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Factor models

• Unlike measurement models for measurement error, a
hypothetical construct, such as intelligence, cannot be
measured directly. Instead, different aspects of intelligent
are measured by different indicators or items, such as
verbal, quantitative, and visual reasons.

• Answer to one particular item is a reflection of both general
intelligence and an item-specific aspect, referred to as the
common and specific factors.
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Uni-dimensional common factor model

• A unidimensional common factor model:

yij = βi + λiηj + ǫij ,

where yij is the observed response of item i on subject j, ηj

is the common factor or latent trait for subject j, λi is a
factor loading for the ith item, and ǫij is the unique or
specific factor.

• We assume that ηj and ǫij are independent.

• Let us denote ψ = V ar(ηj) and θij = V ar(ǫij).
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Identification and equivalence

• A parametric model g(y | θ) is called globally identified if
there are no two points θ1 and θ2 such that
g(y | θ1) = g(y | θ2).

• A parametric model g(y | θ) is called locally identified at θ0 if
there exists an open neighborhood of θ0 such that there no
two points θ1 and θ2 in the neighborhood such that
g(y | θ1) = g(y | θ2).
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Identifibility of the unidimensional factor model

• Recall
yij = βi + λiηj + ǫij ,

where ηj ∼ N(γ, ψ), and ǫij ∼ N(0, θij).

• By making a linear transformation of the factor, fj = aηj + c,
we can write the model as

yij = (βi − λic/a) + (λia)fj + ǫij = β∗
i + λ∗i f

∗
j + ǫij ,

where f∗j ∼ N(γ∗, ψ∗), ǫij ∼ N(0, θij).

• Here

β∗
i = βi − λic/a, λ

∗
i = λi/a, γ

∗ = aγ + c, ψ∗ = a2ψ.

• Hence, different parameter points generate the same
reduced form distribution and the model is not identified.
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Identification restrictions

• We can either fix the scale of the common factor ηj by
anchoring (typically fixing the first factor loading, λ1 = 1) or
"factor standardization’ (fixing the factor variance to a
positive constant, ψ = 1).

• Although the models from either identification restriction are
equivalent, anchoring has some advantage over factor
standardization from the point of view of "factorial
invariance.

• For example, assume that the unidimensional factor model
above holds for a population. But we consider the
subpopulation of units with negative factor values. In this
case the original factor loadings are recovered in the
subpopulation under anchoring (with a reduced variance
estimate ψ̂) but not under factor standardization.
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Unidimensional factor models in matrix notation

• Let yj = (y1j , . . . , yIj)
′, Γ = (λ1, . . . , λI)

′, ǫj = (ǫ1j , . . . , ǫIj)
′,

β = (β1, . . . , βI)
′, where I is the number of items.

• The unidimensional factor model:

yj = β + Γηj + ǫj .

• The covariance structure of yj is called a factor structure:

Ω = Cov(yj) = ΓψΓ′ + Θ,

where Θ is a diagonal matrix with the θii placed on the
diagonal.
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Multidimensional factor models

• The unidimensional factor model imposes a rather restrictive
structure on the covariance. In structuring I(I + 1)/2
variances and covariances only 2I parameters are used.

• A less restrictive multidimensional factor models are often
used:

y1j = β1 + λ11η1j + . . .+ λ1MηMj + ǫ1j

. . .

yIj = βI + λI1η1j + . . .+ λIMηMj + ǫIj
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Multidimensional factor models in matrix form

• Let yj = (y1j , . . . , yIj)
′,

Γ =









λ11 . . . λ1M

. . . . . . . . .

λI1 . . . λIM )









,

ǫj = (ǫ1j , . . . , ǫIj)
′, β = (β1, . . . , βI)′, where I is the number of items.

• The multidimensional factor model can be written as follows:

yj = β + Γyηj + ǫj ,

where β is a vector of constant (usually omitted if yi is mean-centered), Γy is a
factor loading matrix, ηj is a vector of M common factors with covariance matrix Ψ

and ǫj a vector of unique factors with diagonal covariance matrix Θ.

• The covariance matrix of the responses become

Ω = ΓyΨΓ′

y + Θ.
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Cronbach’s α - reliability

• Cronbach’s α is a coefficient of reliability (or consistency).
• Cronbach’s α measures how well a set of items (or

variables) measures a single unidimensional latent
construct.

• When data have a multidimensional structure, Cronbach’s α
will usually be low.

• They are referring to how well their items measure a single
unidimensional latent construct.

