

Outline

• Motivating example

Outline Motivation Specification IV Estimation

• Specification of Structural Equation Models

C. Zhou

- Instrumental variables estimation
- Identification problem
- Estimation of observed-variable SEMs
- General structural-equation models

Klein's macroeconomic model

ne Motivation Specification IV Es

Klein, L. 1950. *Economic Fluctuations in the United States* 1921-1941. New York, Wiley.

- Consumption = f(Private profits, Private wages, Government wages)
- Investment = f(Private profits, Capital stock)
- Private wages = f(Time trend, Spending Demand)

Klein's model in equations

Motivation Specification IV Estimation s

Klein's economic model can be expressed in the following set of regression models,

$C_t = \gamma_{10} + \gamma_{11}P_t + \gamma_{12}P_{t-1} + \beta_{11}(W_t^p + W_t^g) + \zeta_{1t}$	
$I_{t} = \gamma_{20} + \gamma_{21}P_{t} + \gamma_{22}P_{t-1} + \beta_{21}K_{t-1} + \zeta_{2t}$	
$W_t^{\rho} = \gamma_{30} + \gamma_{31}A_t + \beta_{31}X_t + \beta_{32}X_{t-1} + \zeta_{3t}$	
$X_t = C_t + I_t + G_t$	
$P_t = X_t - T_t - W_t^p$	
$K_t = K_{t-1} + I_t$	

Consumption (in year t) Investment

Private wages Equilibrium demand

C_t

- Private profits Capital stock
- $I_t W_t^P X_t P_t K_t G_t T_t W_t^g$ Government non-wager spending Indirect business taxes and net exports Government wages Time trend, year-1831

Structural Equation Models

- Structural-equation models (SEMs) are multiple-equation regression models in which the response variable in one regression equation can appear as an explanatory variable in another equation
- Structural-equation models can include variables that are not measured directly, but rather indirectly through their effects (indicators) or, sometimes, through observed causes (menifest variables)
- Model structural-equation methods represent a confluence of work in many disciplines, including biostatistics, econometrics, psychometrics, etc.

C. Zhou

Steps of SEM

- Specify the model (has to be *a priori*)
- Determine whether the model if identified
- Select measures of the variables and collect the data
- Analyze the model
- Evaluate model fit
- Respecify the model

Some cautionary notes

ation Specification IV Es

- SEMs are multiple-equation regression models representing putative causal (and hence structural) relationships among a number of variables, some of which may affect one another mutually.
- Design is rarely explicitly taken into account, mostly on observational data
- Lack of sound conceptual framework for causal effects
- Claiming that a relationship is causal based on observational data is intrinsically problematic and requires support beyond the data at hand

Two classes of variables

- Endogenous variables are the response variables of the model
 - In path diagram, they are the nodes with directional arrows going into
 - One structural equation per endogenous variable
 - An endogenous variable may also be an explanatory variable in other structural equations
- Exogenous variables appear only as <u>explanatory</u> variables in the SEMs
 - In path diagram, they are the nodes without arrows going into
 - the values of exogenous variables are therefore determined outside of the model
 - Assumed to be measured without error (unless latent)
 - Can be categorical while endogenous variables are mostly continuous

C. Zhou SEM

Structural errors

- Aaggregated omitted causes of the endogenous variables plus measurement error (and possibly intrinsic randomness) in the endogenous variables
- One error variable per endogenous variable
- Assumed to have zero expectation and to be independent of exogenous variables
- Errors for different observations are assumed to be independent, but maybe correlated within observation
- Each error variable is assumed to have constant variance across observations, although the variances may differ across error variables
- Sometimes normality is assumed

Structural coefficients and covariance

- Structural coefficients represent the direct (partial) effect
 - on directed edge in path diagram
 - of an exogenous on an endogenous variable
 - of an endogenous on another endogenous variable
- Covariances can be either between two exogenous variables or two error variables (unanalyzed associations)

Path diagrams

Path diagram is a causal graph commonly used in SEMs. Some conventions are

- Nodes: observed variables in boxes, latent variables in circles
- Edges: a directed (single headed) arrow represent a direct effect of one variable on another; a bidirectional arrow represents a covariance (no causal interpretation given)
- Labels: unique subscripts on variables are helpful

A path diagram example

Motivation Specification IV Estimation

Duncan, Haller, and Portes's (1968) study of peer influence on the aspiration of high school students.

