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Abstract

Welsh and Zhou (2005) proposed a two-part heteroscedastic model to deal with zero costs and handle

re-transformation bias when the transformation on non-zero costs achieves linearity and additivity but

not necessarily normality and homoscedasticity. They proposed two estimators of the mean response

on the original scale, which have been proven to be consistent and asymptotically normally distributed.

In this paper, we develop a software program to implement the newly proposed two-part heter-

scedastic transformation model proposed by Welsh and Zhou (2005). Our program computes two

estimates for the mean cost, their asymptotical standard deviations with the associated normal-based

confidence intervals, and bootstrap based confidence intervals. Our program includes a user-friendly

interactive mode and more efficient and flexible batch mode. It is written in free statistical computing

language R and can be run on a wide variety of platforms.
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1 Introduction

Welsh and Zhou [1] developed a two-part heteroscedastic transformation model to handle zero cost and

right-skewed non-zero cost data and a method for correcting for re-transformation bias when the transfor-

mation achieves linearity and additivity but not necessarily normality and homoscedasticity. They proposed

two estimators of the mean response on the original scale. They have proved that both estimators are con-

sistent and asymptotically normally distributed, and have shown how to construct approximate confidence

intervals for the mean response on the original scale.

In this paper, we develop a software implementation of Welsh and Zhou’s method. We first briefly

describe computational details of Welsh and Zhou’s method in Section 2. Then we discuss software im-

plementation and usage in Section 3. Finally, we illustrate the use of our computer program in a real

application in Section 4.

2 Computational Method

2.1 A heteroscedastic two-part regression model

Let random variables Y1, . . ., and Yn be independent with a density function,

f∗(yi, πi, φi) =





πi if yi = 0,

(1− πi)f(yi, φi) if yi > 0,

(1)

where f(yi, φi) is a proper density function. Clearly, πi = Pr(Yi = 0), and f(yi, φi) is the conditional

density of Yi given that Yi > 0.

Here πi is related to known vectors of covariates xi through a known link function l so that

l(πi) = xT
i α0, , (2)
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where α0 is a vector of unknown parameters. A common choice of l is the logistic function l(x) = log(x/(1−

x)), but other choices are possible.

Since f(yi, φi) is often asymmetric, we adopt a conditional transformation model to relate Yi to vectors

of covariates xi, given that Yi > 0. Specifically, given that Yi > 0, we assume that there exists a known

monotone transformation h so that

h−1(Yi) = xT
i β0 + gi(β0, θ0)εi, (3)

where β0 and θ0 are vectors of unknown parameters with dimensions q1 and q2, respectively, gi is a known

function allowing scaling and heteroscedasticity on the transformed scale, and {εi}’s are independent and

identically distributed random variables with the common density function fε with mean zero and variance

one. In model (3), we only assume that the transformation h−1 makes the mean linear, leaving us to model

any heteroscedasticity through the gi and to account for possible non-normality of the {εi}.

2.2 Regression parameter estimation

Let ξ = (βT , θT )T and define

ei(ξ) =
h−1(Yi)− xT

i β

gi(ξ)
. (4)

Here the dimension of ξ is q = q1 + q2. Then the log-likelihood for the model (1) is

`(α, ξ) =
n∑

i=1

{
I (yi = 0) log

(
πi

1− πi

)
+ log(1− πi)

}
+

n∑

i=1

I(yi > 0) log f(yi, φi)

= `1(α) + `2(ξ). (5)

This factorization shows that the parameters α0 and ξ0 are orthogonal so, without any loss of efficiency,

can be estimated separately.

Estimation of α0 by maximizing `1(α) is a standard binary regression problem. Similarly, we can

maximize `2(ξ) to obtain an estimate of ξ0. An alternative approach to estimating ξ0 is to consider a wider
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class of estimators which satisfy estimating equations of the form,

n∑

i=1

Ψi(Yi, ξ) = 0. (6)

Writing the derivatives of g as

g
(1)
i (ξ) =

∂gi(ξ)
∂β

and g
(2)
i (ξ) =

∂gi(ξ)
∂θ

,

we can show that the maximum likelihood estimator satisfies (6) with Ψi(Yi, ξ) = I(Yi > 0)(ψ(ei(ξ))xT
i /gi(ξ)

+χ(ei(ξ))g
(1)
i (ξ)T /gi(ξ), χ(ei(ξ))g

(2)
i (ξ)T /gi(ξ))T , where ψ(x) = −f ′ε(x)/fε(x) and χ(x) = xψ(x) − 1, de-

rived under the assumed parametric distribution fε of εi.

