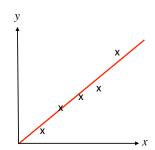
Curve fitting

- If the quantity of interest is a slope or an intercept
 - How do we obtain these values?
 - What is the associated error?
- Want to find the "best fit" of data to be represented by a straight line model
 - Least squares us a common criteria for best fit



$$F = \sum_{i} (y_{i} - y_{\text{model}})^{2} = \sum_{i} [y_{i} - (mx_{i} + b)]^{2}$$

We want to find m and b that will give the smallest F value, e.g., find the *least* value of the *squared* errors

Curve fitting

• Condition for minimum: dF/dm = 0 and dF/db = 0

$$m = \frac{n\sum_{i} (x_{i}y_{i}) - \left(\sum_{i} x_{i}\right) \left(\sum_{i} y_{i}\right)}{n\left(\sum_{i} x_{i}^{2}\right) - \left(\sum_{i} x_{i}\right)^{2}}$$

$$b = \frac{\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{i} y_{i}\right) - \left(\sum_{i} x_{i}\right)\left(\sum_{i} x_{i} y_{i}\right)}{n\left(\sum_{i} x_{i}^{2}\right) - \left(\sum_{i} x_{i}\right)^{2}}$$

Your calculator calculates this for you but what is the standard deviation in m and b?

Define:
$$\delta y_i = y_i - (mx_i + b)$$

Standard deviation in y is:

$$S_y = \sqrt{\frac{\sum_{i} (\delta y_i)^2}{n-2}} \quad \text{and} \quad \lambda_y = \frac{t.S_y}{\sqrt{n}}$$

$$P = 5 \text{ and } DF = n-2$$

Curve fitting

• Standard deviations in *m* and *b* are:

$$S_{m} = S_{y} \sqrt{\frac{n}{n \left(\sum_{i} x_{i}^{2}\right) - \left(\sum_{i} x_{i}\right)^{2}}}$$

$$S_b = S_y \sqrt{\frac{\left(\sum_{i} x_i^2\right)}{n\left(\sum_{i} x_i^2\right) - \left(\sum_{i} x_i\right)^2}}$$

and

$$\lambda_m = \frac{t.S_m}{\sqrt{n}}$$

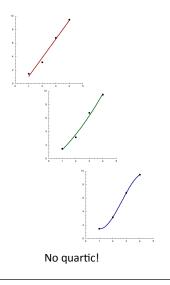
$$\lambda_b = \frac{t.S_b}{\sqrt{n}}$$

with P = 5 and DF = n-2

Fit validity

- Every DF of a system represents a measurement or data point
- Which fits are we allowed to perform?

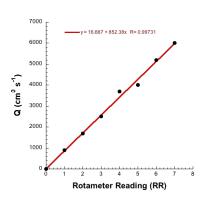
DF (data points)	Model	Formula		
1	None	None		
2	Linear	mx + b		
3	Parabola	$ax^2 + bx + c$		
4	Cubic	$ax^3 + bx^2 + cx + d$		
5	Quartic	$ax^4 + bx^3 + cx^2 + dx + e$		
6	5 th order	$ax^5 + bx^4 + cx^3 + dx^2 + ex + d$		



Example: rotameter calibration

• Measure Q with bucket/stopwatch; read RR; vary Q; repeat

RR (read)	Volume (L)	Time (s)	Q (cm ³ /s)
0	0	10	0
1	9	10	900
2	17	10	1700
3	25	10	2500
4	37	10	3700
5	40	10	4000
6	52	10	5200
7	60	10	6000



• Applying formula (or using software) with n=8 yields:

$$Q = 850.RR + 17$$
 (best fit)

Example: rotameter calibration

• How much confidence should be place in Q?

$$\delta Q_{i} = Q_{i} - Q_{\text{model}} = Q_{i} - (850.RR_{i} + 17)$$

$$\delta Q_{1} = 0 - 17 = -17$$

$$\delta Q_{2} = 900 - (850 + 17) = 33$$

$$\delta Q_{3} = 1700 - (1700 + 17) = -17 \dots$$

$$S_Q^2 = \frac{\sum (\delta Q_i)^2}{8-2} = 27585$$
 and $S_Q = 166 \text{ cm}^3/\text{s}$

From the critical values of t table for P = 5 and and DF = n-2 = 8-2 = 6, we have t = 2.45

$$\lambda_Q = \frac{t.S_Q}{\sqrt{n}} = \frac{2.45 \times 166}{\sqrt{8}} = 144 \text{ cm}^3 \text{s}^{-1}$$

Thus: $Q = [850.RR + 17] \pm 144 \text{ cm}^3\text{s}^{-1} (95\% \text{ confidence, best fit})$

So, if RR is set at 3.5 $Q = 2992 \pm 144 \text{ cm}^3 \text{s}^{-1} \approx 3000 \pm 140 \text{ cm}^3 \text{s}^{-1}$

What if the expression is not linear?

