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Verification bias

• To estimate sensitivity/specificity, predictive values, and
ROC curves, we assume that we know the disease status of
each patient under the study.

• In clinical practice, however, some of the patients with test
results may not have verified disease status. For example, if
disease verification is based on invasive surgery, then
patients with negative test results are less likely to receive
the disease verification than patients with positive test
results.

• Although this approach may be sensible and cost-effective
in clinical studies, when it occurs in studies designed to
evaluate the accuracy of diagnostic tests, the estimated
accuracy of the tests may be biased. This type of bias is
called verification bias.
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An example

• Let us consider a real data about hepatic scintigraphy for
liver disease.

• Hepatic scintigraphy is an imaging scan procedure to detect
liver cancer.

• In this study some of the patients were refereed to disease
verification process–liver pathology–which was considered
as a golden standard.
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Hepatic scintigraphy data

T = 1 T = 0

V = 1 D = 1 231 27

D = 0 32 54

V = 0 166 140

Total 429 221
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The second real example

• Marshall et al introduced the Diaphanography as a test for
detecting breast cancer.

• Diaphanography (lightscanning) is a noninvasive method of
examining the breast by transillumination using visible or
infrared light.

• Gold standard, needle biopsy.

• Data:

T = 1 T = 0

V = 1 D = 1 26 7

D = 0 11 44

V = 0 30 782

Total 67 833
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Effects of Verification Bias

• To learn how verification bias works, let us look at a
hypothetical example with 200 patients.

• Let us suppose that the decision to verify disease status by
a gold standard depends on the result of the binary test
under the study:
◦ a patient with a positive result has a 1/2 chance of

receiving the verification procedure, and
◦ a patient with a negative result has only 1/5 chance of

receiving verification.
• We want to estimate sensitivity and specificity of the test.
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The Target Population

• The following Table contains the result that might have been
obtained if every patient had been verified.

•

T=1 T=0 Total
D=1 80 20 100
D=0 10 90 100

Total 90 110 200

• Sens=0.80 and spec=0.90
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The target population, cont

• The following table contains the data with partial verification:

T=1 T=0 Total
D=1 40 4 44
D=0 5 18 23

unverified 45 88 133

Total 90 110 200

• Sens=0.91 and spec=0.78.
True sensitivity was overestimated and
specificity was underestimated.
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small Verification bias in published clinical studies

• Greenes and Begg (1985, Investigative Radiology) reviewed
145 studies published between 1976 and 1980 and found
that at least 26% of the articles had verification bias, but
failed to recognize it.

• Bates (1993, Journal of Pediatrics) reviewed 54 pediatric
studies and found more than one third had verification bias.

• Philbrick (1980,American Journal of Cardiology) reviewed
33 studies on the accuracy of exercise tests for coronary
disease and found that 31 might have had verification bias.
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How to correct for verification bias

• A patient without disease verification = missing the value of
the true disease status.

• The problem of verification bias is a special type of
missing-data problems.

• Maximum likelihood (ML) methods for data with missing
values; the expectation-maximization (EM) algorithm, a
general approach to the iterative computation of ML
estimates in a variety of missing-data problems. Little and
Rubin (1987) and McLachlan and Krishnan (1997).
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Single Test

• T : a binary random variable, indicating whether or not the
test was positive (T = 1) or negative (T = 0).

• V : a random variable indicating whether or not the subject
was verified using the golden standard procedure (V = 1 if
verified, V = 0 if not).

• D: the true status for those who were verified using the
golden standard, such that D = 1 if diseased and D = 0 if
non-diseased (we assume there is no measurement error
for the golden standard procedure).
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Single Test, Cont

Table 1: Data summary
a. aggregated data b. complete data

T = 1 T = 0 T = 1 T = 0

V = 1 D = 1 xA
11 xA

10 D = 1 x11 x10

D = 0 xA
01 xA

00 D = 0 x01 x00

V = 0 xB
+1 xB

+0

Total n1 n0 Total n1 n0

Here

xA
ij = nP (V = 1, D = i, T = j), xB

ij = nP (V = 0, D = i, T = j), and xij = xA
ij + xB

ij ,

where n = n0 + n1, i, j = 0, 1.