C. Zhou

Simplify the labels

tion Specification IV

C. Zhou

Structural equations

Motivation Specification IV Estimation

• The structural equations of a model can be read straightforwardly from the path diagram.

$$y_5 = \gamma_{51}x_1 + \gamma_{52}x_2 + \beta_{56}y_6 + \epsilon_7$$
$$y_6 = \gamma_{63}x_3 + \gamma_{64}x_4 + \beta_{65}y_5 + \epsilon_8$$

• With some manipulation, including centering the exogenous variables at the means

C. Zhou

$$\begin{bmatrix} 1 & -\beta_{56} \\ -\beta_{65} & 1 \end{bmatrix} \begin{bmatrix} y_5 \\ y_6 \end{bmatrix} + \begin{bmatrix} -\gamma_{51} & -\gamma_{52} & 0 & 0 \\ 0 & 0 & -\gamma_{63} & -\gamma_{64} \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} \epsilon_7 \\ \epsilon_8 \end{bmatrix}$$

SEM

г ¬

Outline Motivation Specification IV Estimation = Matrix form of the model

• More generally, when there are *q* endogenous variables, *q* errors, and *m* exogenous variables, the model for an individual observation is

$$\mathbf{B}_{(q \times q)_{(q \times 1)}} \mathbf{y}_i + \mathbf{\Gamma}_{(q \times m)_{(m \times 1)}} \mathbf{x}_i = \epsilon_i$$

• For all *n* observations,

$$(\mathbf{Y} \mathbf{B}'_{(n \times q)} + \mathbf{X} \mathbf{\Gamma}'_{(n \times m)(m \times q)} = \mathbf{E}_{(q \times 1)}$$

Recursive models

ation Specification

- An important type of SEM, called a *recursive* model, has two defining characteristics:
 - Different error variables are independent
 - There are no reciprocal directed paths or feedback loops in the path diagram
- Put another way, the error covariance matrix $\pmb{\Sigma}_{\epsilon\epsilon}$ is diagonal, while \pmb{B} matrix is lower-triangular

C. Zhou

Outline Motivation Specification IV Estimation sem

- As a consequence of the two properties of recursive models, the predictors are always independent of the error, and the model can be estimated by a sequence of OLS regressions
- SEMs that are not recursive are termed nonrecursive

C. Zhou

• There are also *block resursive* SEMs

Instrumental Variables

- Instrumental-variable (IV) estimation serves two purposes: check whether the model is identifiable and estimate the structural coefficients if it is
- An *instrument variable* is a variable uncorrelated with the error of a structural equation AND correlated with an exogenous variable

Simple regression

otivation Specification IV Esti

• To understand the IV approach to estimation, consider the following simple linear regression

$$y = \beta x + \epsilon$$

where $E(\epsilon) = 0$, $var(\epsilon) = \sigma_{\epsilon}^2$, x and ϵ are independent.

• Now multiply both sides of the model by x and take expectations,

$$cov(x, y) = \beta var(x) + cov(x, \epsilon)$$
$$\sigma_{xy} = \beta \sigma_x^2 + 0$$

 $\bullet\,$ Plug in consistent sample estimates and solve for $\beta\,$

$$b = \frac{s_{xy}}{s_x^2} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

C. Zhou SEM

IV with simple regression

- \bullet Imagine, alternatively, that x and ϵ are not independent, but ϵ is independent of some other variable z
- Suppose further that z and x are correlated, that is, $\operatorname{cov}(z,x)\neq 0$
- Then, proceed as before but with z,

encification IV Estimation

$$cov(z, y) = \beta cov(z, x) + cov(z, \epsilon)$$
$$\sigma_{zy} = \beta \sigma_{zx} + 0$$
$$\beta = \frac{\sigma_{zy}}{\sigma_{zx}}$$
$$\bullet \ b_{IV} = \frac{s_{zy}}{s_{zx}} = \frac{\sum (z_i - \bar{z})(y_i - \bar{y})}{\sum (z_i - \bar{z})(x_i - \bar{x})}$$

Instrumental-variable estimation in matrix form

Now consider

$$\mathbf{y}_{(n\times 1)} = \mathbf{X}_{(n\times (k+1))(k+1)\times 1} \boldsymbol{\beta} + \frac{\boldsymbol{\epsilon}}{(n\times 1)},$$

where $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma_{\boldsymbol{\epsilon}}^2 \mathbf{I}_n)$.

