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Rubin’s causal model

• Measuring effects of causes or treatments. Effect of a
cause is always relative to another cause. For example, "A
causes B" means that A causes B relative to some other
cause that includes the condition "not A".

• It is critical that each unit can be potentially ( regardless of
whether it can be achieved in practice) exposable to any
one of the causes.

• As an example, the schooling a student receives can be a
cause of a student’s performance on a test, whereas the
student’s race or gender cannot.
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Rubin’s causal model

• Rubin’s model is a quadruple R = (U,K, Y, S)

• U: the population of units
• K: a set of various causes or treatments under consideration
• Y is a real-valued function (response) defined on UxK, and

Yt(u) = Y (u, t) is the value of the response that would be
measured on u if u were exposed to cause t.

• S is a mapping from U to K, indicating the cause to which
each unit u in U is exposed.
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Definition of Causal Effects

• Treatment t causes the effect Yt(u) − Yc(u) on unit u
(relative to treatment c).

• The average causal effect, T, of t (relative to c) over U is

T = E(Yt(u) − Yc(u)).
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What can be causes?

• Holland takes a position that causes are only those things
that could, in principle, be treatments and can be
manipulated in experiment.

• The notion of cause that operates in an experiment and in
observational study is the same.

• The difference is in the degree of control over the
phenomena under investigation.

• An attribute cannot be a cause in an experiment, because
the notation of potential exposability does not apply to it.
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Three Examples

• (a) She did well on the exam because she is a woman.
• (b). She did well on the exam because she studies for it.
• (c) She did well on the exam because she was coached by

her teacher.
• The effect in the three statements is the same, doing well on

an exam.
• In (A), the "cause" is ascribed to an attribute she possesses.

In (B) the "cause" is ascribed to some voluntary activity she
performed. In (C) the "cause" is the activity imposed on her.
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Three examples, cont

• An attribute cannot be a cause because the notion of
potential exposability does not apply to it.

• The only way for an attribute to change its value is for the
unit to change in some way so that it’s no longer the same
unit.

• Statements of "causation" involving attributes are always
statements of association between the values of an attribute
and a response variable across the units in a population.

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 7/36



Three examples, cont

• In (A) it meant that the performance of women on the exam
exceeds that of men.

• Example (C) can be easily interpreted in terms of the causal
model. The interpretation is that had she not been coached
by her teacher she would not have done as well as she did.
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Three examples, cont

• Example (B) illustrates a case where the applicability of the
causal model is not absolutely clear because of the
voluntary aspect of the supposed cause - studying for the
exam.

• It is not clear that we could expose a person to studying or
not in any verifiable way.

• We could operationally define studying as many hours of
"nose in book", but that just define an attribute we could
measure on a subject.

• Voluntary nature of much of human activity makes causal
statements about these activities difficult in many cases.
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Applicability of Causal Model

• To apply Rubin’s model, it is important o decide when
something is an attribute of units and when it is a cause that
can act on units.

• The former case all that can be said is association, whereas
in the latter case it may be possible to discuss measuring
causal effects.
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Randomized Trials with Non-compliance

• Zi= the randomized treatment assignment indicator for the
ith patient. Z = (Z1, . . . , ZN )′.

• Di(Z)=the indicator for whether the ith patient would take
the treatment given the vector of assignments Z for the N
patients. D = (D1(Z), . . . ,DN (Z))′.

• Yi(Z,D): the outcome of the ith patient given the vector of
treatments received D and the vector of treatment
assignments Z.
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Potential outcomes

• Both Di(Z) and Yi(Z,D) are referred as “potential
outcomes”.
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Stable Unit Treatment Value (SUTVA)

• Potential outcomes for each particular unit don’t depend on
the treatment status of other unit.

• This assumption disallows interference between units.
• Formally, the SUTVA assumes that

Di(Z) = Di(Z
′) and Yi(Z,D) = Yi(Z

′,D′) if Z = Z
′.

