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Figure 1: Boxplots of free, total and ratio of free to total PSA in non- and
diseased groups. Note that ratio PSA appears to be higher in the non-diseased
groups

Introduction

This document describes the implementation and illustrations of ROC regression
models for continuous scale test results, described in Chapter 9 of the book. The
code was written by Krisztian Sebestyen. The dataset is a subset of the CARET
dataset and can be downloaded from http://labs.fhcrc.org/pepe/book/data/psa2b.csv.
In the study the objective was to model receiver operating characteristic (ROC)
curves for Prostate-specific antigen (PSA) over time where PSA measurements
were taken at irregular times prior to diagnosis of prostate cancer. Below we
describe implementation of the correlated ROC regression approach described
in Section 9.1.3 of the book. This approach is termed ’Direct Continuous Corre-
lated ROC’ and is based on an estimating equation approach. The correspond-
ing R-command is ’dccorroc’.

The boxplot displays free (fpsa), total (tpsa) and the ratio of free to total
PSA (rpsa) in the nondiseased and diseased groups. All outcomes were trans-
formed to approximate symmetry via the log(1 + x). Note that rpsa is higher
in the nondisased group therefore both rpsa and logrpsa were multiplied by −1
for the analyses below.
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Below is an excerpt of the dataset. We generated the variable ’occasion’
that denotes repeated measurements on a subject over irregular time points.
There are at most 9 measurements on a subject. Note that when comparing the
diagnostic accuracy of two markers/tests, say total PSA and ratio of free to total
PSA, there are two sources of correlation. One is due to a given marker measured
on the same subject over time, denoted by the variable ’id’, the other is due to
the two markers measured on a patient at a given time. When comparing the
diagnostic accuracy of tpsa and rpsa via ’dccorroc’, we ignore the correlation due
to longitudinal measurements and pool the data over 6 occasions. Thus the only
correlation accounted for by ’dccorroc’ is the correlation of two tests measured
on the same subject at a given time (Q = 2).

id d t fpsa tpsa age occasion qage rpsa logtpsa logfpsa logrpsa
1 1 -4.48 3.52 14.82 67.58 1 1 0.24 2.76 1.51 0.21
2 1 -4.50 1.10 5.54 70.17 1 1 0.20 1.88 0.74 0.18
2 1 -1.34 2.40 8.15 73.33 2 1 0.30 2.21 1.23 0.26
2 1 -0.36 2.43 10.71 74.31 3 1 0.23 2.46 1.23 0.20
3 0 -3.38 0.23 0.94 55.03 1 0 0.24 0.66 0.20 0.22
3 0 -1.12 0.23 1.03 57.29 2 0 0.22 0.71 0.20 0.20
3 0 -0.18 0.24 1.03 58.23 3 0 0.23 0.71 0.22 0.21
3 0 0.84 0.20 0.98 59.25 4 0 0.21 0.68 0.18 0.19
3 0 1.85 0.15 0.78 60.26 5 0 0.19 0.58 0.14 0.17
3 0 2.85 0.32 1.23 61.26 6 0 0.26 0.80 0.28 0.23
3 0 3.80 0.34 1.51 62.21 7 0 0.23 0.92 0.29 0.20
3 0 4.78 0.31 1.46 63.19 8 0 0.21 0.90 0.27 0.19
3 0 5.78 0.40 1.19 64.19 9 0 0.33 0.78 0.34 0.29

Correlated ROC Regression Models

Let X be a vector of covariates common to both patients with and without the
condition and XD be a vector of covariates specific to the diseased population.
Let T1q and T0q be continuous-scale test (marker) results measured at the qth

(q = 1..Q) occasion for a patient in the diseased and nondiseased populations,
respectively. If F̄1q,x,xD and F̄0q,x denote the covariate specific survival functions
of the diseased and non-diseased populations, then the ROC regression that
accounts for correlation that arises for Q measurements taken on the subject at
false positive rate (FPR) p ∈ (0, 1) is of the form:

ROCq,x,xD (p) = F̄1q,x,xD

(
F̄−1

0q,x(p)
)

(1)

= gq[γ′h(p) + β′x + β′xD] = gq{θ′[h(p)′, x′, x′D]′} (2)

where θ = (γ′, β′, β′D)′ and gq and h(p) are known link and basis functions at
occasion q. For more details see (2).
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R command

The R command to run the regression is ’dccorroc’. The estimating equations
use ’dfsane()’ of package ’BB’. Package ’abind’ is also required to combine mul-
tidimensional arrays after bootstrapping.