• If you have multi-dimensional data, Cronbach’s α will
generally be low for all items. In this case, run a factor
analysis to see which items load highest on which
dimensions, and then take the alpha of each subset of items
separately.
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Calculation of Cronbach’s α

• Cronbach’s alpha can be written as a function of the
number of test items AND the average inter-correlation
among the items:

α =
N − r̄

1 + (N − 1)r̄
,

where N is equal to the number of items and r̄ is the
average inter-item correlation among the items.
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Cronbach’s α, cont

• One can see from this formula that if you increase the
number of items, you increase Cronbach’s α. Additionally, if
the average inter-item correlation is low, α will be low. As
the average inter-item correlation increases, Cronbach’s α
increases as well.

• This makes sense intuitively - if the inter-item correlations
are high, then there is evidence that the items are
measuring the same underlying construct. This is really
what is meant when someone says they have "high" or
"good" reliability.

• Note that a reliability coefficient of .70 or higher is
considered "acceptable" in most Social Science research
situations)
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Warnings on the use of Cronbach’s α

• The first problem: α is dependent not only on the magnitude
of the correlations among items, but also on the number of
items in the scale.

• A scale can be made to look more ’homogenous’ simply by
doubling the number of items, even though the average
correlation remains the same. For example, if we have two
scales which each measure a distinct construct, and
combine them to form one long scale, α would probably be
high, although the merged scale is not a uni-dimensional.

• If α is too high, then it may suggest a high level of item
redundancy; that is, a number of items asking the same
question in slightly different ways.
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A potential project topic

• Confidence intervals for estimated Cronbach’s α.
• Koning, A.J. Franses, Ph.H.B.F. (2003). Confidence

Intervals for Cronbach’s Coefficient Alpha Values,
https://ep.eur.nl/handle/1765/431

• Dawn Iacobucci and Adam Duhachek (2003). Advancing
Alpha: Measuring Reliability With Confidence. Journal of
Consumer Psychology, Vol. 13, No. 4, Pages 478-487
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Confirmatory factor analysis

• If prior information is available, in terms of substantive
theory, previous results, confirmative factor analysis (CFA)
should be used where particular parameters are set to
prescribed values, typically zero. For Γy is often specified as
independent clusters structure where each item load one
one and only one common factor.

• Confirmatory factor analysis is thus a hypotheticist
procedure designed to test hypotheses about the
relationship between items and factors, whose number and
interpretation are determined.
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An example of confirmatory factor analysis

• Mulaik (1988, Handbook of Multivariate Experimental
Psychology) considered 9 subjective rating-scale variables
designed to measure two "dimensions" or factors in
connection with a soldier’s conception of firing a rifle in
combat.

• The first factor, supposed to be "fear", had as indicators, the
four scales: "frightening", " never-shaking", "terrifying", and
"upsetting".

• The second factor, "optimism about outcome", had as
indicators the five scales: "useful", " hopeful", "controllable",
"successful", and "bearable".
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An example of confirmatory factor analysis, cont

• The loadings of variables on irrelevant factors were hypothesized to be zero,
whereas the factors were expected to (negatively) correlated.

• An independent clusters two-factor model where each factor is measured by three
non-overlapping items:
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where we have fixed the scale of each factor by setting one factor loading to 1.
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Exploratory factor analysis

• Exploratory factor analysis (EFA) is an inductivist method
designed to discover an optimal set of factors, their number
to be determined in the analysis. Each factor is then
interpreted and ’named’ according to the subset of items
having high loadings on the factor.

• The multidimensional factor model above is not identified
without some restrictions on the parameters since we can
multiply the factors by an arbitrary nonsingular
transformation matrix R, η∗j = Rηj , and obtain the same
covariance matrix as the original model by multiplying the
factor loading matrix Γy by R−1,

Ω = (ΓyR
−1)RΨR(R−1Γ′

y) + Θ.

• If R is orthogonal, the transformation is a rotation or
reflection
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Identifiability

• In confirmatory factor analysis, restrictions on the factor
loadings serve to fix the factor rotation, and combined with
constraints for the factor scales (either fixing factor
variances or by fixing one factor loading for each factor) will
often suffice to identify the model.

• In exploratory factor analysis, a standard but arbitrary way
of identifying the model is to set the factor covariance matrix
equal to the identify matrix Ψ = I, and fix the rotation for
example by requiring that Γ′

yΘΓy is diagonal.
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Steps of performing exploratory factor analysis

• The number of factors is determined based on a principal
component analysis of the correlation matrix. The number
of factor is typically chosen to be equal to the number of
eigenvalues that are larger than one, so called
Kaiser-Guttmann criteria.

• A factor analysis is performed with the chosen number of
factor. It is typically difficult to ascribe meaning to the factors
at this stage since most of items will have nonnegative
loadings on most factor.

• An orthogonal transformation matrix R is therefore used to
produce more interpretable loadings according to some
criteria such as loadings either "small" or "large".

• The final step is to retain only the "salient" loadings,
interpreting as zero any loadings falling below an arbitrary
threshold, typically, 0.3 or 0.4.
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Item response models

• The unidimensional factor model can be extended to
dichotomous and ordinal responses using two different
approaches.