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 12/34



Conditional independence assumption

•

P (V = 1 | D,T ) = P (V = 1 | T ).

• Parameters of interest:

Se = P (T = 1 | D = 1), Sp = P (T = 0 | D = 0).

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 13/34



Existing moment estimators

• Note that Se =
#(T=1,D=1)

#(D=1)
.

• Since P (V = 1 | D = 1, T = 1) = P (V = 1 | T = 1) due to the conditional
independence assumption,

#(V = 1, T = 1, D = 1)

#(D = 1, T = 1)
=

#(V = 1, T = 1)

#(T = 1)

• Hence

#(D = 1, T = 1) = #(V = 1, T = 1, D = 1)
#(T = 1)

#(V = 1, T = 1)
= xA

11

n1

xA
11 + xA

01

.

• Similarly, since P (V = 1 | D = 1, T = 0) = P (V = 1 | T = 0), we obtain that

#(D = 1, T = 0) = #(V = 1, T = 0, D = 1)
#(T = 0)

#(V = 1, T = 0)
= xA

10

n0

xA
10 + xA

00

.

• We obtain that #(D = 1) = xA
11

n1

xA
11

+xA
01

+ xA
10

n0

xA
10

+xA
00

.
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Moment estimators, cont

• Moment estimator of Se is given as follows:

Ŝe =
(xA

11n1)/(xA
11 + xA

01)

(xA
11n1)/(xA

11 + xA
01) + (xA

10n0)/(xA
10 + xA

00)
.

• Similarly we can show that the moment estimator of Sp is given as follows:

Ŝp =
(xA

00n0)/(xA
10 + xA

00)

(xA
01n1)/(xA

11 + xA
01) + (xA

00n0)/(xA
10 + xA

00)
.

• These estimators are denoted by B&G estimators (Begg and Greenes, 1987).

• It can be shown these moment estimates are also ML estimates (Zhou, 1994).
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Confidence intervals

• Variance estimate of Ŝe:

ˆvar(Ŝe) = (Ŝe(1 − Ŝe))2[
n

n1n0
+

xA
01

xA
11(xA

11 + xA
01)

+
xA
00

xA
10(xA

10 + xA
00)

].

• Variance estimate of Ŝp:

ˆvar(Ŝp) = (Ŝp(1 − Ŝp))2[
n

n1n0
+

xA
11

xA
01(xA

11 + xA
01)

+
xA
10

xA
00(xA

10 + xA
00)

].

• The 100(1 − α)% confidence intervals for sensitivity and specificity will be

Ŝe ± κ

√
ˆvar(Ŝe),

Ŝp ± κ

√
ˆvar(Ŝp),

respectively, where κ is the (1 − α/2) percentile of the standard normal
distribution.
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Confidence intervals, cont

• Instead of assuming normality for (Ŝe − π), one may think that the logit

transformation of Ŝe is closer to a normal approximation, such that
logit(Ŝe) − logit(Se) ∼ N(0, ˆV ar(logit(Ŝe))). Using this logit transformation, the
100(1 − α)% confidence interval for sensitivity and specificity will be

logit−1

(
logit(Ŝe) ± κ

√
ˆV ar(logit(Ŝe))

)
,

logit−1

(
logit(Ŝp) ± κ

√
ˆV ar(logit(Ŝp))

)
,

respectively, where,

ˆV ar(logit(Ŝe)) =
n

n1n0
+

xA
01

xA
11(xA

11 + xA
01)

+
xA
00

xA
10(xA

10 + xA
00)

,

and

ˆV ar(logit(Ŝp)) =
n

n1n0
+

xA
11

xA
01(xA

11 + xA
01)

+
xA
10

xA
00(xA

10 + xA
00)

.
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Correction Methods Without the MAR Assumption

• The validity of the above methods depends on the MAR
assumption for the verification mechanism.

