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Hierarchical model in assessment of the usefulness of a diagnostic test

• Level 1, at the bottom, is technical efficacy, as measured by such features as
image resolution and sharpness for radiographic tests.

• Level 2 is diagnostic accuracy efficacy, i.e. sensitivity, specificity, and the ROC
curve.

• Level 3 is diagnostic thinking efficacy; it can be measured, for example, by
measuring the difference in the clinician’s estimated probability of a diagnosis
before vs. after the test results are known.

• Level 4 is therapeutic efficacy and can be measured by the percentage of times
therapy, planned before the diagnostic test, is altered by the results of the test.

• Level 5 is patient outcome efficacy, as defined, for example, by the number of
deaths avoided due to the test information, the change in the quality of life due to
the test information, or the number of patients needed to be treated in order to
present one event.

• item Level 6, the top level, is societal efficacy, which is often described by the
cost-effectiveness of the test as measured from a societal perspective.
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Hierarchical model in assessment of a diagnostic test, cont

• A key feature of the model is that in order for a diagnostic test to be efficacious at a
higher level, it must be efficacious at all lower levels.

• The reverse is not true, i.e. a test can be efficacious at one level but it doesn’t
guarantee that it will be efficacious at higher levels.

• In this talk we deal exclusively with the assessment of diagnostic accuracy efficacy
(level 2), recognizing that it is only one step in the complete assessment of the
usefulness of a diagnostic test.
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Intrinsic Accuracy

• The intrinsic accuracy of a test is measured by comparing the test results to the
true condition status.

• Assume true condition status is one of two mutually exclusive states: “the
condition is present” or “the condition is absent”.

• We determine the true disease status by the mens of a gold standard.

• Gold standard is source of information, completely different from tests under
evaluation, which tells true condition status of patient.

• Some of common examples of the gold standard are autopsy reports, surgery
findings, pathology results from biopsy specimens, and the results of other
diagnostic tests.

• Once a test is shown to have some level of intrinsic accuracy, we consider not only
intrinsic accuracy of test but also prevalence and nature of disease, patient
characteristics, and consequences of test’s misdiagnoses.
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Sensitivity and specificity

• Two basic measures of diagnostic accuracy are sensitivity
and specificity.

• Sensitivity: test’s abilities to correctly detect condition when
condition is actually present.

• Specificity: test’s ability to correctly rule out condition when
it is truly absent.
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Basic 2x2 Count Table

Test Result:

True Condition Status: Positive (T=1) Negative (T=0) total

Present (D=1) s1 s0 n1

Absent (D=0) r1 r0 n0

total m1 m0 N

Se = P (T = 1 | D = 1) = s1/n1

Sp = P (T = 0 | D = 0) = r0/n0
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Results of 30 Patients With and 30 Without Breast Cancer

A mammographer’s diagnoses of 60 patients presenting for
breast cancer screening (Powell et al, 1999). The study sample
consisted of 30 patients with pathology-proven cancer and 30
patients with normal mammograms for two consecutive years.

Test Result:

Cancer Status: Positive Negative total

Present 29 1 30
Absent 19 11 30

total 48 12 60
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Need Clear Definitions

• The definition of “positive” and “negative” test results, as
well as the condition of interest, must be clear.

• Example: in a study of lung disease (Remer et al, 1999),
patients with detected adrenal adenomas were called
“positive”, while patients with detected lung metastases
were called “negative”.
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Gap Measurements of 10 Patients With and 10 Without Fractured

Heart Valve• Many diagnostic tests yield numeric measurement as a result.

• Consider digital imaging algorithm to identify patients whose implanted artificial
heart valve has fractured (Powell et al, 1996).

Fractured Intact

0.58 0.13

0.41 0.13

0.18 0.07

0.15 0.05

0.15 0.03

0.10 0.03

0.07 0.03

0.07 0.00

0.05 0.00

0.03 0.00
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Estimated Sens and Spec

Table 1: Estimates of Se and Sp From Heart Valve

Imaging Study
Defn of + Test Se Sp FNR FPR

> 0.58 0.0 1.0 1.0 0.0
> 0.13 0.5 1.0 0.5 0.0
> 0.07 0.6 0.8 0.4 0.2
> 0.05 0.8 0.7 0.2 0.3
> 0.03 0.9 0.6 0.1 0.4
> 0.0 1.0 0.3 0.0 0.7
≥ 0.0 1.0 0.0 0.0 1.0

As Se increases, Sp decreases.
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Types of Decision Thresholds

• Gap measurement is objective test result
• Other tests yield results that must be subjectively

interpreted. Observer establishes decision threshold in
his/her mind.

