\frac{1}{2} y_0 + y_1 + y_2 + \dots + \frac{1}{2} y_n \right]$$

Better with more points

Numerical integration

- Simpson's rule
 - Assume a parabola between 3 consecutive points and sum the area under each paraboloid
 - Requires odd number of points
 - Higher accuracy (as much as 3rd order)

 $\int\limits_{x_0}^{x_n} y(x) \, dx \approx \Delta x \left[\frac{1}{3} y_0 + \frac{4}{3} y_1 + \frac{2}{3} y_2 + \frac{4}{3} y_3 + \frac{2}{3} y_4 + \ldots + \frac{4}{3} y_{n-1} + \frac{1}{3} y_n \right]$

Example: Pitot traverse

• We want Q (m³/s) flowing through a pipe from discrete V(r) measurements

Index	<i>r</i> (m)	<i>V</i> (m/s)
0	0	40
1	0.1	38
2	0.2	46
3	0.3	35
4	0.4	20
5	0.5	10
6	0.6	2

Need to integrate r.V(r) not V(r)

Example: Pitot traverse

• We want Q (m³/s) flowing through a pipe from discrete V(r) measurements

Index	<i>r</i> (m)	V (m/s)	<i>r.V(r)</i> (m²/s)
0	0	40	0
1	0.1	38	3.8
2	0.2	46	8.6
3	0.3	35	10.5
4	0.4	20	8.0
5	0.5	10	5.0
6	0.6	2	1.2

$$Q = 2\pi \int_{0}^{6.6} r.V(r)dr \approx 2\pi.\Delta r \left[\frac{1}{3} (r_0 V_0) + \frac{4}{3} (r_1 V_1) + \frac{2}{3} (r_2 V_2) + \dots + \frac{1}{3} (r_6 V_6) \right]$$

$$Q \approx 2\pi (0.1) \left[\frac{1}{3} (0) + \frac{4}{3} (3.8) + \frac{2}{3} (8.6) + \frac{4}{3} (10.5) + \frac{2}{3} (8.0) + \frac{4}{3} (10.5) + \frac{1}{3} (1.2) \right] = 23 \ m^3 / s$$

Example: Pitot traverse

· What if we average velocities

Index	<i>r</i> (m)	V (m/s)	<i>r.V(r)</i> (m²/s)
0	0	40	0
1	0.1	38	3.8
2	0.2	46	8.6
3	0.3	35	10.5
4	0.4	20	8.0
5	0.5	10	5.0
6	0.6	2	1.2

$$\overline{V} = \sum_{i} \frac{V_{i}}{n} = \frac{(40 + 38 + 46 + 35 + 20 + 10 + 2)}{7} = 26.9 \ m/s$$

$$\overline{Q} = \overline{V}.A = 26.9 \times \pi (0.6)^2 = 30.4 \ m^3 / s$$

This approach overestimates Q by 30%!

<u>Alternative</u>: if we are in the laminar range, we know that the velocity profile should be parabolic => do a parabolic fit or linearize by taking the logarithm and do a best fit

Order of magnitude estimates

- Engineers often need to estimate quantities
 - How long to reach steady state?
 - How long, wide, thick... should something be?
- Always look for quick ways to estimate quantities
- · Consider the transient heating of a semi-infinite slab

T = T(x,t) and 1D conduction

At time t = 0, change the temperature of the x = 0 face from T_o to T_h

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} \qquad T(x,0) = T_o$$

$$T(0,t) = T_h$$

$$T(\infty,t) = T.$$

Order of magnitude estimates

• The solution is:

$$\frac{T(x,t) - T_h}{T_o - T_h} = erf\left(\frac{x}{2\sqrt{\alpha t}}\right)$$

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} du$$

How long will the heat front take to reach a particular position (e.g., x = 5 cm)?

Order of magnitude estimates

• Make linear assumption and assume that when the heat front reaches x the temperature at this point is:

$$T(x,t) = \frac{T_o + T_h}{2}$$

$$T(x,t) = T_o + \frac{T_h - T_o}{2}$$

$$\frac{T(x,t) - T_o}{T_h - T_o} = \frac{1}{2}$$

From PDE solution:

$$\frac{T(x,t) - T_h}{T_o - T_h} = erf\left(\frac{x}{2\sqrt{\alpha t}}\right) = \frac{1}{2}$$

$$\frac{x}{2\sqrt{\alpha t}} = 0.48 \implies \frac{x^2}{4\alpha t} = 0.23 \implies \frac{x^2}{\alpha t} = 0.92$$

$$\frac{x^2}{\alpha t} \approx 1$$

Order of magnitude estimates

 Now, look at how long it will take to reach x = 5 cm with rods made up of different materials

For a glass rod: α = 0.0034 cm²/s

$$t \approx \frac{x^2}{\alpha} = \frac{5^2}{0.0034} = 7353 \ s \approx 2h$$

For a copper rod: α = 1.17 cm²/s

$$t \approx \frac{x^2}{\alpha} = \frac{5^2}{1.17} = 21.4 \text{ s}$$

We can use the same approximation to determine how far a heat front will move over a given period of time (e.g., t = 100s)

$$x_{glass} \approx \sqrt{\alpha t} = \sqrt{0.0034 \times 100} = 0.6 \text{ cm}$$

$$x_{copper} \approx \sqrt{\alpha t} = \sqrt{1.17 \times 100} = 10.8 \ cm$$

Order of magnitude estimates

Thus, the time required to reach steady state in a rod of length L can be estimated using:

$$F_o = \frac{\alpha t}{x^2} \approx 1$$

So, for a brass rod that is 10" (25 cm) in length and using α_{brass} = 0.314 cm²/s

$$t_{SS} \approx \frac{L^2}{\alpha} = \frac{25^2}{0.341} = 1833 \ s \approx 0.5h$$