Measurement, Design, and Analytic Techniques in Mental Health and Behavioral Sciences Lecture 8 (Jan 30, 2007): SAS Proc MI and Proc MiAnalyze

XH Andrew Zhou

azhou@u.washington.edu

Professor, Department of Biostatistics, University of Washington

Imputation methods in SAS Proc MI Procedure

- Regression method
- Predictive mean matching method
- Propensity score
- Logistic regression
- Discriminant function method
- MCMC Data Augmentation method

SAS Proc MI Procedure, cont

Table 1: Imputation Methods in PROC MI

Pattern of	Type of	Recommended Methods
Missingness	Imputed Variables	
Monotone	Continuous	Regression method
		Predictive Mean Matching
		Propensity Score
Monotone	Ordinal categorical	Logistic Regression
Monotone	Nominal categorical	Discriminant function method
Arbitrary	Continuous	MCMC Data Augmentation

MI for continuous variables

- Assumption: data, Y_1, \ldots, Y_p , are from a continuous multivariate distribution and contain missing data values that can occur for any of the variables.
- Monotone missing-data pattern: regression method (multivariate normal), predictive mean matching (multivariate normal), propensity score (non-parametric), and MCMC data augmentation (multivariate normal).
- Arbitrary missing-data pattern: MCMC data augmentation (multivariate normal assumption).

Principe behind Regression method MI for monotone missing data

- The data, Y₁,..., Y_p (in that order) is said to have a monotone missing pattern if an individual has an observed value on a variable Y_j, all previous variables Y_j, j < k, are also observed for that individual.
- Impute a value for missing Y_j from the predictive distribution, $P(Y_j | Y_{obs}) = P(Y_j | Y_1, \dots, Y_{j-1})$. Let $\theta = (\beta_0, \dots, \beta_{j-1}, \sigma_j)$
- Note that

$$P(Y_{j} | Y_{1}, \dots, Y_{j-1}) = \int P(Y_{j} | Y_{1}, \dots, Y_{j-1}, \theta) P(\theta | Y_{1}, \dots, Y_{j-1}) d\theta.$$

- One plan is to draw a value of θ from its posterior distribution $P(\theta \mid Y_1, \dots, Y_{j-1})$, say θ_* , and then draw a value of missing Y_j from its conditional posterior distribution given the drawn value of θ , $P(Y_j \mid Y_1, \dots, Y_{j-1}, \theta_*)$.
- Repeat this process *m* times to create *m* draws from the joint posterior distribution of Y_j and θ .
- Ignore the drawn values of θ gives m draws from the predictive distribution of Y_j .

Implementation on Regression method MI for monotone missing

data

• For a variable Y_j with missing values, we fit a regression model with previous variables, Y_1, \ldots, Y_{j-1} , as independent covariates:

$$Y_j = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{j-1} Y_{j-1}.$$

using observations with observed values for variables $_1, \ldots, Y_j$.

The fitted model includes the regression parameter estimates

$$\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_{j-1})$$

and the associated covariance matrix $\hat{\sigma}_j^2 V_j$, where V_j is the usual X'X inverse matrix derived from the intercept and variables Y_1, \ldots, Y_{j-1} .

Implementation, cont

• For each imputation, new parameters $\beta_* = (\beta_{*0}, \beta_{*1}, ..., \beta_{*(j-1)})$ and σ_{*j}^2 are drawn from the posterior predictive distribution of the parameters. That is, they are simulated from $(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_{j-1}), \sigma_j^2$, and V_j . The variance is drawn as

$$\sigma_{*j}^2 = \hat{\sigma}_j^2 (n_j - j)/g$$

where *g* is a $\chi^2_{n_j-j}$ random variate and n_j is the number of nonmissing observations for Y_j . The regression coefficients are drawn as

$$\beta_* = \hat{\beta} + \sigma_{*j} V_{hj}' Z$$

where V_{hj} ' is the upper triangular matrix in the Cholesky decomposition, $V_j = V'_{hj}V_{hj}$, and Z is a vector of j independent random standard normal variates.

Implementation, cont

The missing values are then replaced by

$$\beta_{*0} + \beta_{*1} y_1 + \beta_{*2} y_2 + \dots + \beta_{*(j-1)} y_{j-1} + z_i \sigma_{*j}$$

where y_1, \ldots, y_{j-1} are the covariate values of the first j-1 variables and z_i is a simulated standard normal deviate.