• Example: Ask the mammographer to use stricter decision
threshold to increase his specificity. Reread 60 cases.
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Confidence Scales

• Mammographer assigns confidence score to each case to
reflect belief the patient has condition.

• Ordinal (rating) scale: the condition is “definitely not
present”, “probably not present”, “possibly present”,
“probably present”, and “definitely present”.

• Percent confidence scale: 0% to 100% scale.
• Certain tests have specialized scale. Mammography:

“normal”, “benign”, “probably benign”, “suspicious”, and
“malignant”.
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Mammogram Results Using 5-Category Scale

Test Result:

Cancer Status: Normal Benign Probably Benign Suspicious Malignant Total

Present 1 0 6 11 12 30

Absent 9 2 11 8 0 30
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Intrinsic properties

• Sensitivity and specificity are not affected by prevalence of
condition because
◦ sensitivity is computed from only the subjects with the

condition,
◦ whereas specificity is computed from the subsample of

patients without the condition.
• This property of sensitivity and specificity is important; in

practical terms, it means the sensitivity and specificity
estimated from a study sample are applicable to other
populations with different prevalence rates.
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Spectrum of Disease

• Sensitivity and specificity are not affected by prevalence of
condition.

• Sensitivity and specificity of some diagnostic tests are
affected by spectrum of disease .

• Spectrum of a disease refers to disease’s range of clinical
severity or range of anatomic extent.

• For example, large, palpable breast cancer tumors are
easier to detect than sparse, dispersed malignant
calcifications; thus mammmography has greater sensitivity
when it is applied to patients with advanced patients.

• Similarly, patient characteristics can affect the sensitivity
and specificity of some diagnostic tests. Older women have
fatty, less dense breasts than younger women, and
mammography is better able to detect lesions in fatty
breasts.
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Combined Measures of Se and Sp

• Often useful to summarize accuracy of test by a single
number. Example: when comparing two tests.

• Popular measure often referred to simply as “accuracy”.
Really just probability of a correct test result: (s1 + r0)/N .

• Se × P (D = 1) + Sp × P (D = 0).
• 1885 editorial by Gilbert about extremely high “accuracy” of

fellow meteorologist in predicting tornadoes simply by
calling for “no tornado” every day.

• Other limitations: Based on only one decision threshold
• Treats false positive and false negative results as if equally

undesirable
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Other Combined Measures- Odds Ratio

•

Odds Ratio =
Se/(1 − Se)

(1 − Sp)/Sp
=

Se × Sp

FNR × FPR
.

• An odds ratio of 1 indicates the odds of likelihood of a
positive test result is the same for patients with and without
the condition.

• An odds ratio of greater than 1 indicates the odds of
likelihood of a positive test result is greater for patients with
the condition.

• An odds ratio of less than 1 indicates the odds of likelihood
of a positive test result is greater for patients without the
condition.
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Other Combined Measures- Youden’s Index

• Youden’s index : Se+Sp-1, or, Se-FPR.
• It has a maximum value of 1.0 and a minimum value of 0.0

when the accuracy of the test is reasonable (e.g. ROC
curve is a concave function).
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Properties of odds ratio and Youden’s index

• They are not dependent on the prevalence of the condition
in the sample

• They share the same limitation as the ‘accuracy”.
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Receiver Operating Characteristic Curve

• Describes intrinsic accuracy of a test apart from decision
thresholds

• Each point on graph generated by different decision
threshold

• Use line segments to connect points from all possible
decision thresholds; this forms empirical ROC curve .

• Fitted ROC curves (smooth curves ) formed by fitting
statistical model to test results. Binormal distribution (i.e.
two Gaussian distributions)
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ROC curve, cont

• Curves constructed from objective measurements of a test
(e.g. gap value from digitized image of heart valve),
objective evaluation of image features (e.g. attenuation
coefficient from computed tomography), or subjective
diagnostic interpretations.

• Essential assumption is that decision thresholds are the
same for the subsamples of patients with and without the
condition.
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An example

• In a study, readers looked at 58 mammograms, 13 of whom
had a malignant lesion in the right breast and 45 of whom
did not.

• All diagnoses were confirmed by either biopsy or a follow-up
of two year.

• Readers gave a BIRAD score.

Result of Mammography Malignant Normal or benign

1, normal 22 1
2, benign 8 0
3, probably benign 7 1
4, suspicious 8 11
5, malignant 0 0

Total 45 13
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Empirical and Fitted ROC Curve for Heart Valve Imaging

Figure 2.2
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Empirical and Fitted ROC Curve for Mammography

Figure 2.3
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Advantages of ROC curve

• ROC curve is visual representation of accuracy data.
Scales of curve are the basic measures of accuracy.

