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Adjustment for cluster-level covariates

• If cluster-level covariates are available, we can directly
adjust for their effects in a multi-level model.

• If cluster-level covariates are not available, we may still
adjust for cluster-level effects by including cluster means in
the model because variability in cluster means can
confound the estimated association between the individual
level covariate measurement and outcome.

• It has been shown that inference on the individual-level
covariate can be misleading without adjusting for
cluster-level means.
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An example

• Let us consider the impact of birth weight on childhood
intelligence (or IQ) as measured by the Wechsler
Intelligence Scale for children.

• Most studies demonstrate that heavier babies tend to have
higher IQs.

• However, birth weight is known to be associated with family
socio-economic status (SES), with families of higher status
having larger babies.

• SES of a family is also related to the IQ measurements of
children in that family. Thus, SES can act as a potential
confounder of the relationship between birth weight and IQ
(Begg and Parides, 2003).
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Adjustment for cluster-level covariate

• If we could measure SES by a covariate, we can include
that cluster-level covariate into a regression model.

• However, SES is difficult to measure accurately.
• Alternatively, if we had measures of birth weight and IQ for

multiple siblings within the same family, we could use these
data to make ‘within-family’ comparisons that would be
tightly controlled for SES.

• We can also evaluate individual-level birth weight as a
predictor of individual IQ as well as the effect of
‘family-averaged’ birth weight on IQ.
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Adjustment, continued

• This leads to separation, or partitioning, of the effect of birth
weight that conforms to interesting research hypothesis.

• Hence by breaking down the birth weight effect into
individual-level and family-level components, we are able to
obtain better estimates of these effects and draw more
accurate conclusions.
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Notations

• Yij : the outcome for subject j in cluster i.

• Xij : a corresponding continuous covariate, i = 1, . . . ,K,
j = 1, . . . , ni.

• The mean covariate measurement for the group can be
computed as X̄i =

∑ni

j=1 Xij/ni.
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Generalized linear models models

• To study the relationship of Y and X, we consider the
following five models:

h(E[Yij |Xij ]) = β01 + β1Xij , (1)

h(E[Yij |ai,Xij ]) = β02 + β2Xij + γ2X̄i, (2)

h(E[Yij |Xij ]) = β03 + β3(Xij − X̄i) + γ3X̄i, (3)

h(E[Yij |Xij ]) = β04 + β4(Xij − X̄i), (4)

h(E[Yij |Xij ]) = β05 + γ5X̄i. (5)

(6)
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Model interpretation

• Model (2) and Model (3) are mathematical equivalent.
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Interpretation of the coefficients

• For Model (1), β1 measures the change in the expectation
corresponding to one unit increase in the covariate, Xij ,
which is distorted due to confounding by cluster-level effect.

• For Model (2), β2 measures the change in the expectation
corresponding to one unit increase in the covariate, given
the same cluster-averaged X̄.

• For Model (2), γ2 can be interpreted as the effect of one unit
increase in cluster-averaged X̄ on Y , holding the fixed
individual-level covariate, Xij .

• That is, given two subjects with the same individual
covariate, the subject whose cluster has a 1 unit higher
average X can be expected to have Y increase about γ2.
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Interpretation of the coefficients, continued

• For Model (3), β3 measures the change in the expectation
corresponding to a one unit increase in the covariate, given
the same cluster-averaged X̄.

• For Model (3), γ3 represents the mean difference in Y

associated with one unit increase in cluster-averaged X̄i

simultaneous with one unit increase in individual Xij .
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Model comparison

• Model (1) may lead to biased results, and should not be
used.

• Model (2) is the model of choice for most purpose for
adjusting for cluster-level confounders and easy
interpretation.

• Model (3) can adjust for cluster-level confounders, but
interpretation of the γ3 is not easy.
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Remarks

1. When covariate values vary within a cluster, the cluster-level
mean covariate is often the most possible confounder of the
association between individual-level covariate and
response.