The process is repeated sequentially for variables with missing values.

SAS code

```
proc mi data=MonotoneData seed=501213;
    class female;
    monotone reg (mh1 mh2 mh3 mh4/details);
    var female age mh1 mh2 mh3 mh4 ;
    run;
```

SAS Output

	Missing Data	a Patterns
E mhl mh2	2 mh3 mh4	Freq Percent
X X	X X	759 86.25
X X	х.	92 10.45
X X		27 3.07
х.		2 0.23
	E mhl mh2 X X X X X X X X X .	Missing Data E mh1 mh2 mh3 mh4 X X X X X X X A A X A A A X A A A X A A A A

Regression Models for Monotone

Imputed			
Variable	Effect	FEMALE	Obs-Data
mh2	FEMALE	Female	-0.01240
mh2	AGE		-0.00792
mh2	mh1		0.44922

Regression Models for Monotone Method

Imputed	Ē			Imputatio	on	
Variabl	le Effect	1	2	3	4	5
mh2	Intercept	0.070107	0.024755	0.068154	-0.075028	-0.016925
mh2	FEMALE	-0.085586	-0.041030	-0.015157	0.041547	0.018400
mh2	AGE	0.005786	-0.080487	-0.057540	-0.044029	-0.021239
mh2	mh1	0.487531	0.425315	0.432769	0.459250	0.412827

Impu	ited -	Imputation				
Var	iable E	lffect 1	2	3	4	5
mh3	Intercept	-0.004942	-0.001726	0.079478	-0.056868	0.029256
mh3	FEMALE	-0.071074	-0.028655	-0.003361	-0.046291	-0.050447
mh3	AGE	-0.052435	-0.042099	-0.016780	0.040931	0.024660
mh3	mh1	0.209715	0.174411	0.121701	0.165569	0.160420
mh3	mh2	0.419566	0.461516	0.466346	0.426716	0.478057

Multiple Imputation Variance Information

-----Variance------

Variable	Between	Within	Total	DF
mh2	0.000011092	0.010507	0.010520	875.59
mh3	0.000096510	0.012258	0.012374	852.58
mh4	0.000738	0.013334	0.014219	457.69

Multiple	Imputation Variance	Information	
	Relative	Fraction	
	Increase	Missing	Relative
Variable	in Variance	Information	Efficiency
mh2	0.001267	0.001266	0.999747
mh3	0.009448	0.009403	0.998123
mh4	0.066389	0.064068	0.987349

Multiple Ir	nputation	Parameter	Estimates
-------------	-----------	-----------	-----------

Variable	Mean	Std Error	95% Confiden	ce Limits	DF
mh2	10.503899	0.102568	10.30259	10.70521	875.59
mh3	10.921351	0.111239	10.70302	11.13969	852.58
mh4	11.443991	0.119244	11.20966	11.67832	457.69

Predictive mean matching method for monotone missing data

- Predictive mean matching is similar to the regression method except that it imputes each missing value from a set of observed values whose predicted values are closest to the predicted value for the missing value from the simulated regression model.
- For a missing value of variable Y_j , we follow the same procedure as in the regression method to obtain new parameters $\beta_* = (\beta_{*0}, \beta_{*1}, ..., \beta_{*(j-1)})$ and σ_{*j}^2 .
- Compute predicted value of Y_j for individual *i* as

$$y_{i*} = \beta_{*0} + \beta_{*1} y_{i1} + \beta_{*2} y_{i2} + \dots + \beta_{*(j-1)} y_{i(j-1)} \sigma_{*j}$$

where $y_{i1}, \ldots, y_{i(j-1)}$ are the covariate values of the first j-1 variables for individual *i*.

Predictive mean matching method, cont

- Choose a set of j_0 observations with observed Y_j whose corresponding predicted values are closest to y_{j*} .
- Impute the missing value of Y_j by a value randomly drawn from these j_0 observed values.
- The process is repeated sequentially for variables with missing values.
- Predicted mean matching method ensures that imputed values are plausible and may be more appropriate than the regression method if the normality does not hold.

