Outline

(1) Outline
(2) A Motivating Example
(3) Specification of SEMs

- Components of SEMs
- Path Diagrams
- Recursive models
(4) Instrumental-Variables
(5) Estimation of SEMs
(6) Example with R sem Package

Klein's macroeconomic model

Klein, L. 1950. Economic Fluctuations in the United States 1921-1941. New York, Wiley.

- Consumption $=f($ Private profits, Private wages, Government wages)
- Investment $=f($ Private profits, Capital stock)
- Private wages $=f($ Time trend, Spending Demand $)$

Klein's model in equations

Klein's economic model can be expressed in the following set of regression models,
$C_{t}=\gamma_{10}+\gamma_{11} P_{t}+\gamma_{12} P_{t-1}+\beta_{11}\left(W_{t}^{p}+W_{t}^{g}\right)+\zeta_{1 t}$
$I_{t}=\gamma_{20}+\gamma_{21} P_{t}+\gamma_{22} P_{t-1}+\beta_{21} K_{t-1}+\zeta_{2 t}$
$W_{t}^{p}=\gamma_{30}+\gamma_{31} A_{t}+\beta_{31} X_{t}+\beta_{32} X_{t-1}+\zeta_{3 t}$
$X_{t}=C_{t}+I_{t}+G_{t}$
$P_{t}=X_{t}-T_{t}-W_{t}^{p}$
$K_{t}=K_{t-1}+I_{t}$

Structural Equation Models

- Structural-equation models (SEMs) are multiple-equation regression models in which the response variable in one regression equation can appear as an explanatory variable in another equation
- Structural-equation models can include variables that are not measured directly, but rather indirectly through their effects (indicators) or, sometimes, through observed causes (menifest variables)
- Model structural-equation methods represent a confluence of work in many disciplines, including biostatistics, econometrics, psychometrics, etc.

Steps of SEM

- Specify the model (has to be a priori)
- Determine whether the model if identified
- Select measures of the variables and collect the data
- Analyze the model
- Evaluate model fit
- Respecify the model

Outline Motivation Specification IV Estimation sem Components of SEMs Path Diagrams Recursive models
 Some cautionary notes

- SEMs are multiple-equation regression models representing putative causal (and hence structural) relationships among a number of variables, some of which may affect one another mutually.
- Design is rarely explicitly taken into account, mostly on observational data
- Lack of sound conceptual framework for causal effects
- Claiming that a relationship is causal based on observational data is intrinsically problematic and requires support beyond the data at hand

Two classes of variables

- Endogenous variables are the response variables of the model
- In path diagram, they are the nodes with directional arrows going into
- One structural equation per endogenous variable
- An endogenous variable may also be an explanatory variable in other structural equations
- Exogenous variables appear only as explanatory variables in the SEMs
- In path diagram, they are the nodes without arrows going into
- the values of exogenous variables are therefore determined outside of the model
- Assumed to be measured without error (unless latent)
- Can be categorical while endogenous variables are mostly continuous

Structural errors

- Aaggregated omitted causes of the endogenous variables plus measurement error (and possibly intrinsic randomness) in the endogenous variables
- One error variable per endogenous variable
- Assumed to have zero expectation and to be independent of exogenous variables
- Errors for different observations are assumed to be independent, but maybe correlated within observation
- Each error variable is assumed to have constant variance across observations, although the variances may differ across error variables
- Sometimes normality is assumed

 Structural coefficients and covariance

Outline Motivation Specification IV Estimation sem Components of SEMs Path Diagrams Recursive models Path diagrams

Path diagram is a causal graph commonly used in SEMs. Some conventions are

- Nodes: observed variables in boxes, latent variables in circles
- Edges: a directed (single headed) arrow represent a direct effect of one variable on another; a bidirectional arrow represents a covariance (no causal interpretation given)
- Labels: unique subscripts on variables are helpful

A path diagram example

Duncan, Haller, and Portes's (1968) study of peer influence on the aspiration of high school students.