• Does not require selection of a particular decision threshold.
• Independent of prevalence. May be affected by spectrum of

disease, as well as patient characteristics. Example: test for
fetal pulmonary maturity; the ROC curve strongly affected
by gestational age (Hunink et al, 1990).

• Does not depend on scale of test results. Empirical curve
depends only on ranks of observations

• Provides direct visual comparison of two or more tests on
common set of scales.
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Relation between odds ratio and ROC curves

• HC Kraemer (2004). Reconsidering the odds ratio as a measure of 2x2
association in a population. Stat Med. 2004 Jan 30;23(2):257-70.

• The odds ratio (OR) is probably the most widely used measure of 2x2 association
in epidemiology, but it often produces results that are puzzling or misleading.

• Receiver operating characteristic (ROC) methods are used to take a fresh look at
the OR and show where and why such puzzling results arise.

• When researchers choose to report a summary measure of association, the OR is
one of many measures of association that might be considered, not one that
should be considered the ’gold standard’ of 2x2 measures of association.

• In a randomized clinical trial with binary outcome for success, either the success or
failure rates in treatment and control groups might be reported separately or the
number needed to treat to achieve one extra success, to emphasize the cost of
unnecessary treatment needed to achieve a success.

• In studies assessing reliability or heritability, we recommend the intraclass kappa.
In studies in which one binary variable is assessed against a binary criterion, we
recommend the weighted kappa.

Lecture 16: Measureing Accuracies of Diagnostic Tests – p. 26/42



Area Under ROC Curve

• ROC area can take on values between 0.0 and 1.0
(practically, 0.5 to 1.0)

• several interpretations:
◦ the average value of sensitivity for all possible values of

specificity,
◦ the average value of specificity for all possible values of

sensitivity, and
◦ the probability that a randomly selected patient with the

condition has a test result indicating greater suspicion
than a randomly chosen patient without the condition.
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AUC

Bamber (1975) pointed out that area under empirical ROC curve
is equivalent to quantity obtained when one performs the
Mann-Whitney version of the two-sample rank-sum statistic of
Wilcoxon.
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Area Under ROC Curve for 2 examples

• Mammography Example: empirical curve area is 0.83 (fitted
curve 0.86)

• GAP vs. OFFSET: fitted curves: 0.87 vs. 0.65.
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Limitations of ROC curve Area

• Once test has been shown to distinguish well, its role for
particular applications must be evaluated.

• Example: if we use heart valve imaging technique to screen
asymptomatic patients, interested in the part of the ROC
curve where the specificity is high.

• ROC area, because it is global measure of intrinsic
accuracy, is not always relevant

• May be misleading when comparing the accuracy of two
tests; when this is case, the study protocol should be
expected to address this issue.
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Limitations of ROC areas, continued

• Similarly, the ROC area may be misleading when
comparing the accuracy of two tests.

• The ROC areas of two tests may be equal but the tests may
differ in clinically important regions of the curve.

• Likewise, the ROC areas may differ but the tests may have
the same area in the clinically relevant region of the curve.

• Figure 2.6 below illustrates two ROC curves that cross at a
FPR of 0.14.

• The area under the A curve is greater than the area under
the B curve (i.e. 0.85 vs. 0.80).

• If the clinically relevant region of the curve is at low FPRs,
test B is preferrable to test A even though the ROC area is
greater for A than B.
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Two Tests With Crossing ROC Curves

Figure 2.6
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Two alternative summary measures

• Next we present two alternative summary measures of
intrinsic accuracy that focus on only a portion of the ROC
curve, thus overcoming the main limitation of the area under
the whole curve.

• Sensitivity at a fixed FPR and partial Area under ROC
curves.
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SENSITIVITY AT FIXED FPR

• An alternative summary measure of intrinsic accuracy is the sensitivity at a fixed
FPR, or similarly the FPR at a fixed sensitivity.

• We write this Se(FP R=e) or FPR(Se=e). For a predetermined FPR of e (or
predetermined sensitivity of e), the sensitivity (or FPR) is estimated from the ROC
curve.

• The sensitivity at a fixed FPR is preferable to the ROC area when evaluating a test
for a particular application. This measure also has a simple and clinically useful
interpretation.

• One disadvantage to this measure is that reported sensitivities from other studies
are often at different FPRs, thus comparisons with published literature can be
problematic.

