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Multiple imputation, cont

• Imputation: Create D imputations of the missing data,

Y
(1)
mis, . . . , Y

(D)
mis , under a suitable model.

• Analysis: Analyze each of the D completed data sets in the
same way.

• Combination: Combine the D sets of estimates and SE’s
using Rubin’s (1987) rules.
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Multiple imputation, cont

The advantages in using multiple imputation techniques:
• Allow the use of simple complete-data techniques and

software.
• The data collector (the imputer) and the data analyst may

be different.
• Reflect the sampling variability that occur due to the missing

values.
• Reflect uncertainty of the model if the imputations are

drawn from different models.
• One set of imputations may be used for many analyses.
• Highly efficient even for very small D.

The MI disadvantage:
• Require more work.
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Efficiency

• The efficiency (on the variance scale) of an estimator of the
scalar parameter based on D imputations to one based on
an infinite number of imputations is approximately

(1 +
λ

D
)−1.

• Here λ is the fraction of missing information.
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Efficiency (%)

λ

D 0.1 0.3 0.5 0.7 0.9

3 97 91 86 81 77
5 98 94 91 88 85
10 99 97 95 93 92
20 100 99 98 97 96
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How MI works

Three phases:
• Create imputations.
• Analyze the imputed data sets.
• Combine the results.
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Analysis step

• Analyze each imputed data set in the same way using
complete-data methods.

• Store D sets of point estimates and standard errors
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Combining the results

For a scalar parameter θ (Rubin, 1987):

• (θ̂d, Vd): point estimates and variance estimates for dth
imputed data set.

• MI point estimate: θ̄ = 1
D

∑D
d=1 θ̂d.

• Within variance: V̄ = 1
D

∑D
d=1 Vd.

• Between variance: B = 1
D−1

∑D
d=1(θ̂d − θ̄)2.

• Total variance: T = V̄ + (1 + D−1)B.
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Theoretical justification on multiple imputation

Large sample Bayesian Approximation:
• Using iterative procedures, we create draws from the

posterior distribution of θ.
• In that case a large number of draws are needed.
• If we assume normality of the observed-data posterior

distribution, we need to estimate only the mean and
variance–much less draws are needed.

• In that case, a very limited number of draws are required to
estimate reliably the distribution mean.

• The MI is based on this idea.
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Justification, cont

• If we assume p(θ | yobs) is approximately normal, the
observed-data posterior can be effectively determined by
the posterior mean and variance, E(θ | yobs) and
V ar(θ | Yobs).

• Note that

E(θ | yobs) = E[E(θ | ymis, yobs) | Yobs] =

∫
E(θ | ymis, yobs)p(ymis | yobs)dymis,

where the outer expectation is taken with respect to the
posterior predictive distribution, p(ymis | yobs).
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Justification, cont

•
V ar(θ | Yobs) = E[V ar(θ | Ymis, Yobs) | Yobs]+

V ar[E(θ | Ymis, Yobs) | Yobs],

where the outer expectation and variance are taken with
respect to p(ymis | yobs).

•
E[V ar(θ | Ymis, Yobs) | Yobs] =

∫
V ar(θ | Ymis, Yobs)p(Ymis | Yobs)dYmis.

•
V ar[E(θ | Ymis, Yobs) | Yobs] =

∫
E2(θ | Ymis, Yobs)p(Ymis | Yobs)dYmis−(

∫
E(θ | Ymis, Yobs)p(Ymis | Yobs))

2.
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Justification, cont

For large D,
•

E[E(θ | ymis, yobs)yobs] ≈
1

D

D∑

d=1

θ̂d,

where y
(d)
mis are independent draws of ymis from the posterior

predictive distribution, p(ymis | yobs), and

θ̂d = E(θ | y
(d)
mis, yobs), the complete-data posterior mean of θ

calculated for the dth imputed data set (y
(d)
mis, yobs).
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Justification, cont

•
E[V ar(θ | ymis, yobs) | yobs] ≈

V̄ =
1

D

D∑

d=1

V ar(θ | y
(d)
mis, yobs),

where V ar(θ | y
(d)
mis, yobs) is the complete-data posterior

variance of θ calculated for the dth imputed data set

(y
(d)
mis, yobs), and

•
V ar[E(θ | ymis, yobs) | yobs] ≈

B =
1

D − 1

D∑

d=1

(θ̂d − θ̄)2,

where θ̄ = 1
D

∑D
d=1 θ̂d.
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Justification, cont

• V̄ : within-imputation variance
• B: between-imputation variance
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Justification for combining rule

• MI point estimate for E(θ | yobs) (that is, for θ):

θ̄ =
1

D

D∑

d=1

θ̂d.

