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Three models for longitudinal data

Four models for longitudinal data:
• Marginal models: the relationship of the expected response

on covariates is modeled separately from within-subject
correlation.

• Random effects models
• Fixed effects models
• Transitional models

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 2/35



Notation

• Yij : the value of the dependent variable observed at the
time tij for observations j = 1, . . . , ni on subject i.

• xij: the vector of p covariates observed at time tij for
observations j = 1, . . . , ni on subject i.

• µij = E(Yij) and V ar(Yij) = νij

• Repeated outcomes for subject i are put into an ni vector,
Yi = (Yi1, . . . , Yini

) with mean E(Yi) = µi and nixni
covariance matrix V ar(Yi) = Vi.
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Marginal models

• We model the marginal expectation, E(Yij | Xij = x), the average response over
the sub-population that shares a common value of x. A cross-sectional study
models the marginal expectation.

• E(Yij | Xij) = µij depends on covariates xij by h(µij) = x′ijβ, where h is a
known link function.

• The marginal variance depends on the marginal mean:

V ar(Yij) = ν(µij)φ,

where ν is a known variance function, and φ is a possibly unknown scale
parameter.

• The correlation between Yij and yik is a function of the marginal means and
possibly additional parameters α:

Corr(Yij , Yik) = ρ(µij , µik, α),

where ρ(.) is a known function.

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 4/35



Interpretation of a marginal model

• Marginal regression coefficients, β, have the same
interpretation as the ones from cross-sectional analysis.

• Marginal models are natural analogues for correlated data
of GLM for independent data.
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Estimation method - GEE

• Assume a working correlation matrix of Yi, Ri(α). Then, the

covariance matrix of Yi is Vi = B
1/2
i Ri(α)B

1/2
i φ, where

Bi = diag(ν(µ11, . . . , µini
).

• Estimation of β and α can be obtained by the following
generalized estimation equation (GEE):

S(β, α, φ) =

n∑

i=1

∂µi

β

′

V −1
i (Yi − µi) = 0.
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An iterative algorithm

• Obtain an estimate of β by solving the above GEE, given α and φ.

• Use the following Pearson residuals rP
ij to α and φ, given β:

rP
ij =

yij − µij(β)√
ν(µij(β))

• A moment estimator of the overdispersion parameter, φ:

φ̂ =
i = 1

n

ni∑

j=1

1

ni

(rP
ij)

2.
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AN iterative algorithm, cont

The following moment estimator of α for the different working correlation structure:

• Independence: correlation structure, Corr(Yij , Yij′) = 0, j 6= j′.

• Exchangeable: correlation structure, Corr(Yij , Yij′) = α, æ 6= j′; estimator:

α̂ =
1

n

1

ni(ni − 1)

∑

j 6=j′

rP
ijr

P
ij′ .

• AR(1): correlation structure,

Corr(Yij , Yi(j+t)) = αt, t = 0, 1, . . . , ni − j;

estimator,

α̂ =
1

n

n∑

i=1

1

ni − 1

ni−1∑

j=1

rP
ijr

P
i(j+1).

• Unstructured: correlation structure:

Corr(Yij , Yij′ = αjj′ , j 6= j′;

estimator:

α̂jj′ =
1

n
rP
ijr

P
ij′ .
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Asymptotic Properties

• The estimator, β̂, the marginal regression parameter vector,
β, is asymptotically normal and consistent as the number of
clustered increases to ∞.

• β̂ os consistent of β, assuming that the mean structure is
correctly specified, even if the correlation structure is
misspecified. A consistent covariance matrix estimator can
be obtained by means of the sandwich estimator
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Robust sandwich covariance estimators

• Assuming α and φ are known, we have the following p equations:

S(β̂)α,φ) =
n∑

i=1

Si(β̂) = 0,

where

Si(β) = frac∂µiβ
′V −1

i (Yi − µi).

• Then, we can write the covariance matrix of S(β̂)α,φ as follows:

Cov(S(β̂α,φ)) =
∂S(β)α,φ

∂β
Cov(β̂)(

∂S(β)α,φ

∂β
)′.
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Robust sandwich covariance estimators, cont

• Therefore, we obtain the following expression for Cov(β̂):

Cov(β̂) = (
∂S(β)α,φ

∂β
)−1Cov(S(β̂α,φ))({

∂S(β)α,φ

∂β
}′)−1.

• Since S(β̂)α,φ) is a sum of independent vectors with mean 0, we can estimate it
covariance matrix by its empirical one:

Ĉov(S(β̂)α,φ)fracnn− 1
n∑

i=1

Si(β̂)Si(β̂)′.
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Example on toenail infection treatment

• De Backer (1998) et al. reported a study on the relative
effectiveness of two treatments on toenail infection.

• 378 patients were randomly assigned to one of the two
treatments and evaluated at seven visits, at weeks 0, 4, 8,
12, 24, 36, and 48.