• A second limitation is that published reports are not always clear about whether
the FPR was selected before the start of the study (as it should be) or after the
data were examined (a practice which can introduce bias).

• Third, the statistical reliability of this measure is lower (i.e. the variance is larger)
than that of the ROC area.
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Partial Area Under ROC Curve

• Another summary measure of intrinsic accuracy is the partial area under the
ROC curve . As its name implies, it is the area under a portion of the ROC curve. It
is often defined as the area between two FPRs, e1 and e2. We write this:
A(e1≤FP R≤e2).

• If e1 = 0 and e2 = 1, then the area under the entire ROC curve is specified. If
e1 = e2, then the sensitivity at a fixed FPR of e (or FPR at a fixed sensitivity of e)
is given.

• The partial area measure is thus a compromise between the ROC area and the
sensitivity at a fixed FPR.
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Partial Area Under ROC Curve, cont

• Like the sensitivity at a fixed FPR index, the partial area allows one to focus on the
portion of the ROC curve relevant to a particular clinical application.

• In Figure 2.4, if we restrict to a FPR range of 0.0-0.05, the partial area for offset is
slightly larger than for gap, though not statistically significant, 0.0139 versus
0.0126.

• If we include larger FPRs, e.g. 0.0-0.20, then the partial area for gap (0.108) is
larger than for offset (0.080).
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Partial Area Under ROC Curve, cont

• To interpret the partial area we must consider its maximum
possible value. The maximum area is equal to the width of
the interval, i.e. (e2 − e1).

• McClish (1989) and Jiang (1996) recommend standardizing
the partial area by dividing by its maximum value. Jiang et
al refer to this standardized partial area as the partial area
index .

• The partial area index is interpreted as the average
sensitivity for the range of specificities examined (or
average specificity for the range of sensitivities examined).

• This interpretation is quite useful clinically. For the heart
valve imaging example, the average sensitivities in the FPR
range of 0.0-0.20 are 0.54 and 0.41 for gap and offset,
respectively.
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Partial Area Under ROC Curve, cont

• Dwyer (1997) offers a probabilistic interpretation of the
partial area index when the partial area is defined for
sensitivities greater than e1 (i.e. A(e1≤TPR≤1.0)).

• The partial area index equals the probability that a randomly
chosen patient without the condition will be correctly
distinguished from a randomly chosen patient with the
condition who tested negative for the criterion that
corresponds to TPR=e1. Note the similarities between this
and the probabilistic interpretation of the ROC area.
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Limitations of Partial ROC Areas

• A potential problem with the partial area measure is that the minimum possible
value depends on the location along the ROC curve.

• The minimum partial area is equal to (1/2)(e2 − e1)(e2 + e1) [?]. For example, the
minimum value for A(0≤FP R≤0.2) is 0.02 (maximum value is 0.20) and the
minimum value for A(0.8≤FP R≤1.0) is 0.18 (maximum value is 0.20).

• Suppose that we estimated a partial area of 0.19 for both of these FPR ranges; the
partial area index is the same for both ranges: 0.95. However, we would probably
not value these two areas the same.

• To remedy this problem, McClish offers a transformation of the partial area to
values between 0.5 and one. The formula is

1

2
[1 +

A(e1≤FP R≤e2) − min

max − min
] (1)

where min and max are the minimum and maximum possible values for the partial
area.

• Continuing with this example, the partial area of 0.19 is transformed to 0.972 for
the 0-0.2 FPR range and 0.75 for the 0.8-1.0 FPR range.
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Limitations

• The partial area measure has similar limitations to the
sensitivity at a fixed FPR.

• First, it is difficult to compare this measure with the
published literature if different ranges are used.

• Second, the relevant range should be specified apriori; it is
not always clear from published reports whether this
occurred.

• Lastly, the statistical reliability of this measure is lower than
that of the ROC area, but is greater than that of the
sensitivity at a fixed FPR.
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Localization and detection of multiple abnormalities

• Some diagnostic tasks are more complicated than simple detection of a single
occurrence of the condition.

• For example, in mammography patients can have multiple lesions; these lesions
must be correctly located prior to follow-up procedures like biopsy and surgery.

• Another example is the detection of infarcts in patients suspected of having a
stroke. A patient can have multiple infarcts, and it is critical that they be detected
and located in the correct brain hemisphere.
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Time-dependent ROC curves

• T : time to an event
• Case at time t: T < t,
• Non-case at time t: T > t.
• M : biomarker.
• Sens(c, t) = P (M ≥ c | T < t),

Specs(c, t) = P (M < c | T > t).
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