• MI estimate for V ar(θ | yobs) is

V̄ + B,

which is good when the between variance is small.
• However, a better estimate for V ar(θ | yobs) is

T = V̄ + (1 + D−1)B.
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MI inferences on scalar θ

• A further refinement for small D is to replace the normal distribution by a t
distribution for the statistics, (θ − θ̄)/

√
T . That is,

T−1/2(θ − θ̄) ∼ tν ,

with the degrees of freedom ν = (D − 1)(1 + r−1
D )2,where rD =

(1+D−1)B

V̄
, the

relative increase in variance due to missing data.

• When the completed data sets are based on limited degrees of freedom, say
vcom, an additional refinement replaces ν with:

ν∗ = (v−1 + ν̂−1
obs)

−1,

where

ν̂obs = (1 − rD)
νcom + 1

νcom + 3
νcom.

See Barnard and Rubin (1999) for a detailed discussion.
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MI inferences on scalar θ, cont

• A 100(1 − α)% confidence interval for θ is

θ̄ ± tν,1−α/2

√
T ,

a p-value for testing the null hypothesis that θ = θ0 against a
two-sided alternative is

2P (tν ≥ T−1/2 | θ̄ − θ0 |)

Or equivalently,

P (F1,ν ≥ T−1(θ̄ − θ)2).
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Missing information rate

• The estimated fraction of missing information about θ is
given by

λ̂ =
rD + 2/(ν + 3)

rD + 1
.
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MI Estimation when θ is not scalar

• When θ is not a scalar but a vector with k dimensions,
finding an adequate reference distribution for the statistic

(θ̄ − θ)′V (θ | Yobs)
−1(θ̄ − θ)/k

is not a simple matter.
• The main problem is that for small D, the

between-imputation covariance matrix B is a very noisy
estimate of V (θ | Yobs), and does not even have full rank if
D ≤ k.
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Estimation when θ is not scalar, Cont

• One way out of this difficulty is to make the simplifying
assumption that the population between- and
within-imputation covariance matrices are proportional to
one another which is equivalent to assuming that the
factions of missing information for all components of θ are
equal.

• Under this assumption, a more stable estimate of total
variance is

Ṽ (θ | Yobs) = (1 − rD)V̄ ,

where rD = (1 + D−1)tr(BV̄ −1)/k is the average relative
increase in variance due to missing data across the
components of θ, and tr(BV̄ −1) is the trace of BV̄ −1, the
sum of main diagonal elements of BV̄ −1.

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 21/34



Hypothesis testing when θ is not scalar, cont

Combining point estimates and covariance matrices:
• Then, under the null hypothesis H0 : θ = θ0, the test

statistics

W (θ0, θ) = (θ0 − θ̄)T V̄ −1(θ0 − θ̄)/(1 + rD)k

has a F-distribution with the degrees of freedom k and ν1.
• Hence, the p-value=P (Fk,ν1

> W (θ0, θ)).
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Hypothesis testing when θ is not scalar, continued

• Here the degree of freedom

ν1 = 4 + (k(D − 1) − 4)[1 +
a

rD
]2, a = 1 − 2

k(D − 1)

if k(D − 1) > 4. When k(D − 1) ≤ 4,

ν1 = (k + 1)ν/2 = (k + 1)(D − 1)(1 + r−1
D )2/2.

• Although the above reference distribution is derived under
the strong assumption that the fractions of missing
information for all components of θ are equal, Li and
Raghunanthan and Rubin (1991) reported encouraging
results even when this assumption is violated.
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Hypothesis testing when θ is not scalar, cont

• Assume there are nuisance parameters φ, in addition to the
parameter of interest θ.

• Our null and alternative hypotheses are that H0 : θ = θ0

versus H1 : θ 6= θ0.

• Let θ̂ and φ̂ be estimates of θ and φ without H0, and let φ̂0

be estimates of φ under H0 when there are no missing data.
• Then, The P value for θ = θ0 based on the likelihood-ratio

test will be Pvalue = Pr(χ2
k > LR) where

LR = LR[(θ̂, φ̂), (θ0, φ̂0)], and χ2
k is a χ2 random variable

with k degrees of freedom.
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Hypothesis testing when θ is not scalar, cont

Likelihood ratio test

• For the dth imputed data set (y
(d)
mis, yobs), let (θ̂(d), φ̂(d)) be

the estimates of θ and φ without assuming H0 and φ̂0 is an
estimate of φ under H0 : θ = θ0, and LR(d) be the
corresponding likelihood ratio test statistics.