• The outcome variable is a binary variable, indicating degree
of separation of the nail plate from the nail bed (0: none or
mild; 1: moderate or severe).
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Example on toenail infection treatment, cont

• Yij : outcome of subject j at visit i

• X2j : treatment group of subject j

• X3ij : exact timing (in month) of visit i of subject j
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STATA codes

• do C:\Zhou\Teaching\2007\examples-mlmus\ch4_toenail.do

• use toenail, clear

• A useful command for longitudinal data is xtdes, which describes the participation
pattern in the data set.
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STATA codes

patient: 1, 2, ..., 383 n = 294

visit: 1, 2, ..., 7 T = 7

Delta(visit) = 1; (7-1)+1 = 7

(patient*visit uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max

1 3 7 7 7 7 7

Freq. Percent Cum. | Pattern

---------------------------+---------

224 76.19 76.19 | 1111111

21 7.14 83.33 | 11111.1

10 3.40 86.73 | 1111.11

6 2.04 88.78 | 111....

5 1.70 90.48 | 1......

5 1.70 92.18 | 11111..

4 1.36 93.54 | 1111...

3 1.02 94.56 | 11.....

3 1.02 95.58 | 111.111

13 4.42 100.00 | (other patterns)

---------------------------+---------

294 100.00 | XXXXXXX

The data set is not balanced since all patients did not attend all
planned visits
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Graphical display

• A useful graphical display of the data is a line graph, plotting
the observed proportions at each visit against time, the
average time associated with each visit.
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Graphical display
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Estimation using Generalized Estimation Equation (GEE)

cd c:\zhou\teaching\2007\examples-mlmus capture log close log using

toenail, replace text set more off set scheme sj

use toenail, clear gen trt_month = treatment*month xtgee outcome

treatment month trt_month, i(patient) link(logit) family(binom)

robust eform

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 18/35



GEE results

GEE population-averaged model Number of obs = 1908

Group variable: patient Number of groups = 294

Link: logit Obs per group: min = 1 Family: binomial avg = 6.5

Correlation: exchangeable max = 7

Wald chi2(3)

= 63.44 Scale parameter: 1 Prob > chi2 = 0.000

(Std. Err. adjusted for clustering on patient)

------------------------------------------------------------------------

| Semi-robust

outcome | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------

treatment | 1.007207 .2618022 0.03 0.978 .6051549 1.676373

month | .8425856 .0253208 -5.70 0.000 .7943911 .893704

trt_month | .9252113 .0501514 -1.43 0.152 .8319576 1.028918

------------------------------------------------------------------------
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GEE, cont

Working correlations in STATA:

• Independence

• Exchangeable (the same correlation for all unit - the default in STATA)

• AR(1) (autoregressive lag 1, which only makes sense for longitudinal data)

• Unrestricted (a different correlation for each pair of responses - it should not be
used for large clusters)
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Random effects models

• There exists a vector of random effects, Ui. Given Ui, the responses Yi1, . . . , Yini

are mutually independent and follow a GLM with density
f(yij | Ui) = exp{[yijθij − ψ(θij)]/φ}.

• The conditional mean, µij = E(Yij | Ui) and the conditional variance,
νij = V ar(Yij | Ui):

h(µij) = x′ijβ
∗ + d′ijUi, νij = ν(µij)φ,

where h and ν are known link and variance functions, respectively, and dij is a
subset of xij .

• Correlation between the random effects and covariates is zero.
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Interpretation of random effects models

• Basic idea: there is natural heterogeneity across individuals
in their regression coefficients and this heterogeneity can
be represented by a probability distribution.

• Correlation among observations for one person arises from
their sharing unobservable variables, Ui.

• The random effects model is most useful when the aim is to
make inference about individual rather the population
average.
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Estimation

• With a random effects model, the marginal likelihood is obtained for inference.

• The marginal likelihood of subject i is obtained by integrating out random effects
over their distribution.

P (yi1, . . . , Yini
| xi) =

∫ ni∏

j=1

P (yij | xi, Ui)Φ(u, 0,Ψ)du,

where Φ(u, 0,Ψ) is the multivariate normal distribution with mean vector 0 and the
covariance matrix Ψ.

• In general, the marginal likelihood does not have a closed form, due to intractable
integration involved.

• There are three ways of approximating this intractable integrals, Laplace
approximation, numerical integration using quadrature or adaptive quadrature, and
Monte Carlo integration.
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Marginal and generalized quasi-likelihood

• Marginal quasi-likelihood (MQL) and penalized
quasi-likelihood (PQL) are based on approximating
generalized linear models by linear mixed models so that
the Iterative Generalized Least Squares (IGLS) algorithm
can be applied (hence no longer corresponds to maximum
likelihood).