• Under the SUTVA assumption, we can write

Di(Z) = Di(Zi), Yi(Z,D) = Yi(Zi,Di).
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Potential outcomes

• The potential outcomes of the ith patient: (Di(1),Di(0)),
(Yi(1,Di(1)), Yi(0,Di(0))).

• Yi(1,Di(1)): the response of the ith patient if is assigned to
the treatment.

• Yi(0,Di(0)): the response of the ith patient if this patient’s is
assigned to the control.
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Fundamental problem of causal analysis

• Either (Yi(1,Di(1)),Di(1)) or (Yi(0,Di(0)),Di(0)) is
observed. But, we cannot observe both pairs.

• Another critical feature is that although the treatment
assignment groups are random, treatment actually received
groups are not random.
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Definition of causal effects Z on Y

• Causal effect of Z on Y of the ith patient is

Yi(1,Di(1)) − Yi(0,Di(0)).

• The average causal effect of Z on Y is

ITT = E(Yi(1,Di(1)) − Yi(0,Di(0))).

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 16/36



Causal effects of D on Y

• To define causal effects of D on Y in a meaningful way we
have to impose more restrictions on the potential outcomes.

• For example, we can make exclusion restriction:
Yi(z, d) = Yi(z

′, d′) as long as d = d′.

• Then, Yi(z,Di(z)) = Yi(Di(z)).
• The causal effect of D on Y for subject i,

Yi(1) − Yi(0).

• The average causal effect of D on Y is

E(Yi(1) − Yi(0)).
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Causal effects of D on Y , cont

• Without additional assumptions, such as exclusion
restriction, we may not be able to define a global causal
effect of D on Y , we can define the local causal effects to
be discussed later.
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Compliance Types

• Partition the population of patients into four sub-populations
according to their compliance behavior.

• For the ith patient, he/she can be one of four types:
complier, never-taker, always-taker, defier.

• Denote the compliance behavior of the ith patient by Ci:

Ci =






c i.e., the ith patient is a complier if Di(z) = z, z = 0, 1

n i.e., the ith patient is a never taker if Di(z) = 0, z = 0, 1

a i.e., the ith patient is always-taker if Di(z) = 1, z = 0, 1

d i.e., the ith patient is a defier if Di(z) = 1 − z, z = 0, 1
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Local causal effects Z on Y

• Note that we have

ITT = E(Yi(1,Di(1))−Yi(0,Di(0))) =
∑

t=c,n,a,d

ITTtP (Ci = t),

where

ITTt = E(Yi(1,Di(1)) − Yi(0,Di(0)) | Ci = t).

• ITTn: Yi(1,Di(1)) = Yi(1, 0) and Yi(0,Di(0)) = Yi(0, 0).

• ITTa: Yi(1,Di(1)) = Yi(1, 1) and Yi(0,Di(0)) = Yi(0, 1).
• We call ITTc as Complier Average Causal Effect (CACE).
• We call ITTd as defier Average Causal Effect (DACE).
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Estimation with Instrumental Variable (IV)

• Exclusion restriction
• Monotonicity assumption: Di(1) ≥ Di(0).
• The IV method can be used to estimate CACE.
• With monotonicity assumption, defiers do not exist.
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Estimation with Instrumental Variable (IV), cont

• Under exclusion restriction, we have

Yi(1,Di(1)) − Yi(0,Di(0)) = Yi(Di(1)) − Yi(Di(0))

= [Yi(1)Di(1)+Yi(0)(1−Di(1))]−[Yi(0)Di(0)+Yi(0)(1−Di(0))]

= [Yi(1) − Yi(0)].[Di(1) − Di(0)]

• Under monotonicity assumption, Ci = c, n, a. Hence,

E[Yi(1,Di(1)) − Yi(0,Di(0)) = Yi(Di(1)) − Yi(Di(0))]

= E[Yi(1) − Yi(0)].[Di(1) − Di(0)]

= E[Yi(1) − Yi(0) | Di(1) − Di(0) = 1].P (Di(1) − Di(0) = 1).
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Estimation with Instrumental Variable (IV), cont

• Since Di(1) − Di(0) = 1 is equivalent to Ci = c, we have

E[Yi(1, Di(1))−Yi(0, Di(0)) = E[Yi(1)−Yi(0) | Ci = c].P (Di(1)−Di(0) = 1).