- When **X** and ϵ are independent, $\mathbf{b}_{OLS} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
- When **X** and ϵ are NOT independent, suppose we have observations on (k + 1) instrumental variables $\underset{n \times (k+1)}{\mathbf{Z}}$, that are independent of ϵ , then follow the scalar treatment,

$$\mathbf{b}_{IV} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{y}$$

is a consistent estimator of $\boldsymbol{\beta}$

Identification problem

- SEM is *under-identified* if there are *fewer* instrumental variables than predictors
- SEM is *just-identified* if number of IVs is the same as predictors
- SEM is over-identified if there are more IVs than predictors, we can either discard surplus IVs, or use better method such as two-stage least squares
- For \mathbf{b}_{IV} to be defined, in addition to at least (k + 1) IVs, we also need $\mathbf{Z'X}$ to be non-singular
- It requires IVs are correlated with predictors plus there is no perfect collinearity

Estimation of recursive SEMs

on Specification IV Estimation sen

- By its definition, pool of IVs for recursive SEMs contains exogenous variables and *prior* endogenous variables
- Always have at least as many IVs as predictors, therefore necessarily identified
- To understand this, consider Blau and Duncan's basic-stratification model, The American Occupational Structure (1967).

Blau and Duncan's basic-stratification model

ation Specification IV Estimation

Two-stage least squares (2SLS) estimation

- Using combination of IVs for estimation in *over-identified* non-recursive SEMs
- $\bullet\,$ First stage, regress predictors ${\bf X}$ on the IVs ${\bf Z},$ obtaining fitted values

$$\mathbf{X} = \mathbf{X}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}$$

• Second stage, the response ${\bf y}$ is regressed on $\hat{\bf X},$ producing the 2SLS estimator of β

$$\hat{oldsymbol{eta}} = (\hat{\mathbf{X}}'\hat{\mathbf{X}})^{-1}\hat{\mathbf{X}}'\mathbf{y}$$

• Column of **X** are uncorrelated with the structural disturbance in the probability limit

C. Zhou

• Very similar to weighted least squares!

Full information maximum likelihood (FIML) estimation

- Along with other standard assumptions of SEMs, FIML estimates are calculated under the assumption that the structural errors are multivariately normally distributed
- Under this assumption, the log-likelihood for the model is

$$\log_{e} L(\mathbf{B}, \mathbf{\Gamma}, \mathbf{\Sigma}_{\epsilon\epsilon}) = n \log |\det(\mathbf{B})| - \frac{nq}{2} \log 2\pi - \frac{n}{2} \log det(\mathbf{\Sigma}_{\epsilon\epsilon}) - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{B}\mathbf{y}_{i} + \mathbf{\Gamma}\mathbf{x}_{i})' \mathbf{\Sigma}_{\epsilon\epsilon}^{-1} (\mathbf{B}\mathbf{y}_{i} + \mathbf{\Gamma}\mathbf{x}_{i})$$

• The full general machinery of MLE is available if the model is identifiable

Klein's model revisited

utline Motivation Specification IV Estimation sem

>	> library(sem)									
> data(Klien)										
> head(Klein)										
	Year	C	Р	Wp	I	K.lag	X	Wg	G	Т
1	1920	39.8	12.7	28.8	2.7	180.1	44.9	2.2	2.4	3.4
2	1921	41.9	12.4	25.5	-0.2	182.8	45.6	2.7	3.9	7.7
З	1922	45.0	16.9	29.3	1.9	182.6	50.1	2.9	3.2	3.9
4	1923	49.2	18.4	34.1	5.2	184.5	57.2	2.9	2.8	4.7
5	1924	50.6	19.4	33.9	3.0	189.7	57.1	3.1	3.5	3.8
6	1925	52.6	20.1	35.4	5.1	192.7	61.0	3.2	3.3	5.5

C. Zhou SEM

Klein's model revisited

Dutline Motivation Specification IV Estimation sem

> P.1a > X.1a	ng <- ng <-	c(N/ c(N/	A, P[· A, X[·	-lengtl -lengtl	n(P)]) n(X)]))
́л`	1001		, D			
> CD11	nd(Yea	ar, <i>l</i>	А, Р,	P.lag	, X, 1	(.lag)
	Year	A	Р	P.lag	Х	X.lag
[1,]	1920	-11	12.7	NA	44.9	NA
[2,]	1921	-10	12.4	12.7	45.6	44.9
[3,]	1922	-9	16.9	12.4	50.1	45.6
[4,]	1923	-8	18.4	16.9	57.2	50.1
[5,]	1924	-7	19.4	18.4	57.1	57.2
[6,]	1925	-6	20.1	19.4	61.0	57.1