- · Reduce to linear model
 - Hydrodynamic power law: $C_{D} = k \cdot \text{Re}^{n}$ => $\ln C_{D} = \ln k + n \ln \text{Re}$
 - $\quad \text{Langmuir adsorption:} \qquad \qquad \theta = \frac{k.c}{1+k.c} \qquad \Rightarrow \qquad \qquad \frac{1}{\theta} = 1 + \left(\frac{1}{k}\right).\frac{1}{c}$
 - $\quad \text{Arrhenius kinetics} \qquad \qquad \frac{-E_{\scriptscriptstyle a}}{k=A.e} \quad \Rightarrow \qquad \ln k = \ln A \left(\frac{E_{\scriptscriptstyle a}}{R}\right) \cdot \frac{1}{T}$

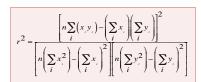
Correlation coefficient

- The correlation coefficient r^2 describes how much of the variation in y is described by the model $(y_{model} = m.x_i + b)$
- In other words, r^2 is the fraction of the variation in y that can be described by the variation in x

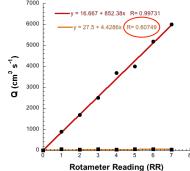
$$r^{2} = \frac{\left[n\sum_{i}(x_{i}y_{i}) - \left(\sum_{i}x_{i}\right)\left[\sum_{i}y_{i}\right]^{2}}{\left[n\left(\sum_{i}x_{i}^{2}\right) - \left(\sum_{i}x_{i}\right)^{2}\right]\left[n\left(\sum_{i}y_{i}^{2}\right) - \left(\sum_{i}y_{i}\right)^{2}\right]} \qquad \text{recall that} \qquad m = \frac{n\sum_{i}(x_{i}y_{i}) - \left(\sum_{i}x_{i}\right)\left[\sum_{i}y_{i}\right]}{n\left(\sum_{i}x_{i}^{2}\right) - \left(\sum_{i}x_{i}\right)^{2}}$$

Correlation coefficient

- The correlation coefficient r^2 describes how much of the variation in y is described by the model $(y_{model} = mx_i + b)$
- In other words, r^2 is the fraction of the variation in y that can be described by the variation in x



If r² = 1, all of the variation in y is described by the model



However, a nearly horizontal data set will have low r^2 since there is little variation in y to be described by the model

Propagation of errors

 Goal: to calculate the mean and standard deviation (or confidence interval) in a variable A that depends on measured quantities

$$A = f(x, y, z)$$

Possible approach

$$A_{1} = f(x_{1}, y_{1}, z_{1})$$

$$A_{2} = f(x_{2}, y_{2}, z_{2})$$

$$\vdots$$

$$A_{n} = f(x_{n}, y_{n}, z_{n})$$

$$\overline{A} = \sum_{i} A_{i}$$

$$S_{A} = \sqrt{\frac{\sum_{i} (A_{i} - \overline{A})^{2}}{n - 1}}$$

OK for *estimate* but propagation of error gives much more info

Propagation of errors

• Better approach is to calculate \overline{A} from the means of measured variables

$$\overline{A} = f(\overline{x}, \overline{y}, \overline{z})$$

- And to calculate S_A (or λ_A) from the knowledge of S_x , S_y and S_z (or λ_x , λ_y and λ_z)
- Using a Taylor series development of Ai in the vicinity of zero, it can be shown that for independent variables x, y and z:

$$S_A^2 = \left(\frac{\partial A}{\partial x}\right)_{y,z}^2 S_X^2 + \left(\frac{\partial A}{\partial y}\right)_{x,z}^2 S_Y^2 + \left(\frac{\partial A}{\partial z}\right)_{x,y}^2 S_Z^2$$

ana

$$\lambda_A^2 = \left(\frac{\partial A}{\partial x}\right)_{y,z}^2 \lambda_X^2 + \left(\frac{\partial A}{\partial y}\right)_{x,z}^2 \lambda_y^2 + \left(\frac{\partial A}{\partial z}\right)_{x,y}^2 \lambda_z^2$$