When {εi}’s are normally distributed, ψ(x) = x and χ(x) = x2 − 1. The pseudo likelihood estimator

satisfies (6) with Ψi(Yi, ξ) = I(Yi > 0)(ψ(ei(ξ))xT
i , χ(ei(ξ))g

(2)
i (ξ)T )T ;

2.3 Estimating mean

We are interested in estimating the mean of the response on the original-scale using the estimated regression

coefficients on the transformed scale. That is, given the covariate x, we want to estimate u = E(Y | x),

where Y is the response of the outcome on the patient with the covariate x. Define

ηi(ξ) = xT β + g(ξ)ei(ξ),

where ei(ξ) is defined by (4), and g(ξ) is the value of gi(ξ) when xi = x. For simplicity, we write

ηi(ξ0) = ηi. Since ei(ξ0) = εi and the {εi} are assumed to be independent and identically distributed, for

fixed covariate x, the random variables {ηi}’s are independent and identically distributed. In this notation,

we have Eh(ηi) = Eh(η1) and that

u = (1− π)Eh(η1),

where π = l−1(xT α0).
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We consider two different estimators of u. Both estimators are generalizations of the smearing estimator

of Duan [2]. Put ξ̂ = (β̂T , θ̂T )T and π̂i = l−1(zT
i α̂). Then we have the “externally” weighted estimator

û∗ =
1− π̂

1− ¯̂π
m̂∗, (7)

where ¯̂π = 1
n

∑n
i=1 π̂i and m̂∗ = 1

n

∑n
i=1 I(yi > 0)h(ηi(ξ̂)), and the “internally” weighted estimator

û = (1− π̂)m̂, (8)

where m̂ = 1
n

∑n
i=1

I(yi>0)
1−π̂i

h(ηi(ξ̂)).

Welsh and Zhou [1] proved that, under mild conditions, these two nonparametric estimators were

consistent, asymptotic normal. They also gave closed-form expressions for their asymptotic variance.

To state their asymptotic variances, we need some additional notations. Let us define µi(ξ) = x− g(ξ)
gi(ξ)

xi,

νi(ξ) = g(1)(ξ) − g(ξ)
gi(ξ)

g
(1)
i (ξ) and τi(ξ) = g(2)(ξ) − g(ξ)

gi(ξ)
g
(2)
i (ξ), and write µi(ξ0) = µi, νi(ξ0) = νi and

τi(ξ0) = τi for simplicity. Also, put ¯̂µ∗ = 1
n

∑n
i=1(1 − π̂i)µi(ξ̂), ¯̂ν∗ = 1

n

∑n
i=1(1 − π̂i)νi(ξ̂) and ¯̂τ∗ =

1
n

∑n
i=1(1− π̂i)τi(ξ̂). Define B̂β and B̂θ by




B̂β

B̂θ


 =



− 1

n

n∑

i=1

E
∂

∂ξ
Ψi(Yi, ξ)

∣∣∣∣∣
ξ=ξ̂





−1

and set

ŵ∗ =




1

B̂T
β

{(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

h′(ηi(ξ̂))
)

¯̂µ∗ +
(

1
n

∑n
i=1

I(Yi>0)
1−π̂i

ei(ξ̂)h′(ηi(ξ̂))
)

¯̂ν∗
}

B̂T
θ

{(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

ei(ξ̂)h′(ηi(ξ̂))
)

¯̂τ∗
}




,

Ω̂∗i =




I(Yi > 0)h(ηi(ξ̂))− (1− π̂i) 1
n

∑n
j=1

I(Yj>0)
1−π̂j

h(ηj(ξ̂))

Ψi(Yi, ξ̂)

Ψi(Yi, ξ̂)




,
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Σ̂∗ =
1
n

n∑

i=1

Ω̂∗i Ω̂
∗T
i ,

d̂∗ =

{
1
n

n∑

i=1

I(Yi > 0)
1− π̂i

h(ηi(ξ̂))

}{
x

l′(π̂)
− 1

n

1− π̂

1− ¯̂π

n∑

i=1

xi

l′(π̂i)

}

and

Â =
1
n

n∑

i=1

xix
T
i

1
l′(π̂i)2π̂i(1− π̂i)

.