Klein's model revisited

line Motivation Specification IV Estimation sem

<pre>> eqn.1 <- tsls(C^P+P.lag+I(Wp+Wg), + instruments=^G+T+Wg+A+P.lag+K.lag+X.lag, data=Klein) > summary(eqn.1)</pre>									
2SLS Estima	ates								
Model Formul	La: C ~ P +	P.lag + 1	[(Wp + Wg	g)					
Instruments	: ~G + T +	Wg + A + H	.lag + H	K.lag + X.l	ag				
Residuals:									
Min.	1st Qu.	Median	Mean	3rd Qu.	Max.				
-1.89e+00 -6.16e-01 -2.46e-01 -2.74e-12 8.85e-01 2.00e+00									
	Estimate S	td. Error	t value	Pr(> t)					
(Intercept)	16.55476	1.46798	11.2772	2.587e-09					
Р	0.01730	0.13120	0.1319	8.966e-01					
P.lag	0.21623	0.11922	1.8137	8.741e-02					
I(Wp + Wg)	0.81018	0.04474	18.1107	1.505e-12					

Residual standard error: 1.1357 on 17 degrees of freedom

C. Zhou SEM

Duncan, Haller, and Portest peer influence model

Outline Motivation Specification IV Estimation sem

C. Zhou SEM

> R.DHP <- read.moments(diag=FALSE, names=c('ROccAsp', 'REdAsp',										
+ 'FOccAsp', 'FEdAsp', 'RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ',										
+ 'F	+ 'FParAsp'))									
1:	.6247									
2:	.3269	.3669								
4:	.4216	.3275	.6404							
7:	.2137	.2742	.1124	.0839						
11:	.4105	.4043	.2903	.2598	.1839					
16:	.3240	.4047	.3054	.2786	.0489	.2220				
22:	.2930	.2407	.4105	.3607	.0186	.1861	.2707			
29:	.2995	.2863	.5191	.5007	.0782	.3355	.2302 .2950			
37:	.0760	.0702	.2784	.1988	.1147	.1021	.09310438	.2087		
46:										
Read 4	5 items									

C. Zhou SEM

Duncar	Duncan, malier, and i offest peer innuence model							
> mode	el.dhp <- :	<pre>specify.model()</pre>						
1:	RParAsp	-> RGenAsp, gam11, NA						
2:	RIQ	-> RGenAsp, gam12, NA						
3:	RSES	-> RGenAsp, gam13, NA						
4:	FSES	-> RGenAsp, gam14, NA						
5:	RSES	-> FGenAsp, gam23, NA						
6:	FSES	-> FGenAsp, gam24, NA						
7:	FIQ	-> FGenAsp, gam25, NA						
8:	FParAsp	-> FGenAsp, gam26, NA						
9:	FGenAsp	-> RGenAsp, beta12, NA						
10:	RGenAsp	-> FGenAsp, beta21, NA						
11:	RGenAsp	-> ROccAsp, NA, 1						
12:	RGenAsp	-> REdAsp, lam21, NA						
13:	FGenAsp	-> FOccAsp, NA, 1						
14:	FGenAsp	-> FEdAsp, lam42, NA						
15:	RGenAsp	<-> RGenAsp, ps11, NA						

C. Zhou SEM

Duncan, Haller, and Portest peer influence model

```
> sem.dhp <- sem(model.dhp, R.DHP, 329,
+ fixed.x=c('RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp'))
> summary(sem.dhp)
Model Chisquare = 26.697 Df = 15 Pr(>Chisq) = 0.031302
Chisquare (null model) = 872 Df = 45
Goodness-of-fit index = 0.98439
Adjusted goodness-of-fit index = 0.94275
RMSEA index = 0.048759 90% CI: (0.014517, 0.07831)
Bentler-Bonnett NFI = 0.96938
Tucker-Lewis NNFI = 0.95757
Bentler CFI = 0.98586
SRMR = 0.020204
BIC = -60.244
Parameter Estimates
Estimate Std Error z value Pr(>|z|)
gam11 0.161224 0.038487 4.1890 2.8019e-05 RGenAsp <--- RParAsp</pre>
```

C. Zhou SEM

A path diagram

tion Specification IV Estimation sem

C. Zhou

General structural equation models

- Include unobserved exogenous or endogenous variables (also termed factors or latent variables) in addition to unobservable disturbances
- Sometimes called LISREL models (linear structural relations), after first widely available computer program (J oreskog, 1973)
- Mainly likelihood based estimation
- No simple general solution towards identification
- There are many ways to fool yourself with SEMs