• Let θ̄ =
∑D

d=1 θ̂d/D, φ̄ =
∑D

d=1 φ̄(d), φ̄0 =
∑D

d=1 φ̄
(d)
0 , and

L̄R =
∑D

d=1 LR(d)/D.

• Assume that the function LR can be evaluated for each of
the D completed data sets at θ̄, φ̄, θ0, and φ̄0 to obtain D

values of LR[(θ̄, φ̄), (θ0, φ̄0)] whose average across the D

imputations is L̄R0.
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Hypothesis testing when θ is not scalar, cont

• Then the test statistics,

W = L̄R0/[k +
(D + 1)(L̄R − L̄R0)

(D − 1)
],

is identical in large samples to W (θ0, θ̄) and can be used
exactly as it if it were W (θ0, θ̄) (Meng and Rubin, 1992,
Biometrika).

• Hence, the p-value=P (Fk,ν1
> W ).

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 26/34



Hypothesis testing when θ is not scalar, cont

In some cases, the complete-data method of analysis may not
produce estimates of the general function LR(., ., ., ) but only the
value of the likelihood ratio statistic. So if we do not have L̄R0
but only LR1, . . . , LRD, there is a less accurate way to combine
this value (Li et al, 1991).

• The repeated-imputation P value is given by

P (Fk,b > L̃R),

where

L̃R =
L̄R
k

− (1 − D−1)ν

1 + (1 + D−1ν
,

ν is the sample variance of (
√

LR1, . . . ,
√

LRD), and

b = k−3/D(D − 1){1 + [(1 + D−1)ν]−1}2.
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Practice guidelines - asymptotic consideration

• In MI, the rules for combining complete-data inferences all
assume that the sample is large enough for usual
asymptotic approximation to hold.

• For smaller samples, when the asymptotic methods break
down, simulation-based summaries of the posterior
distribution of θ may be preferable, keeping in mind
Bayesian interpretation depends on a prior.
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Practice guidelines - rates of missing information

• When the rate of missing information is low, MI estimates
based on, say, D = 5 imputations may be nearly precise as
average over hundreds of draws of θ.

• With high rates of missing information, however, a larger
number of imputations may be necessary.
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Practice guidelines - robustness

• Parametric Bayesian simulation methods depends on
heavily on the correct form of the parametric complete-data
model.

• MIs created under a false model may not have a disastrous
effect on the final inference, provided the analyses of
imputed data sets are done under more plausible
assumptions.
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Choosing an imputation model

• Because the imputation and analysis steps are distinct, is it
possible to have valid MI inferences if the imputer’s model
and the analyst’s model are different?

• The rules for combining complete-data inferences were
derived under some implicit assumptions of agreement
between these two models.
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More restrictive analyst’s model

• The analyst’s model is a special case of imputer’s one.
• If the analyst’s extra assumption is true, MI inferences will

be valid, but may be conservative because the imputations
will reflect an extra degree of uncertainty.

• If the analyst’s extra assumption is not true, MI inferences
will be not valid.
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More restrictive imputer’s model

• The analyst’s model is more general than the imputer’s; that
is, the imputer makes assumptions to the complete data
that the analyst does not.

• If the imputer’s extra assumption is true, MI inferences will
be still valid.

• In addition, the MI estimate θ̄ is more efficient than an
observed data estimate derived purely from the analyst’s
model, because the MI estimate incorporates the imputer;s
superior knowledge about the data, a property called
superefficiency.

• Moreover, the MI interval has average width that is shorter
than a confidence interval derived based on the observed
data and the analyst’s model.

• If the analyst’s extra assumption is not true, MI inferences
will be not valid.
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Imputation model

The imputation model should include:
• variables crucial to the analysis,
• variables that are highly predictive of the variables that are

crucial to the analysis (e.g an outcome),
• variables that are highly predictive of missingness,
• variables that describe special features of the sample

design (probability surveys).

A general guideline is that the imputed should use a model that
is general enough to preserve any associations among variables
(two-, three-, or even higher-way associations) that may be the
target of subsequent analyses.
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