- The structural equations of a model can be read straightforwardly from the path diagram.

$$
\begin{aligned}
& y_{5}=\gamma_{51} x_{1}+\gamma_{52} x_{2}+\beta_{56} y_{6}+\epsilon_{7} \\
& y_{6}=\gamma_{63} x_{3}+\gamma_{64} x_{4}+\beta_{65} y_{5}+\epsilon_{8}
\end{aligned}
$$

- With some manipulation, including centering the exogenous variables at the means

$$
\left[\begin{array}{cc}
1 & -\beta_{56} \\
-\beta_{65} & 1
\end{array}\right]\left[\begin{array}{l}
y_{5} \\
y_{6}
\end{array}\right]+\left[\begin{array}{cccc}
-\gamma_{51} & -\gamma_{52} & 0 & 0 \\
0 & 0 & -\gamma_{63} & -\gamma_{64}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
\epsilon_{7} \\
\epsilon_{8}
\end{array}\right]
$$

- More generally, when there are q endogenous variables, q errors, and m exogenous variables, the model for an individual observation is

$$
\underset{(q \times q)}{\mathbf{B}} \underset{(q \times 1)}{\mathbf{y}_{i}}+\underset{(q \times m)(m \times 1)}{\boldsymbol{\Gamma}} \underset{(q \times 1)}{\mathbf{x}_{i}}=\underset{\boldsymbol{\epsilon}_{i}}{\boldsymbol{\epsilon}^{(q)}}
$$

- For all n observations,

$$
\underset{(n \times q)(q \times q)}{\mathbf{Y}}+\underset{(n \times m)(m \times q)}{\mathbf{B}^{\prime}}=\underset{(q \times 1)}{\mathbf{X}}
$$

Outlir
 Motivation Specification IV Estimation sem
 Components of SEMs Path Diagrams Recursive models

Recursive models
Outline Motivation Specification IV Estimation sem Components of SEMs Path Diagrams Recursive models

- An important type of SEM, called a recursive model, has two defining characteristics:
(1) Different error variables are independent
(2) There are no reciprocal directed paths or feedback loops in the path diagram
- Put another way, the error covariance matrix $\boldsymbol{\Sigma}_{\epsilon \epsilon}$ is diagonal, while B matrix is lower-triangular

- As a consequence of the two properties of recursive models, the predictors are always independent of the error, and the model can be estimated by a sequence of OLS regressions
- SEMs that are not recursive are termed nonrecursive
- There are also block resursive SEMs
- Instrumental-variable (IV) estimation serves two purposes: check whether the model is identifiable and estimate the structural coefficients if it is
- An instrument variable is a variable uncorrelated with the error of a structural equation AND correlated with an exogenous variable

Simple regression

- To understand the IV approach to estimation, consider the following simple linear regression

$$
y=\beta x+\epsilon
$$

where $\mathrm{E}(\epsilon)=0, \operatorname{var}(\epsilon)=\sigma_{\epsilon}^{2}, x$ and ϵ are independent.

- Now multiply both sides of the model by x and take expectations,

$$
\begin{aligned}
\operatorname{cov}(x, y) & =\beta \operatorname{var}(x)+\operatorname{cov}(x, \epsilon) \\
\sigma_{x y} & =\beta \sigma_{x}^{2}+0
\end{aligned}
$$

- Plug in consistent sample estimates and solve for β

$$
b=\frac{s_{x y}}{s_{x}^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

- $b_{I V}=\frac{s_{z y}}{s_{z x}}=\frac{\sum\left(z_{i}-\bar{z}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(z_{i}-\bar{z}\right)\left(x_{i}-\bar{x}\right)}$
- Imagine, alternatively, that x and ϵ are not independent, but ϵ is independent of some other variable z
- Suppose further that z and x are correlated, that is, $\operatorname{cov}(z, x) \neq 0$
- Then, proceed as before but with z,

$$
\begin{aligned}
\operatorname{cov}(z, y) & =\beta \operatorname{cov}(z, x)+\operatorname{cov}(z, \epsilon) \\
\sigma_{z y} & =\beta \sigma_{z x}+0 \\
\beta & =\frac{\sigma_{z y}}{\sigma_{z x}}
\end{aligned}
$$

IV with simple regression

Instrumental-variable estimation in matrix form

- Now consider

$$
\underset{(n \times 1)}{\mathbf{y}}=\underset{(n \times(k+1))(k+1) \times 1}{\mathbf{X}}+\underset{(n \times 1)}{\boldsymbol{\beta}},
$$

where $\boldsymbol{\epsilon} \sim \mathrm{N}_{n}\left(\mathbf{0}, \sigma_{\epsilon}^{2} \boldsymbol{I}_{n}\right)$.