Then we can estimate the asymptotic variance of the externally weighted estimator û∗ by

v̂∗ =
1
n

(
1− π̂

1− ¯̂π

)2

ŵ∗T Σ̂∗ŵ∗ +
1
n

d̂∗T Â−1d̂∗.

An approximate 100(1− γ)% confidence interval for u is given by

[
û∗ − Φ−1(1− γ/2)

√
v̂∗, û∗ + Φ−1(1− γ/2)

√
v̂∗

]
,

where Φ is the cumulative distribution function of the standard normal distribution.

Similarly, the asymptotic variance of the internally weighted estimator û can be estimated by

v̂ =
1
n

(1− π̂)2ŵT Σ̂ŵ +
1
n

d̂T Â−1d̂,

and an approximate 100(1− γ)% confidence interval for u is given by

[
û− Φ−1(1− γ/2)

√
v̂, û + Φ−1(1− γ/2)

√
v̂
]
,

where

ŵ =




1

B̂T
β

{(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

h′(ηi(ξ̂))
)(

1
n

∑n
i=1 µi(ξ̂)

)
+

(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

ei(ξ̂)h′(ηi(ξ̂))
)(

1
n

∑n
i=1 νi(ξ̂)

)}

B̂T
θ

{(
1
n

∑n
i=1

I(Yi>0)
1−π̂i

ei(ξ̂)h′(ηi(ξ̂))
)(

1
n

∑
i=1 τi(ξ̂)

)}




,

Ω̂i =




I(Yi>0)
1−π̂i

h(ηi(ξ̂))− 1
n

∑n
j=1

I(Yj>0)
1−π̂j

h(ηj(ξ̂))

Ψi(Yi, ξ̂)

Ψi(Yi, ξ̂)




,
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Σ̂ =
1
n

n∑

i=1

Ω̂iΩ̂T
i ,

and

d̂ =

{
1
n

n∑

i=1

I(Yi > 0)
1− π̂i

h(ηi(ξ̂))

}{
x

l′(π̂)
− 1

n
(1− π̂)

n∑

i=1

xi

(1− π̂i)l′(π̂i)

}
.

3 Computer Program

We develop a computer program in R, a language and environment for statistical computing and graph-

ics [4]. Our program reads in patient data files in plain text format, estimates regression parameters α̂, β̂,

and θ̂, then computes both externally weighted estimator û∗ and internally weighted estimators û of mean

on the original scale. In addition to these two mean estimates, our program also outputs their statistics,

including standard deviations, asymptotic confidence intervals, and an option for bootstrap confidence

intervals.

Our program can run in both interactive mode and batch mode. In the interactive mode, the program

guides users to specify computation settings step by step. In the batch mode, computation is activated by

a single line of command. Users have more control and more flexibility, but may have to bear the trouble

of writing R code. These two modes are discussed in detail in the following two subsections.

3.1 Interactive Mode

The interactive mode program is activated by command

source("interactive.r").

The program then guides users to specify computation settings step by step. In each step, a brief prompt

is displayed on the screen. The program reads in users’ answer, verifies that the answer is semantically

correct, then moves to the next step. A part of the screen displaying an example is shown in Figure 1. The
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details of these settings are discussed as following:

• The program starts from prompting users to input a patient data file name, then opens the file and

reads in the data. The input data file name is also used to name output files. Each output file

name has two parts: the first part is the same as input file name; the second part is a proper postfix

indicating the content of this output file.

• Users have flexibility to choose how to estimate regression parameters β and θ. The first choice is to

directly maximize `2(ξ) as in (5). This is the default choice in this program, because the maximization

is performed by using built-in R function Optim, which is numerically more stable. The second choice

is to solve estimating equation (6). This option enables us to extend MLE estimator to a wide class

of estimators such as pseudo likelihood estimators mentioned in Sec. 2.2.