SAS code

```
proc mi data=MonotoneData seed=501213;
class female;
monotone regpmm(mh4=female age female*age mh1 mh2 mh3 mh3*mh3/details)
var female age mh1 mh2 mh3 mh4;
run;
```

SAS Output

Regression Models for Monotone Predicted Mean Matching Method

Imputed

			Imputat	cion		
Var	iable Effect	: 1	2	3	4	5
mh4	FEMALE	-0.023746	0.091637	0.128823	0.115147	0.071817
mh4	AGE	-0.051876	-0.129313	-0.079178	-0.085499	-0.052836
mh4	AGE*FEMALE	0.051017	0.034009	-0.042764	-0.011488	-0.003801
mh4	mhl	0.051014	0.109213	0.064231	0.045100	0.033609
mh4	mh2	0.224346	0.107300	0.211499	0.236282	0.198416
mh4	mh3	0.304298	0.345190	0.381311	0.303170	0.353700
mh4	mh3*mh3	-0.004622	0.069952	-0.028568	-0.018023	0.036400

Multiple	Multiple Imputation Variance Information						
	Variance						
Variable	Between	Within	Total	DF			
mh4	0.001213	0.013640	0.015096	275.41			
Multiple	Imputation Variance	Information					
	Relative	Fraction					
	Increase	Missing	Relative				
Variable	in Variance	Information	Efficiency				
mh4	0.106750	0.100628	0.980271				

Multiple	Imputation	Parameter	Estimates
----------	------------	-----------	-----------

Variable	Mean	Std Error	95% Confid	dence Limit:	5 DF
mh4	11.466582	0.122864	11.22471	11.70845	275.41
Multiple	Imputation H	Parameter Es	stimates		
Variable	Minimum	Maximum	Mu0	Mean=Mu0	t for H0: Pr > t
mh4 11.4	17578 11.5	515219 (0 93	.33 <.0	001

Propensity score method for monotone missing data

- The propensity score method uses the following steps to impute values for each variable Y_j with missing values:
- Create an indicator variable R_j with the value 0 for observations with missing Y_j and 1 otherwise.
- Fit a logistic regression model

 $logit(p_j) = \beta_0 + \beta_1 Y_1 + \beta_2 Y_2 + \dots + \beta_{j-1} Y_{j-1}$

where $p_j = Pr(R_j = 0 | Y_1, ..., Y_{j-1})$ and logit(p) = log(p/(1-p)).

- Create a propensity score for each observation to estimate the probability that it is missing.
- Divide the observations into a fixed number of groups (typically assumed to be five) based on these propensity scores.

Propensity score method, cont

- Apply an approximate Bayesian bootstrap imputation to each group. In group k, suppose that Y_{obs} denotes the n_1 observations with nonmissing Y_j values and Y_{mis} denotes the n_0 observations with missing Y_j . The approximate Bayesian bootstrap imputation first draws n_1 observations randomly with replacement from Y_{obs} to create a new data set $Y_{obs}*$. The process then draws the n_0 values for Y_{mis} randomly with replacement from $Y_{obs}*$.
- Steps 1 through 5 are repeated sequentially for each variable with missing values.
- The goal of the propensity score method was to impute the missing values on the response variables. The method uses only the covariate information that is associated with whether the imputed variable values are missing. It does not use correlations among variables. It is effective for inferences about the distributions of individual imputed variables, such as an univariate analysis, but it is not appropriate for analyses involving relationship among variables, such as a regression analysis. It can also produce badly biased estimates of regression coefficients when data on predictor variables are missing (Allison 2000).

SAS code

```
proc mi data=MonotoneData seed=501213;
  monotone propensity (mh2 mh3 mh4/details);
  var mh1 mh2 mh3 mh4;
  run;
```

SAS Output

2

3

4

Х

Х

Х

Х

Х

•

Monoto	one Mod	el Spec	ificati	on	
Impu	uted				
Metł	nod			Varial	oles
Prop	pensity	(Group	os= 5)	mh2 ml	n3 mh4
Miss	sing Da	ta Patt	erns		
Group	mh1	mh2	mh3	mh4	Freq
1	Х	Х	Х	Х	759

Х

•

•

•

.