- When \mathbf{X} and ϵ are independent, $\mathbf{b}_{O L S}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$
- When \mathbf{X} and ϵ are NOT independent, suppose we have observations on $(k+1)$ instrumental variables $\underset{n \times(k+1)}{\mathbf{Z}}$, that are independent of ϵ, then follow the scalar treatment,

$$
\mathbf{b}_{I V}=\left(\mathbf{Z}^{\prime} \mathbf{X}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}
$$

is a consistent estimator of $\boldsymbol{\beta}$

Identification problem

- SEM is under-identified if there are fewer instrumental variables than predictors
- SEM is just-identified if number of IVs is the same as predictors
- SEM is over-identified if there are more IVs than predictors, we can either discard surplus IVs, or use better method such as two-stage least squares
- For $\mathbf{b}_{I V}$ to be defined, in addition to at least $(k+1)$ IVs, we also need $\mathbf{Z}^{\prime} \mathbf{X}$ to be non-singular
- It requires IVs are correlated with predictors plus there is no perfect collinearity

Estimation of recursive SEMs

- By its definition, pool of IVs for recursive SEMs contains exogenous variables and prior endogenous variables
- Always have at least as many IVs as predictors, therefore necessarily identified
- To understand this, consider Blau and Duncan's basic-stratification model, The American Occupational Structure (1967).

Blau and Duncan's basic-stratification model

Two-stage least squares (2SLS) estimation

- Using combination of IVs for estimation in over-identified non-recursive SEMs
- First stage, regress predictors \mathbf{X} on the $\mathbf{I V s} \mathbf{Z}$, obtaining fitted values

$$
\hat{\mathbf{X}}=\mathbf{X}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{X}
$$

- Second stage, the response \mathbf{y} is regressed on $\hat{\mathbf{X}}$, producing the 2SLS estimator of $\boldsymbol{\beta}$

$$
\hat{\boldsymbol{\beta}}=\left(\hat{\mathbf{X}}^{\prime} \hat{\mathbf{X}}\right)^{-1} \hat{\mathbf{X}}^{\prime} \mathbf{y}
$$

- Column of \mathbf{X} are uncorrelated with the structural disturbance in the probability limit
- Very similar to weighted least squares!

Full information maximum likelihood (FIML) estimation

- Along with other standard assumptions of SEMs, FIML estimates are calculated under the assumption that the structural errors are multivariately normally distributed
- Under this assumption, the log-likelihood for the model is

$$
\begin{aligned}
\log _{e} L\left(\mathbf{B}, \boldsymbol{\Gamma}, \boldsymbol{\Sigma}_{\epsilon \epsilon}\right)= & n \log |\operatorname{det}(\mathbf{B})|-\frac{n q}{2} \log 2 \pi-\frac{n}{2} \log \operatorname{det}\left(\boldsymbol{\Sigma}_{\epsilon \epsilon}\right) \\
& -\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{B} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}\right)^{\prime} \boldsymbol{\Sigma}_{\epsilon \epsilon}^{-1}\left(\mathbf{B} \mathbf{y}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}\right)
\end{aligned}
$$

- The full general machinery of MLE is available if the model is identifiable

Klein's model revisited

> library(sem)

> data(Klien)
> head(Klein)
Year C P Wp I K.lag X Wg G T

$2192141.912 .425 .5-0.2182 .845 .62 .7 \quad 3.97 .7$
$3192245.016 .929 .3 \quad 1.9182 .6 \quad 50.12 .93 .2 \quad 3.9$
$4192349.218 .434 .1 \quad 5.2184 .5 \quad 57.22 .92 .84 .7$
$\begin{array}{llllllllllllllllll}5 & 1924 & 50.6 & 19.4 & 33.9 & 3.0 & 189.7 & 57.1 & 3.1 & 3.5 & 3.8\end{array}$
$6192552.6 \quad 20.135 .4 \quad 5.1 \quad 192.7 \quad 61.0 \quad 3.2 \quad 3.3 \quad 5.5$

Klein's model revisited

```
> P.lag <- c(NA, P[-length(P)])
```

> X.lag <- c(NA, X[-length(X)])
> A <- Year -1931
$>$ cbind(Year, A, P, P.lag, X, X.lag)
Year A P P.lag X X.lag
$[1] \quad 1920-$,1112.7 NA $44.9 \quad \mathrm{NA}$
$\begin{array}{lllllll}{[2,]} & 1921 & -10 & 12.4 & 12.7 & 45.6 & 44.9\end{array}$
[3,] $1922-9 \quad 16.9 \quad 12.4 \quad 50.1 \quad 45.6$

$\begin{array}{lllllll}{[5,]} & 1924 & -7 & 19.4 & 18.4 & 57.1 & 57.2\end{array}$
$\left[\begin{array}{lllllll}{[6,]} & 1925 & -6 & 20.1 & 19.4 & 61.0 & 57.1\end{array}\right.$

