ChemE 436: Course objectives

- To develop or expand upon your:
 - Understanding of fundamental chemical engineering concepts
 - Experimental skills
 - Ability to function as a team
 - Technical writing skills
 - Oral presentation skills
- Specifically, you will:
 - Learn to deal with open-ended team assignments
 - Plan and execute safe and efficient experiments
 - Analyze and interpret experimental data using statistics
 - Make appropriate conclusions and recommendations
 - Write persuasive technical reports and give effective talks

http://faculty.washington.edu/baneyx/436/Info.html

Expectations

- · Be on time
- Make full use of the lab sessions (replicate, replicate, replicate)
- · Behave professionally
- Learn to deal with team dynamics and other issues
- Fulfill all requirements
 - Planning reports
 - Oral reports
 - Written reports

http://faculty.washington.edu/baneyx/436/Info.html

Grading

- The class will be divided in teams of 3 students
- · Each team will perform 3 different experiments
- · Grade will be assigned as follows:

Planning Report (team)
 Oral report (individual)
 Final Written report (team)
 60 (leader) / 0 (teammates)
 80 (leader) / 30 (teammates)

- Maximum possible: $\frac{300}{100}$ pts $(60 + 60 + 80 + [2 \times 20] + [2 \times 30])$

Experiment	Planning report	Oral report	Final report
1	a	b	С
2	b	С	a
3	С	а	b

http://faculty.washington.edu/baneyx/436/Info.html

Things to keep in mind

- · Be there
 - There are no make up provisions
 - You will need to attend all oral presentations
- Don't be late
 - Any late report is penalized at -10% per 24h
- There are no revisions
 - Make sure you do your best the first time around
- · Grades will be normalized for variability in TA grading
 - Target mean 75 +/- 15
- Make sure that you do not fall 2 x SD below the mean

http://faculty.washington.edu/baneyx/436/Info.html

Plagiarism

- · Acceptable:
 - Working and consulting with team members
 - Discriminate use of the web and other references to find equations, theory, data, experimental ideas, etc.
 - Using material produced by one of your teammates
- · Not acceptable:
 - Using material produced by another team
 - Copying text from references and passing it as your own
 - Copying any part of previous reports
 - Letting your teammates do all the work
 - Talk to Prof. Baneyx if needed

http://faculty.washington.edu/baneyx/436/Info.html

Personal protection

- Google/safety glasses with side protection windows must be worn at all times
 - We have a limited number of loaners available on a first come first serve basis but they may be scratched and damaged
 - Consider buying a pair at a hardware store
- · Wear long pants or long skirts
- No open toe shoes
- Available safety equipment in BNS35 includes:
 - Eyewash station
 - MSDS and lab safety book
 - Spill kits
 - Fire extinguisher

http://faculty.washington.edu/baneyx/436/Info.html

Other considerations

- No food or drinks in the lab
- Dispose of chemicals by approved methods only
- Dispose of sharps in designated red sharp containers
- Avoid loose fitting clothing around rotating machinery
- Shut down equipment on time; leave safe and clean
- Save 10 min on the end of each second lab to sketch the next experiment
- No lab access outside your scheduled class time
- Do your own background research and cite your own sources
- Writing centers are available:
 - Odegaard Writing Center (http://depts.washington.edu/owrc/)
 - Center for Learning and Undergraduate Enrichment (http://depts.washington.edu/clue/dropintutor_writing.php)

http://faculty.washington.edu/baneyx/436/Info.html

In practice

- Step by step guide
 http://faculty.washington.edu/baneyx/436/Step by step.html
- Experimental schedule
 http://faculty.washington.edu/baneyx/436/Lab_schedule.html
- Reference material
 http://faculty.washington.edu/baneyx/436/Reference.html

Uncertainty

- Reported values of physical quantities have little value without a statement of uncertainty
 - Average age is 30 What is the sample size?
 - f = 0.4732751 at Re = 100 How confident am I in this number?
 - $f = 0.47 \pm 0.03$ provides much more information
- Assessment of uncertainty requires:
 - 1. A determination of the internal consistency of the data (replicates)
 - 2. A critical analysis of the experimental design (improvements)
 - **3.** A knowledge of the instruments range and limitations
 - An analysis of how the error in measured quantities is propagated into final calculated results

Types of errors

• Two types: random (precision) and systematic (bias)

Random errors

- "Scattering" in data caused by random variables
- Can be quantified statistically
- Not due to faulty calibration but caused by:
 - Inability to discriminate between readings (e.g., manometer)
 - Environmental fluctuations (e.g., vibrations)
 - Variation in electrical field (e.g., pumps)
 - Instrument dead band and hysteresis
 - Analog to digital conversion
- · How to reduce random errors?
 - Improve instrument
 - Improve experimental environment (vibrations, temperature, etc)
 - Increase the number or measurements

Systematic errors

- Even if randomness is eliminated by taking an infinity of measurements, the measured value may still differ from the "true" value
- These systematic errors are due to:
 - Flawed experimental technique
 - Characteristic of an instrument and how it is used
- Examples:
 - Calibration errors (rotameter, orifice, thermocouples)
 - Uncompensated instrument drift
 - Leakage of materials
 - Incomplete fulfillment of assumed conditions (e.g., steady state, 1D problem...)
 - Consistent operator error (e.g., parallax)
- · How to reduce random errors?
 - Pay close attention to experimental details (instrument capabilities and limitations, data collection process and experimental design)