• However, if the verification process depends on unobserved
variables that are related to the condition status, the
verification process is not MAR.

• This most likely occurs when there is a long time lag
between the initial test and verification, when there are
multiple investigators at various institutions, when the
patient population is very heterogeneous, or when the
disease process is not well understood.

• Without the MAR assumption, we need to model the
verification process to make inferences about the test’s
sensitivity and specificity.
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Correction methods

• Let λ11 be the conditional probability of the selection of a patient for verification
given that the patient has a positive test result and has the condition,

• λ01 be the conditional probability of the selection of a patient for verification given
a positive test result and the absence of the condition,

• λ10 be the conditional probability of the selection of a patient for verification given
a negative test result and the presence of the condition,

• and λ00 be the conditional probability of the selection for verification of a patient
given a negative test result and the absence of the condition. Denote

φ1t = P (T = t) and φ2t = P (D = 1 | T = t),

where t, t̃ = 0, 1. Let φ1 = φ11 and φ2 = (φ20, φ21)′.
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Likelihood function

• Based on the observed data given, we may write the log-likelihood function as

l =
1∑

j=0

nj log φ1j +
1∑

j=0

xA
1j log(λ1jφ2j) + xB

0j log(λ0j(1 − φ2j))+

xB
+j log((1 − λ1j)φ2t + (1 − λ0j)(1 − φ2j)).

• Set ej = λ1j/λ0j . Then, the log-likelihood becomes

l =

1∑

j=0

nj log φ1j +

1∑

j=0

xA
1j log(ejλ0jφ2j) + XA

0j log(λ0j(1 − φ2j))+

xB
+j log((1 − ejλ0j)φ2j + (1 − λ0j)(1 − φ2j)).
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Likelihood function, cont

• Since the degrees of freedom in the data is 5, not all 7 parameters
φ11, φ20, φ21, λ11, λ12, e0, and e1 are estimable.

• If we can assume that two of them are known, the remaining 5 parameters may be
estimable.

• Under the assumption that e0 and e1 were known, we can show that the resulting
ML estimators for sensitivity and specificity are as follows: that the resulting ML
estimators for sensitivity and specificity are as follows:

Ŝe(e0, e1) =
(s1m1)/(s1 + e1r1)

(s1m1)/(s1 + e1r1) + (s0m0)/(s0 + e0r0)
(1)

and

Ŝp(e0, e1) =
(e0r0m0)/(s0 + e0r0)

(e1r1m1)/(s1 + e1r1) + (e0r0m0)/(s0 + e0r0)
, (2)

respectively.
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Application to the second real example

• Marshall et al introduced the Diaphanography as a test for
detecting breast cancer.

• Diaphanography (lightscanning) is a noninvasive method of
examining the breast by transillumination using visible or
infrared light.

• Gold standard, needle biopsy.

• Data:

T = 1 T = 0

V = 1 D = 1 26 7

D = 0 11 44

V = 0 30 782

Total 67 833
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The second real example, cont

• Recall that e0 and e1 are ratios of two conditional
probabilities:
e0 = P (V = 1 | T = 1,D = 1)/P (V = 1 | T = 1,D = 0) and
e1 = P (V = 1 | T = 0,D = 1)/P (V = 1 | T = 0,D = 0).

• Using the observed data, Zhou (1993) showed the ranges
of possible values of e0 and e1 are as follows.

s1

s1 + u1
≤ e1 ≤

r1 + u1

r1
,

s0

s0 + u0
≤ e0 ≤

r0 + u0

r0
. (3)

• Using these bounds, we can study how sensitive the ML
estimators of sensitivity and specificity derived under the
MAR assumption are to the departure from the MAR
assumption.
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Application to Hepatic Scintigraph Example

• Under the MAR, the estimated sensitivity is 0.84 with a 95%
confidence interval of (0.79,0.88), and the estimated
specificity is 0.74 with a 95% confidence interval of
(0.66,0.81).