• Factor analysis using a latent response formulation
• Item response theory
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Factor analysis with latent response formulation

• A binary or ordinal-scale response yi can be often viewed
as a partial observation of a continuous latent response y∗i .
We model y∗i by a unidimensional common factor model by

y∗ij = βi + λiηj + ǫ′ij

• The observed response yi takes one of S ordered response
categories as, where s = 1, . . . , S, and the relationship
between observed and latent response can be written as

yij =



















a1 if k0 < y∗ij ≤ a2

a2 if k1 < y∗ij ≤ a3

. . .

aS if kS−1 < yij ≤ aS ,

where k0 = −∞ and kS = ∞.
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Item response theory (IRT)

• Item Response Theory (aka IRT) is also sometimes called latent trait theory.

• The classical application of these IRT models is in ability testing, where item i

represents questions or problems in a test and the answers are scored as right (1)
or wrong (0).

• Item response theory relates characteristics of items (item parameters) and
characteristics of individuals (latent traits) to the probability of a positive response.

• A variety of IRT models have been developed for dichotomous and polytomous
data. In each case, the probability of answering correctly or endorsing a particular
response category can be represented graphically by an item (option) response
function (IRF/ORF). These functions represent the nonlinear regression of a
response probability on a latent trait, such as conscientiousness or verbal ability.
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One-parameter Logistic Model

• P (yij = 1 | η) is the conditional probability of a positive response (yij = 1) to item
i by subject j

• The mathematical form of the 3PL model is shown below.

P (yij = 1 | ηj) =
1

1 + exp(−a(ηj − bi))
,

where:
◦ ηj represents the value of the latent trait (e.g., conscientiousness or cognitive

ability) for subject j,
◦ The a parameter affects the steepness of the curve; as "a" increases the

slope of the IRF increases. Larger "a" parameters provide better
discrimination among examinees.

◦ The bi parameter represents the location of the IRF along the horizontal axis,
ηj . It is commonly called the item difficulty, or threshold. Large values of b

indicate "difficult" items.
◦ Usually, we assume ηj has the standard normal distribution.
◦ An one-parameter logistic model is just a random intercept model for

dichotomous items without covariates.
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The 2-parameter logistic model (2PL)

• The two-parameter logistic model allows the slope or
discrimination parameter (a) to vary across items instead of
being assumed to be equal as in the 1PL model.

• The mathematical form of the 2PL model is shown below.

P (yij = 1 | ηj) =
1

1 + exp(−Dai(ηj − bi))
,

where D is a scaling constant equal to 1.702.
• Here, bi can be interpreted as the item difficulty, giving a

50% chance of a correct answer when ability equals
difficulty, whereas ai is an item discrimination parameter
determining how well the item discriminates between
subjects with different abilities.
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The 3-parameter logistic model (3PL)

• One assumption in the two-parameter model is that the
probability of answering correctly tends to zero as ability
tends to minus infinity. However, this assumption is
unrealistic if multiple choice formats are used, since
guessing would produce a nonzero probability of answering
correctly. An extra parameter can be introduced into the
two-parameter model leading to the three-parameter model.
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The 3-parameter logistic model (3PL), cont

• The mathematical form of the 3PL model is shown below.

Pi(θ) = ci + (1 − ci)
1

1 + exp(−Dai(θ − bi))
,

where: the "c" parameter is commonly called the
"pseudo-guessing" parameter, because it indicates the
probability of responding positively for examinees having
very low θ.

• Note that the 2PL model can be obtained from 3PL be
setting c=0; the 1PL model may be obtained by setting c=0
and a=1.

• Unfortunately, huge sample may be needed to obtain
reliable estimates of this model.

Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences – p. 27/29



Structural equation models with latent variables

• Measurement and factor models relate the latent variables
to the observed variables. The structural equation models
the relationships among latent variables.

• Structural equation modeling with latent variables, often
refereed to as covariance structure analysis, focuses on the
covariance structure whereas the mean structure is typically
eliminated by subtracting the mean from each variable.

• Having defined common factor models, a structural models
specifying relationships among latent variables can be
constructed.

• In this structural model, there could be both latent
dependent and latent explanatory variables.
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A structural equation example

• Consider a structural equation model for two latent dependent variables η1j and
η2j and two latent latent independent variables ξ1j and ξ2j .

• The measurement model for the dependent variable is specified as an
independent clustered overlapping items, written as

yj = ΓY ηj + ǫj .

Similarly, the measurement model for the explanatory variables can be written as

xj = Γxξj + δj .

• The structural equation model is given as follows:

ηj = Bηj + Γξj + ζj .

• Here we assume that ξ1j and ξ2j are correlated whereas the ζ1j and ζ2j are
uncorrelated.
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