Example

- Propagation of error is more conservative and provides feedback on experimental design
- Consider pressure drop measurement

Approach 1

Run	P _{in}	P _{out}	ΔΡ
1	553	335	218
2	495	330	165
3	515	310	205
4	565	340	225
5	525	315	210
6	510	326	184
			—

$$\overline{\Delta P} = 201$$

$$S_{\Lambda P} = 22.6$$

Example

- Propagation of error is more conservative and provides feedback on experimental design
- Consider pressure drop measurement

Approach 2

Run	P _{in}		P _{out}	
1		553		335
2		495		330
3		515		310
4		565		340
5		525		315
6		510		326
		,		,

$$\overline{P_{in}} = 527$$
 $\overline{P_{out}} = 326$
 $S_{Pin} = 26.8$ $S_{Pout} = 11$

Calculate $\overline{\Delta P}$ from individual means:

$$\overline{\Delta P} = 527 - 326 = 201$$

Calculate variance from partial derivatives evaluated at means:

$$S_{\Delta P}^{2} = \left(\frac{\partial \left(P_{in} - P_{out}\right)}{\partial P_{in}}\right)_{P_{out}}^{2} S_{P_{out}}^{2} + \left(\frac{\partial \left(P_{in} - P_{out}\right)}{\partial P_{out}}\right)_{P_{out}}^{2} S_{P_{out}}^{2}$$

$$S_{\Delta P}^2 = 1.S_{P_{in}}^2 + 1.S_{P_{out}}^2 = 718.2 + 134.6$$

$$S_{\Delta P} = \sqrt{718.2 + 134.6} = 29.2$$

SD larger => More conservative P_{in} is largest contributor to error!

Example 2

Density of a rod determined by measuring length, diameter and mass

 $M = 5.0 \pm 0.1 \text{ kg } (95\% \text{ conf}, n = 6)$

 $L = 0.75 \pm 0.02 \text{ m } (95\% \text{ conf}, \text{n} = 5)$

 $D = 0.14 \pm 0.01 \text{ m } (95\% \text{ conf}, \text{n} = 6)$

 $\overline{\rho} = \frac{M}{V} = \frac{M}{\left(\frac{\pi D^2}{4}\right)L} = \frac{4}{\pi} \cdot \frac{M}{D^2 L} = \frac{4 \times 5}{\pi (0.14)^2 \times 0.75} = 433 \text{ kg/m}^3$ Calculate $\overline{\rho}$ from sample means:

Calculate partial derivatives and evaluate at sample means:

$$\frac{\partial \rho}{\partial M} = \frac{4}{\pi} \cdot \frac{1}{D^2 L}$$

at \overline{D} and \overline{L} , we have:

$$\frac{\partial \rho}{\partial M} = \frac{4}{\pi} \cdot \frac{1}{\left(0.14\right)^2 \times 0.75} = 86.6$$

$$\frac{\partial \rho}{\partial L} = -\frac{4}{\pi} \cdot \frac{M}{D^2 L}$$

at \overline{D} and \overline{L} and \overline{M} we have:

$$\frac{\partial \rho}{\partial L} = -\frac{4}{\pi} \cdot \frac{5}{\left(0.14\right)^2 \left(0.75\right)^2} = -577$$

$$\frac{\partial \rho}{\partial D} = -\frac{8}{\pi} \cdot \frac{M}{D^3 I}$$

at \overline{D} and \overline{L} and \overline{M} we have:

$$\frac{\partial \rho}{\partial D} = -\frac{8}{\pi} \cdot \frac{5}{(0.14)^3 (0.75)} = -6187$$

Calculate confidence interval for density:

$$\lambda_{\rho} = \sqrt{\left(\frac{\partial \rho}{\partial M}\right)^{2} \lambda_{M}^{2} + \left(\frac{\partial \rho}{\partial L}\right)^{2} \lambda_{L}^{2} + \left(\frac{\partial \rho}{\partial D}\right)^{2} \lambda_{D}^{2}} = \sqrt{\left(86.6\right)^{2} \left(0.1\right)^{2} + \left(-577\right)^{2} \left(0.02\right)^{2} + \left(-6187\right)^{2} \left(0.01\right)^{2}} = \sqrt{74.99 + 133.17 + 3828} = 63.53 \text{ kg/m}^{3}$$

 $D = 433 \pm 63 \text{ kg/m}^3$ (95% conf, propagated) D biggest contributor to error: use calipers!