• Without the MAR assumption, we need to assume two
ratios e1 and e0 are known to derive the ML estimators for
sensitivity and specificity.

• Here, e1 is the ratio of the probability of verifying a patient
who has a positive hepatic scintigraph result and liver
disease to that of verifying a patient who has a positive
hepatic scintigraph result but does not have liver disease,

• and e0 is the ratio of the probability of verifying a patient
who has a negative hepatic scintigraph result and liver
disease to that of verifying a patient who has a negative
hepatic scintigraph result and does not have liver disease.
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Hepatic Scintigraph Example, Cont

• For given values of e1 and e0, ML estimators for sensitivity
and specificity are

Ŝe(e0, e1) =
1

1 + 0.06(32e1 + 231)/(54e0 + 27)

and

Ŝp(e0, e1) =
1

1 + 1.15(e1(54e0 + 27))/(e0(32e1 + 231))

respectively.
• Using Formula (??), we obtain lower and upper bounds for

e1 and e0,

0.57 ≤ e1 ≤ 1.72, 0.16 ≤ e0 ≤ 6.2.
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Hepatic Scintigraph Example, Cont

• From these bounds, we can derive lower and upper bounds for the estimated
sensitivity and specificity.

• Note that for a given e0 both Ŝe(e1, e0) and Ŝp(e1, e0) are decreasing functions of
e1, and for a given e1 both Ŝe(e1, e0) and Ŝp(e1, e0) are increasing functions of e0.

• Thus,

0.68 ≤
1

1 + 17.16/(54e0 + 27)
≤ Ŝe(e1, e0) ≤

1

1 + 14.95/(54e0 + 27)
≤ 0.95

and

0.37 ≤
1

1 + (54e0 + 27)/216.73
≤ Ŝp(e1, e0) ≤

1

1 + (54e0 + 27)/248.73
≤ 0.86.

• Therefore, the ML estimators for sensitivity and specificity could vary from 0.68 to
0.95 and 0.37 to 0.86 respectively, depending on the values of e0 and e1.
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A single ordinal scale test

• Let T be the ordinal scale test result; the definitions of random variables D and V

are the same as before.

• We can then summarize the observed data in Table below.

Diagnostic test results

T=1 . . . T=K

Verified D=1 s1 . . . sK

D=0 s1 . . . sK

Unverified u1 . . . uK

Total m1 . . . mK

• We assume that the probability of verifying a patient depends only on the test
result T ; that is,

P (V = 1 | T, D) = P (V = 1 | T ). (4)

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 27/34



Estimation of ROC Curves

• For an ordinal scale test, by varying the definition of a positive test, we can
calculate K+1 pairs of true positive rates (TPR) and false positive rates (FPR) of
the test.

• Specifically, if we define a positive test as the one with T ≥ t, a corresponding pair
of TPR and FPR are

TPR(t) = P (T ≥ t | D = 1), FPR(t) = P (T ≥ t | D = 0),

respectively, for t = 1, . . . , K + 1. Using the trapezoidal rule (Bamber, 1975), we
produce an empirical ROC curve by connecting the coordinates,
(FPR(t), TPR(t)).

• Since TPR(1) = FPR(1) = 1 and TPR(K + 1) = FPR(K + 1) = 0, to provide
a unbiased estimator of an empirical ROC curve we need to find unbiased
estimators for (FPR(t), TPR(t)), t = 2, . . . , K.
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Further notation

• Define φ1t = P (T = t) and φ2t = P (D = 1 | T = t), where
t = 1, . . . ,K. Then, φ1K = 1 − φ11 − . . . − φ1(K−1).

• Denote φ1 = (φ11, . . . , φ1(K−1)) and φ2 = (φ21, . . . , φ2K).