• Hence,

CACE =
E[Yi(1, Di(1)) − Yi(0, Di(0))]

P (Di(1) − Di(0) = 1)
.

• Because of randomization on Z, we have that

P (Di(1) − Di(0) = 1) = E[Di(1) − Di(0)] = E[Di(1)] − E[Di(0)]

= E[Di(1) | Zi = 1] − E[Di(0) | Zi = 0]

and that

E[Yi(1, Di(1))−Yi(0, Di(0))] = E[Yi(1, Di(1)) | Zi = 1]−E[Yi(0, Di(0)) | Zi = 0].
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Estimation with Instrumental Variable (IV), cont

• The IV estimator for CACE is given by

∑n
i=1 Yi(1, Di(1))Zi/

∑n
i=1 Zi −

∑n
i=1 Yi(0, Di(0))(1 − Zi)/

∑n
i=1(1 − Zi)∑n

i=1 Di(1)Zi/
∑n

i=1 Zi −
∑n

i=1(1 − Di(0))(1 − Zi)/
∑n

i=1(1 − Zi)
.
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Notation

• For subject i, observed data - Zi, Di = Di(Zi), and Yi = Yi(Zi, Di).

• Missing-data - Di(1 − Zi) and Yi(1 − Zi, Di(1 − Zi)).

• Let S(z, d) be the subset of patients with Zi = z and Di = d.

• Let Nzd be the number of elements in S(z, d) and rzd be # of Yi = 1 in S(z, d).

• That is, the observed data:

Nzd =
N∑

i=1

I[Zi=z,Di=d], rzd =
N∑

i=1

YiI[Zi=z,Di=d].

• Parameters

ηzt = P (Yi(z, Di(z)) = 1 | Zi = z, Ci = t), ωt = P (Ci = t), ξz = P (Zi = z),

where z = 0, 1 and t = n, a, c, d.

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 25/36



Issues of identifiability

• Degree of freedom in the observed data (forming a
contingency table (D × Z × Y ): 8 − 1 = 7.

• Without monotonicity and exclusion restriction, # of
parameters: 8+3+1=12.

• There are 5 parameters are not estimable from the data
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Role of assumptions

• Under the monotonicity assumption, we have ωd = 0.
• In addition,

◦ for S(0, 0) (Di(0) = 0), patients can have either
never-takers or compliers (Ci = n or c).

◦ For S(1, 0) (Di(1) = 0), patients are never-takers
(Ci = n)

◦ For S(1, 1) (Di(1) = 1), patients are always-takers or
compliers (Ci = a or c).

◦ For S(0, 1), patients are always-takers (Ci = a).
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Role of assumptions, cont

• Under the exclusion restriction assumption on all t, we have
ηzt = ηt, t = n, a, c.

• Hence under both the monotonicity and exclusion restriction
assumptions, the number of parameters is 3 + 2 +1=6.

• We only need to make the exclusion restriction assumption
for t = n and t = a. That is, ηzn = ηn and ηza = ηa. Then,
the number of parameters is 4+2+1=7.
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Moment methods

• We first derive moment estimators for ηn and ηa.

• Note that the set that Zi = 1 and Ci = n is equivalent to the set that Zi = 1 and
Di = 0 because of monotonicity assumption.

• Hence, we have

ηn = P (Yi = 1 | Zi = 1, Ci = n) =
P (Yi = 1, Zi = 1, Ci = n)

P (Zi = 1, Ci = n)
=

P (Yi = 1, Zi = 1, Di = 0, Ci = n)

P (Zi = 1, Di = 0, Ci = n)
=

P (Yi = 1, Zi = 1, Di = 0)

P (Zi = 1, Di = 0)
.