•

Percent

92

27

2

86.25

10.45

3.07

0.23

The MI Procedure						
Logist	cic Models	for Monot	tone Prope	ensity Sco	ores Metho	bd
Imputed	ImputedImputation					
Variable	Effect	1	2	3	4	5
mh3	Intercept	-3.51882	-3.51201	-3.50779	-3.50700	-3.50916
mh3	mhl	-0.46665	-0.49263	-0.52075	-0.55083	-0.50884
mh3	mh2	-0.17100	-0.11080	-0.04464	0.02610	-0.07257

Logistic Models for Monotone Propensity Scores Method

Imput	ed -				Imputatior	1
Varia	ble Effe	ct 1	2	3	4	5
mh4	Interce	ot-1.85764	-1.85422	-1.85924	-1.86018	-1.85019
mh4	mh1	-0.00275	-0.01209	-0.00534	-0.00968	-0.02738
mh4	mh2	-0.12763	-0.12103	-0.07728	-0.05221	-0.13160
mh4	mh3	-0.14692	-0.12658	-0.19541	-0.21437	-0.07963

Multiple Imputation Variance Information

	Variance			
Variable	Between	Within	Total	DF
mh2	0.000034433	0.010528	0.010569	870.67
mh3	0.000237	0.012206	0.012490	771.54
mh4	0.001831	0.013573	0.015770	161.89

Multiple Imputation Variance Information

	Relative	Fraction	
	Increase	Missing	Relative
Variable	in Variance	Information	Efficiency
mh2	0.003925	0.003917	0.999217
mh3	0.023274	0.022997	0.995422
mh4	0.161863	0.147546	0.971337

Multiple Imputation Parameter Estimates

Variable	Mean S	Std Error	95% Conf	idence Limits	DF
mh2	10.502560	0.102806	10.30078	10.70434	870.67
mh3	10.933486	0.111761	10.71410	11.15288	771.54
mh4	11.481636	0.125577	11.23365	11.72962	161.89

Multiple Imputation Parameter Estimates

					t for HO:
Variable	Minimum	Maximum	Mu0	Mean=Mu0	Pr > t
mh2	10,494955	10.51071	8 0	102.16	<.0001
mh3	10.917712	10.95643	9 0	97.83	<.0001
mh4	11.429372	11.54852	4 0	91.43	<.0001

Monte Carlo Markov Chain (MCMC) method

- MCMC methods are used to generate pseudo-random draws from multidimensional and otherwise intractable probability distributions via Markov chains. A Markov chain is a sequence of random variables in which the distribution of each element depends only on the value of the previous one.
- In MCMC simulation, one constructs a Markov chain long enough for the distribution of the elements to stabilize to a stationary distribution, which is the distribution of interest.
 By repeatedly simulating steps of the chain, the method simulates draws from the distribution of interest.

MCMC Method in Bayesian inference

- MCMC has been applied as a method for exploring posterior distributions, p(θ | y), in Bayesian inference. That is, a Markov chain in θ with ergodic distribution p(θ | y) is set up.
- Gibbs sampler. Let $\theta = (\theta_1, \dots, \theta_p)$ denote the parameter vector. The Gibbs sampler is obtained by iteratively, for $j = 1, \dots, p$, generating from the conditional posterior distributions

$$\theta_j^{(t+1)} \sim p(\theta_j \mid \theta_1^{(t+1)}, \dots, \theta_{j-1}^{(t+1)}, \theta_{j+1}^{(t)}, \dots, \theta_p^{(t)}).$$

If practicable it is advisable to generate from higher dimensional conditionals.

- The Gibbs sampler is most useful when the complete conditional posterior distributions, $p(\theta_j | \theta_i, i \neq j, y)$, take the form of some well-known distributions, allowing random variate generation.
- Data augmentation algorithm is a special type of Gibbs when p = 2.

Metropolis-Hastings algorithm

- For many important statistical applications, the complete conditional posterior distributions may not have well-known distributions.
- Other alternative Markov chains are needed. One of them is Metropolis-Hastings algorithm.

Imputation methods for discrete variables in SAS

- Under monotone missing data pattern, SAS implemented two MI procedures.
- Logistic regression for ordinal data
- Discriminant function method for nominal data

SAS code

```
proc mi data=exam3 out=outmi seed=501213;
class npcerad ;
monotone discrim (npcerad=mmselast npgender educ npdage/details);
var mmselast npgender educ npdage npcerad ;
run;
```