2. At least, it may be served as a proxy for some relevant
cluster-level characteristics.

3. When the clusters are relative large (as in clinical
center-based), the cluster mean can be estimated much
more precisely than in data sets where cluster sizes are
small (as in family studies).
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Generalized linear mixed effects models (GLMM)

• We can also consider the following five mixed effects
models:

h(E[Yij |Xij ]) = a1i + β1Xij , (7)

h(E[Yij |ai,Xij ]) = a2i + β2Xij + γ2X̄i, (8)

h(E[Yij |Xij ]) = a3i + β3(Xij − X̄i) + γ3X̄i, (9)

h(E[Yij |Xij ]) = a4i + β4(Xij − X̄i), (10)

h(E[Yij |Xij ]) = a5i + γ5X̄i, (11)

(12)

where aki ∼ N(βk, σ
2
ak), and aki and Xij are independent.
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SAS PROC GLIMMIX for GLMM

• METHOD (=RSPL, MSPL, RMPL, MMPL) specifies the
estimation method in a generalized linear mixed model
(GLMM).

• The default is METHOD=RSPL.
• Estimation methods ending in "PL" are pseudo-likelihood

techniques.
• The first letter identifier determines whether estimation is

based on a residual likelihood ("R") or a maximum likelihood
("M").

• The second letter identifies the expansion locus for the
underlying approximation. The expansion locus of the
expansion is either the vector of random effects solutions
("S") or the mean of the random effects ("M").
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NACC UDS

• The National Alzheimer’s Coordinating Center’s (NACC)
Uniform Data Set (UDS) is an ongoing longitudinal
database of subjects seen at one of the National Institute on
Aging’s 29 funded Alzheimer’s Disease Centers (ADC)
located throughout the USA.

• Subjects seen at the ADCs represent a clinical sample of
individuals who are either referred to the clinic for evaluation
of dementia, self-referred to the clinic, or are recruited by
clinics to participate in dementia research.

• Longitudinal follow-up began in 2005. As of December
2008, 16225 subjects aged 50 or older had at least one
clinic visit. Up to four observations per subject were
available, with 8101 subjects having at least two
observations.
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Generalized linear models with GEE

• We use the baseline of the NACC UDS data set.
• Response (Y ): Demented– Does the subjects have

dementia? (1–Yes, 0–No)
• Covariate (X): Mini-Mental State Examination (MMSE)

score (0-30).
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MMSE

• Any MMSE score over 27 (out of 30) is effectively normal.
• Below this, 20-26 indicates some cognitive impairment.
• Any MMSE between 10 and 19 moderate to severe

cognitive impairment.
• Below 10 indicates very severe cognitive impairment
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Estimation for GLM Models 1 and 2

Model 1 Model 2

Parameters Estimate Std.err p-value Estimate Std.err p-value

Intercept 1.0412 0.1551 <0.0001 1.5411 0.8654 0.0749

MMSE – – – -0.0207 0.0323 0.5228

MMSE -0.0223 0.0069 <0.0013 -0.0217 0.0066 0.0009

Model 1:logit(P (Yij = 1)) = β01 + β11MMSEij .

Model 2:logit(P (Yij = 1)) = β02 + β12MMSEij + β22MMSEi.
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Estimation for GLM Models 3 and 4

Model 3 Model 4

Parameters Estimate Std.err p-value Estimate Std.err p-value

Intercept 1.5411 0.8654 0.0749 0.4855 0.1196 <0.0001

MMSE -0.0424 0.0350 0.2254 – – –

MMSE − MMSE -0217 0.0066 0.0009 -0.0215 0.0062 0.0005

Model 3:logit(P (Yij = 1)) = β03 + β13(MMSEij − MMSEi) + β23MMSEi.

Model 4:logit(P (Yij = 1)) = β04 + +β14(MMSEij − MMSEi).
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Estimation for GLM Model 5

Parameters Estimate Std.err p-value

Intercept 1.5079 0.8235 0.0671
MMSE -0.0411 0.0330 0.2128

Model 5:logit(P (Yij = 1)) = β05 + β15MMSEi.
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GLMM

We consider generalized linear mixed effects models
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Estimation for GLMM Models 1 and 2

Model 1 Model 2

Parameters Estimate Std.err p-value Estimate Std.err p-value

Intercept 1.1001 0.1418 <0.0001 1.2721 1.2921 0.3327

MMSE – – – -0.0068 0.05092 0.8937

MMSE -0.02335 0.00149 <0.0001 -0.02335 0.00149 <.0001

Model 1:logit(P (Yij = 1)) = ai1 + β01 + β11MMSEij .