• Under the assumption that the verification mechanism is
MAR,valid likelihood-based inferences on φ1t and φ2t can
be made based on observed data without specifying a
distribution for the verification mechanism.
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Likelihood function

• The log-likelihood function based on the observed data is

l(φ1, φ2) =
K∑

t=1

mtlog(φ1t) +
K∑

t=1

(stlog(φ2t) + rtlog(1 − φ2t)). (5)

• Let l1(φ1) =
∑K

t=1 mtlog(φ1t) and l2(φ2) =
∑K

t=1(stlog(φ2t) + rtlog(1 − φ2t)).

• We can write l(φ1, φ2) as the sum of l1(φ1) and l2(φ2).

• Since φ1 and φ2 are distinct parameters and both l1 and l2 are the log-likelihood
functions for multinomial distributions, the ML estimators for φ1 and φ2 are

φ̂1t =
mt

N
, t = 1, . . . , K − 1, φ̂2t =

st

st + rt

, t = 1, . . . , K. (6)

• The corresponding observed Fisher information matrix on (φ1, φ2) is

diag(I1(φ1), I2(φ2)) (7)

where I1(φ1) and I2(φ2) are the observed Fisher information matrices on the
log-likelihood l1(φ1) and l1(φ2), respectively.
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ML estimates for ROC curves

• Next, we derive the ML estimators for the empirical ROC curve.

• Note that the coordinates of the empirical ROC curve can be written as functions
of φ1 and φ2,

TPR(t) =

∑K
t̃=t

φ1t̃φ2t̃∑K
t̃=1

φ1t̃φ2t̃

and FPR(t) =

∑K
t̃=t

φ1t̃(1 − φ2t̃)∑K
t̃=1

φ1t̃(1 − φ2t̃)
.

• For 2 ≤ t ≤ K the ML estimators of TPR(t) and FPR(t) are defined as follows:

T̂PR(t) =

∑K
t̃=t

m
t̃

N

s
t̃

s
t̃
+r

t̃∑K
t̃=1

m
t̃

N

s
t̃

s
t̃
+r

t̃

and F̂PR(t) =

∑K
t̃=t

m
t̃

N

r
t̃

s
t̃
+r

t̃∑K
t̃=1

m
t̃

N

r
t̃

s
t̃
+r

t̃

. (8)
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Estimation of the ROC curve area

• We first observe that the area under the empirical ROC curve is a function of the
parameters φ1 and φ2,

A =

∑K−1
t=1

∑K
t̃=t+1

(1 − φ2t)φ1tφ2t̃φ1t̃ + (1/2)
∑K

t=1(1 − φ2t)φ2tφ2
1t∑K

t=1(1 − φ2t)φ1k

∑K
t̃=1

φ2t̃φ1t̃

, (9)

• the ML estimator for the area under the ROC curve is

Â =

∑K−1
t=1

∑K
t̃=t+1

rtmt

st+rt

s
t̃
m

t̃

s
t̃
+r

t̃

+ (1/2)
∑K

t=1
strtm2

t

(st+rt)2∑K
t=1

rtmt

st+rt

∑K
t̃=1

s
t̃
m

t̃

s
t̃
+r

t̃

. (10)
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Fever of Uncertain Origin Example

• Gray et al (1984) reported data from a study on the accuracy of computed
tomography in differentiating focal from nonfocal sources of sepsis among patients
with fever of uncertain origin.

• In this study only some patients were verified, depending on their CT results.
Hence, this study had verification bias. Table below displays the data.

T=1 T=2 T=3 T=4 T=5

V=1 D=1 7 7 2 3 37

D=0 8 0 1 1 4

V=0 40 11 3 5 12

Total 55 18 6 9 53
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Fever of Uncertain Origin Example, cont

• We obtained the nonparametric ML estimate for the ROC
area as 0.75. The corresponding SD estimate was 0.066
using the information method.
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