• Therefore, the moment estimators for ηn is

η̂n =

∑N
i=1 YiZi(1 − Di)∑N

i=1 Zi(1 − Di)
=

r10

N10
.

• Similarly, we have

ηa =
P (Yi = 1, Zi = 0, Di = 1)

P (Zi = 0, Di = 1)
.
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Moment Estimators, cont

• Hence, the moment estimator for ηa is given by

η̂a =

∑N
i=1 Yi(1 − Zi)Di∑N

i=1(1 − Zi)Di

=
r01

N01
.
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Moment estimators for ωt

• We next derive moment estimators for ωt.

• Because of randomization, we have that

ωn = P (Ci = n | Zi = 1) =
P (Ci = n, Zi = 1, Di = 0)

P (Zi = 1)
=

P (Zi = 1, Di = 0)

P (Zi = 1)
.

• Hence, the moment estimator for ωn is given by

ω̂n =

∑N
i=1 Zi(1 − Di)∑N

i=1 Zi

.

• Similarly, we obtain the following moment estimator for ωa:

ω̂a =

∑N
i=1(1 − Zi)Di∑N

i=1(1 − Zi)
.

• The moment estimator for ωc is given by

ω̂c = 1 − ω̂n − ω̂a.
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Moment estimation - cont

• Next we derive moment estimators for outcome parameters in complier-type, η0c

and η1c.

• Since (Zi = 0, Di = 0) ≡ (Zi = 0, Di = 0, Ci = c) ∪ (Zi = 0, Di = 0, Ci = n),
we have that

P (Yi = 1 | Zi = 0, Di = 0) =

P (Yi = 1 | Zi = 0, Di = 0, Ci = n)P (Ci = n | Zi = 0, Di = 0)+

P (Yi = 1 | Zi = 0, Di = 0, Ci = c)P (Ci = c | Zi = 0, Di = 0).

Note that

P (Ci = c | Zi = 0, Di = 0) =
P (Ci = c, Zi = 0, Di = 0)∑

t=n,c P (Zi = 0, Di = 0, Ci = t)
=

P (Di = 0 | Ci = c, Zi = 0)P (Ci = c)P (Zi = 0)∑
t=n,c P (Di = 0 | Zi = 0, Ci = t)P (Ci = t)P (Zi = 0)

=
ωc

ωc + ωn

.
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Moment Estimator, Cont

• And,

P (Ci = n | Zi = 0, Di = 0) =
ωn

ωc + ωn

.

• Hence

P (Yi = 1|Zi = 0, Di = 0) = ηn
ωn

ωc + ωn

+ η0c

ωc

ωc + ωn

.

• Similarly, we can show that

P (Yi = 1|Zi = 1, Di = 1) = ηa
ωa

ωc + ωa

+ η1c

ωc

ωc + ωa

.
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Moment estimation - cont

• Hence by solving the above two equations for η0c and η1c, we obtain the moment
estimators for ηoc and η1c as follows:

η̂0c = [

∑N
i=1 Yi(1 − Zi)(1 − Di)∑N

i=1(1 − Zi)(1 − Di)
− η̂n

ω̂n

ω̂c + ω̂n

]
ω̂c + ω̂n

ω̂c

,

and

η̂1c = [

∑N
i=1 YiZiDi∑N

i=1 ZiDi

− η̂a
ω̂a

ω̂c + ω̂a

]
ω̂c + ω̂a

ω̂c

.
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Sommer-Zeger vitamin supplement data

Vitamin

Assignment supplements Survival Number of units

Type Zobs,i Dobs,i Yobs,i (Total 23,682)

Complier or never-taker 0 0 0 74

Complier or never-taker 0 0 1 11,541

Never-taker 1 0 0 34

Never-taker 1 0 1 2,385

Complier 1 1 0 12

Complier 1 1 1 9,663
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Results

• The estimate under the exclusion for CACE is 0.0032 with
the 90% confidence interval of (0.0012, 0.0051).
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