x <- cbind(expand.grid(c(0,-2,-4,-8)));colnames(x) <- c("t")
pepe.11_6b <- dccorroc(
theta = rep(c(-1,1,0),2),
data = data[data$occasion <= 6,],
tests = ~ logtpsa + logrpsa ,
formula = ~1,
formulaD = ~t,
diseased = ~d,
covariates = x,
fpr = (1:50)/51,
return.covariance = T,NBOOT = 20,SEED = 1:20,
trace = 0,
control = list(tol = 1e-5,trace = T,maxit = 200))

## plot
require(graphics)
postscript("table1.EtzioniPepe.ps")
plot.dccorroc(pepe.11_6b,x=x,main = ’ROC curves corresponding to table 1
(Etzioni-Pepe-Hu-Goodman)’)
dev.off()

## table
sm <- summary.dccorroc(pepe.11_6b)
a0.t <- outer( pepe.11_6b$theta["t",] , c(0,-2,-4,-8)) + pepe.11_6b$theta[1,]
table1.EtzioniPepe <- list(
logtpsa = cbind(a0.t = a0.t["logtpsa",],
a1.t = pepe.11_6b$theta["slope","logtpsa"],
auc.t = sm$auc[,"Estimate","logtpsa"]),
neglogrpsa = cbind(a0.t = a0.t["logrpsa",],
a1.t = pepe.11_6b$theta["slope","logrpsa"],
auc.t = sm$auc[,"Estimate","logrpsa"])

)
require(Hmisc)
z <- signif(do.call(’rbind’,table1.EtzioniPepe),3)
rownames(z) <- rep(paste("time=",-c(0,-2,-4,-8),sep=’’),2)
colnames(z) <- c("a0(t)","a1(t)","auc(t)")
latex(z,file = "table1.EtzioniPepe.tex",title = ’’,n.rgroup = c(4,4),
rgroup = c("total PSA","ratio PSA"))

The summary object returned after rounding is:
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$covariates
t

time=0 0
time=2 -2
time=4 -4
time=8 -8
attr(,"assign")
[1] 1

$auc
, , logtpsa

Estimate Std. Error z value Pr(>|z|)
time=0 0.93 NA NA NA
time=2 0.89 NA NA NA
time=4 0.82 NA NA NA
time=8 0.65 NA NA NA

, , logrpsa

Estimate Std. Error z value Pr(>|z|)
time=0 0.80 NA NA NA
time=2 0.77 NA NA NA
time=4 0.73 NA NA NA
time=8 0.64 NA NA NA

$dauc
, , 1-2

Estimate Std. Error z value Pr(>|z|)
time=0 0.13 0.02 5.50 0.00
time=2 0.12 0.02 6.14 0.00
time=4 0.10 0.02 4.95 0.00
time=8 0.01 0.04 0.19 0.85

$coefficients
, , logtpsa

Estimate Std. Error z value Pr(>|z|) 0.025 0.975
(Intercept) -1.98 0.18 -10.87 0 -2.33 -1.62
slope 0.90 0.10 9.25 0 0.71 1.08
t -0.18 0.03 -5.42 0 -0.25 -0.12

, , logrpsa
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Estimate Std. Error z value Pr(>|z|) 0.025 0.975
(Intercept) -1.06 0.11 -9.79 0 -1.27 -0.85
slope 0.77 0.06 13.25 0 0.65 0.88
t -0.07 0.02 -3.27 0 -0.12 -0.03

$dcoefficients
, , 1-2

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.92 0.18 -5.08 0.00
slope 0.13 0.09 1.36 0.17
t -0.11 0.03 -3.22 0.00
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Table 1: AUC’s of correlated tests logtpsa and logrpsa (Q = 2) pooled over 6
irregular time points. This table closely matches table 1 of (1)

a0(t) a1(t) auc(t)
total PSA

time=0 −1.980 0.895 0.930
time=2 −1.610 0.895 0.885
time=4 −1.250 0.895 0.824
time=8 −0.526 0.895 0.653

ratio PSA
time=0 −1.060 0.767 0.800
time=2 −0.912 0.767 0.765
time=4 −0.764 0.767 0.728
time=8 −0.467 0.767 0.645

results
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Figure 2: Correlated ROC Regression approach

ROC curves corresponding to table 1 (Etzioni−Pepe−Hu−Goodman)
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