• In the MQL, the Taylor expansion of is done at zero, while in
the PQL, the expansion is done at the posterior mode.
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Example 2

* random intercept model

gllamm outcome treatment month trt_month, i(patient) family(binom)

link(logit) nip(30) adapt gllamm, eform
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STATA Output

number of level 1 units = 1908 number of level 2 units = 294

Condition Number = 23.0763

gllamm model

log likelihood = -625.38558

----------------------------------------------------------------------

outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------

treatment | -.1608751 .5802054 -0.28 0.782 -1.298057 .9763066

month | -.3911055 .0443906 -8.81 0.000 -.4781096 -.3041015

trt_month | -.136829 .0680213 -2.01 0.044 -.2701484 -.0035097

_cons | -1.620364 .4322408 -3.75 0.000 -2.46754 -.7731873

------------------------------------------------------------------------

Variances and covariances of random effects

------------------------------------------------------------------------

***level 2 (patient)

var(1): 16.084107 (3.0626223)

-----------------------------------------------------------------------
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Interpretations

• There appears there is a significant interaction between
treatment and time at the 5% level.
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Subject-specific versus population-averaged

• The population-averaged probabilities from the random-intercept model can be
obtained by integrating out the random intercept:

P (Yij = 1 | x2i, x3i) =

∫
P (Yij = 1 | x2i, x3i, ξi)φ(ξi, 0, ψ)dξi

=

∫
exp(β1 + β2x2i + β3x3i + ξi)

1 + exp(β1 + β2x2i + β3x3i + ξi)
φ(ξi; 0, ψ)dξi,

ψ(ξi; 0, ψ) is the normal density function with mean zero and variance ψ.

• These probabilities can be obtained using the gllapred command with the options
mu (for the mean response) and marginal (for integrating over the random intercept
distribution)

• .gallapred margprob, mu marg
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Population-averaged probabilities

• We compared predicted population-averaged from the
ordinary logit and random-intercept logit models.

•
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Subject-specific prediction

• Subject-specific predictions for specific values of ξ can be produced using gllapred

with the mu and us(varname)

• * conditional, subject-specific probabilities

gen zeta1=0 gllapred condprob0, mu us(zeta) gen lower1 = -4 gllapred

condprobm4, mu us(lower) gen upper1 = 4 gllapred condprob4, mu

us(upper) replace lower1 = -2 gllapred condprobm2, mu us(lower)

replace upper1 = 2 gllapred condprob2, mu us(upper)
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Subject-specific prediction, cont

twoway (line prop mn_month, sort) ///

(line margprob month, sort clpatt(dash)) ///

(line condprob0 month, sort clpatt(dot) clwidth(medthick)) ///

(line condprob4 month, sort clpatt(dot) clwidth(medthick)) ///

(line condprobm4 month, sort clpatt(dot) clwidth(medthick)) ///

(line condprob2 month, sort clpatt(dot) clwidth(medthick)) ///

(line condprobm2 month, sort clpatt(dot)clwidth(medthick)), ///

by(treatment) ///

legend(order(1 "Observed proportions" 2 "Marginal probabities" 3 "Conditional

xtitle(Time in months) ytitle(Probabilities of onycholysis)
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Subject-specific predictions

• The following are conditional and marginal probabilities for
the random-intercept logistic regression model

•
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Transition (Markov) models

• A transition model models correlation among Yi1, . . . , Yini
by

allowing the past values, Yi1, . . . , Yi(j−1), explicitly influence
the present observation, Yij .

• For a binary outcome, for example:

logitP (Yij = 1 | Yi(j−1), . . . , Yi1) = x′
ijβ

∗∗ + αi(j−1).
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Contrasting approaches

• Dependent variable: Yij : whether the child has respiratory infection (1=yes, 0=no).

• Covariate: xij : whether child i is vitamin A deficient (1=yes, 0=no) at visit j of child
i.

• Marginal model:

logit(P (Yij = 1)) = log
P (Yij = 1)

P (Yij = 0)
= β0 + β1xij .

• Random effects model:

logit(P (Yij = 1 | Ui)) = β∗
0 + β∗

1xij + Ui.

• Transitio Markov model:

logit(P (Yij = 1 | Yi(j−1), . . . , Yi1)) = β∗∗
0 + β∗∗

1 xij + αYi(j−1).
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Interpretation

• Marginal model:
◦ exp(β0): the ratio of the frequency of infected to uninfected children among

the sub-population that is not vitamin A deficient.
◦ exp(β1): the odds of infection among vitamin A deficient children divided by

the odds of infection among children with vitamin A.

• Random effects model:
◦ β∗

0 : log-odds for respiratory infection for a typical child with random effect
Ui = 0.

◦ β∗
1 : log-odds ratio for infection when a child is deficient relative to when that

same child is not.

• Transition model:
◦ β∗∗

1 : log-odds ratio for infection among children who are free of infection at the
previous visit.

◦ exp(α): the ratio of the odds of infection among children who did and did not
have infection at the prior visit.
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