Klein's model revisited

Duncan, Haller, and Portest peer influence model

> eqn. 1 <- tsls(C~P+P.lag+I(Wp+Wg),

+ instruments $=\sim \mathrm{G}+\mathrm{T}+\mathrm{Wg}+\mathrm{A}+\mathrm{P} .1 \mathrm{lag}+\mathrm{K} .1 \mathrm{lag}+\mathrm{X} .1 \mathrm{lag}$, data=Klein)
> summary(eqn.1)
2SLS Estimates
Model Formula: C ~ P + P.lag + I (Wp + Wg)
Instruments: ${ }^{\sim}$ G $+\mathrm{T}+\mathrm{Wg}+\mathrm{A}+\mathrm{P} . \mathrm{lag}+\mathrm{K} . \mathrm{lag}+\mathrm{X} . \mathrm{lag}$ Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.
$-1.89 e+00-6.16 e-01-2.46 e-01-2.74 e-12 \quad 8.85 e-01 \quad 2.00 e+00$
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $16.55476 \quad 1.4679811 .27722 .587 \mathrm{e}-09$
$\begin{array}{lllll}\mathrm{P} & 0.01730 & 0.13120 & 0.1319 & 8.966 \mathrm{e}-01\end{array}$
$\begin{array}{llll}\text { P.lag } & 0.21623 & 0.11922 & 1.8137 \\ 8.741 \mathrm{e}-02\end{array}$
$I(W p+W g) \quad 0.81018 \quad 0.0447418 .1107 \quad 1.505 \mathrm{e}-12$
Residual standard error: 1.1357 on 17 degrees of freedom

```
> R.DHP <- read.moments(diag=FALSE, names=c('ROccAsp', 'REdAsp',
+ 'FOccAsp', 'FEdAsp', 'RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ',
    'FParAsp'))
            . }624
            . }3269 . 366
            . }4216 . 3275 . . 6404
            . 2137 . 2742 . }1124 . 083
            .4105 . .4043 . .2903 . .2598 . }183
            . 3240 . 4047 . 3054 . 2786 . 0489 . }222
            . 2930 . 2407 . 4105 . 3607 . 0186 . }1861 . 2707
            .2995 ..2863 .5191 
            .0760 . 0702 . 2784 . 1988 . 1147 . 1021 . 0931 -. 0438 . 2087
46:
Read 45 items
```


Duncan, Haller, and Portest peer influence model

:	RParAsp	-> RGenAsp, gam11,	NA
:	RIQ	-> RGenAsp, gam12,	NA
:	RSES	-> RGenAsp, gam13,	NA
:	FSES	-> RGenAsp, gam14,	NA
:	RSES	-> FGenAsp, gam23,	NA
:	FSES	-> FGenAsp, gam24,	NA
:	FIQ	-> FGenAsp, gam25,	NA
:	FParAsp	-> FGenAsp, gam26,	NA
:	FGenAsp	-> RGenAsp, beta12,	NA
0:	RGenAsp	-> FGenAsp, beta21,	NA
1:	RGenAsp	-> ROccAsp, NA,	1
2 :	RGenAsp	-> REdAsp, lam21,	NA
3 :	FGenAsp	-> FOccAsp, NA,	1
4:	FGenAsp	-> FEdAsp, lam42,	NA
5 :	RGenAsp	<-> RGenAsp, ps11,	NA

A path diagram

n sem

The following path diagram was generated by path.diagram() function in sem package

Duncan, Haller, and Portest peer influence model

```
> sem.dhp <- sem(model.dhp, R.DHP, 329,
+ fixed.x=c('RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp'))
> summary(sem.dhp)
    Model Chisquare = 26.697 Df = 15 Pr (>Chisq) = 0.031302
    Chisquare (null model) = 872 Df = 45
    Goodness-of-fit index = 0.98439
    Adjusted goodness-of-fit index = 0.94275
    RMSEA index = 0.048759 90% CI: (0.014517, 0.07831)
    Bentler-Bonnett NFI = 0.96938
    Tucker-Lewis NNFI = 0.95757
    Bentler CFI = 0.98586
    SRMR = 0.020204
    BIC = -60.244
    Parameter Estimates
        Estimate Std Error z value Pr(>|z|)
    gam11 0.161224 0.038487 4.1890 2.8019e-05 RGenAsp <--- RParAsp
```