Model 2:logit(P (Yij = 1)) = ai2 + β02 + β12MMSEij + β22MMSEi.
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Estimation for GLMM Models 3 and 4

Model 1 Model 2

Parameters Estimate Std.err p-value Estimate Std.err p-value

Intercept 1.2721 1.2921 0.3327 0.5107 0.1373 0.0008

MMSE -0.03016 0.0509 0.5535 – – –

MMSE − MMSE -0.02335 0.001487 <0.0001 -0.02335 0.001487 <0.0001

Model 3:logit(P (Yij = 1)) = ai3 + β03 + β13(MMSEij − MMSEi) + β23MMSEi.

Model 4:logit(P (Yij = 1)) = ai4 + β04 + +β14(MMSEij − MMSEi).
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Estimation for GLMM Model 5

Table 1: Estimation for Model 5

Parameters Estimate Std.err p-value

Intercept 1.3003 1.2431 0.3039
MMSE -0.03182 0.04896 0.5158

Model 5:logit(P (Yij = 1)) = ai5 + β05 + β15MMSEi.
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Research questions

• We are interested in assessing the effect of individual
MMSE on the probability of having dementia, free of
confounding by center-level influences.

• We are also interested in assessing whether center-average
MMSE has an independent effect on the probability of
having dementia.

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 25/31



Violation of independence between random effects and covariates

• Let us consider the following linear mixed effects model:

Yij = ai + βXij + ǫij ,

where Xij ∼ (0, σ2
X), ai ∼ (0, σ2

b ), ǫij ∼ (0, σ2
ǫ ), ai and ǫij are

independent, Xij and ǫij are independent.

• The ordinary least squared estimator (OLS) for β,

β̂ols = (
∑

i,j

X2
ij)

−1
∑

i,j

XijYij ,

is unbiased and consistent if the covariates and random
effects are uncorrelated.
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Violation of independence between random effects and covariates

• However, it is easy to show that when ni = n,

β̂ols → β +
σxb

σ2
x

.

• This is a standard econometrics result; that is that the error
term correlated with a predictor can introduce bias in
regression coefficients.
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A shared random-effects model with normal distributions

• Yi = (Yi1, . . . , Yini
) are conditionally independent given

Xi = (Xi1, . . . ,Xini
) and ai.

•

Yij = β0 + ai + βBX̄i + βW (Xij − X̄i) + ǫij ,

where ǫij ∼ N(0, σ2
w), ai ∼ N(0, σ2

b ), and
Xij | ai ∼ N(δ0 + δ1ai, σ

2
X).
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A shared random-effects model, continued

• Neuhaus and McCulloch (2006) showed that the likelihood
controbution from the ith cluster is

∫

a

f(yi | xi, a)fX(xi | a)dG(a) =

f(yi − ȳi | xi − x̄)f(xi − x̄)

∫

a

f(ȳi | x̄i, a)f(x̄i | a)dG(a).

• They further showed that f(yi − ȳi | xi − x̄) involves only
βW , but not βB.

• But f(ȳi | x̄i, a) involves βB but not βW .
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Implications

• We may still get a consistent estimator of βW , based on
f(yi − ȳi | xi − x̄), which is the contribution to the conditional
likelihood, proposed by Neuhaus and McCulloch (2006).

• However, we cannot separate estimation of βB from the
specification of the distribution for the random effects, a.

• Misspecification of the distribution may bias the estimator of
βB.
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Implication, continued

• Models with common between- and within-cluster covariate
effects do not distinguish information from the two sources.

• Poor estimation of between-cluster covariate effects due to
features such as correlations between covariates and
random effects may yield inconsistent estimates of overall
covariate effects.
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