• Users can give an initial guess of regression parameters α, β, and θ. Closer the guessed values are

to the true values, faster convergence the process of estimating these parameters can achieve. If no

initial guess is given to a parameter or part of a parameter, the program will set default values to be

zero.

• Users can specify the confidence level. Default value is 95%.

When users decide to calculate bootstrap confidence interval, there are two extra settings:

• The first one is a bootstrap sample size. Default size is 100.

• The Bootstrap process needs to generate random numbers. Users can specify a seed for a random

number generator. If no seed is given, then the program will pick system time as the seed.

Next, users are prompted to give a value for the vector of covariates x. This is an iterative loop. For

each given x, the program calculates estimates for the mean cost and their statistics, then prompts for
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another covariate. In this pattern, users can compare results for multiply covariates in a single run. The

example screen display is shown in Figure 2.

3.2 Batch Mode

Our program can also run in the batch mode by a command

source("batch.r").

In this mode, there has no interactions between users and the program. All computational settings have

to be hard coded in the source file barch.r. However, users may gain a high degree of flexibility.

Regression models (2) and (3) are shown in the format that parameters are related with all covariates.

However, in real applications, each parameter may only related to some components of covariates. Our

program can handle this situation easily. Let us use parameter α as an example. There is an indicator

vector XalphaIndicator and an integer nAlpha in the program. XalphaIndicator has the same length

as the covariate vector with all components being either 0 or 1. When one covariate is used to estimate α,

the corresponding component of XalphaIndicator is set to be one. Otherwise, it is set to be zero. The

value of nAlpha is the total number of components of XalphaIndicator being one. For example, if users

want to specify (2) as

l(πi) = x1α1 + x3α3,

they only need to assign XalphaIndicator = (1, 0, 1, 0, . . . , 0) and nAlpha = 2. For parameters β and θ,

the pairs (XbetaIndicator, nBeta) and (XgammaIndicator, nGamma) play the similar roles.

Our program also has flexibility to specify the transformation function h, mean function on the trans-

formed scale (appearing as xT β in (3)), and variance g on the transformed scale. All related functions are

listed in Table 1.
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3.3 Input and Output

An input data file to our program is a ASCII text file containing a data table. An example of an input

data file is shown in Figure 5. A single line of the file is a record. Columns are white-space (spaces and/or

tabs) delimited. The first column is the observation of the response variable. Remaining columns are

observations of covariates. Our program has no requirement on the number of data lines and the number

of columns. They are determined automatically while the program reading in data. Hence, our program

works for various applications with different numbers of covariates without any modification.

Our program produces two output files whose names are determined by an input data file name.

Assume the input data file is named example.dat. Then the output files are example par.dat and

example result.dat.

The output file example par.dat shows estimations and standard deviations of regression parameters

α, β, and θ. An example of example par.dat is shown in Figure 4.

The output file example result.dat shows mean estimators, their standard derivations, confidence

intervals, and optional bootstrap confidence intervals, all on the original scale. If multiple covariates are

provided, then statistics for all covariates are shown in this single file to make comparisons more convenient.

Following the example shown in Figure 2, the content of the output file example result.dat is illustrated

in Figure 5.

4 Application Example

We illustrate the use of our computer program in a data set on hypertension patients from a prospective

drug utilization review (DUR) study [3]. A goal of our analysis is to estimate the expected in-patient

charge of a patient given his/her age, gender, race, and general health status on in-patient charges. Since

11



in-patient charges are zero for some patients, we apply a two-stage heteroscedastic regression model to our

data set.

Let Yi be the in-patient charge of the ith patient, and corresponding covariates are defined as follows.

Xi1 is the age of the patient; Xi2 represents the patient’s race; Xi3 represents the gender of the patient

(Xi3 = 1 for males and Xi3 = 0 for females); Xi4 is the score based on 100 representing ith patient’s

general health status. Then, for i = 1, . . . , n, we model the probability of non-zero in-patient charges by

the logistic regression model,

log
P (Yi = 0 | Xi1, . . . , Xi4)
P (Yi > 0 | Xi1, . . . , Xi4)

= α0 + α1Xi1 + . . . α4Xi4, (9)

and we model the conditional magnitude of the positive charges Yi given Yi > 0 by the log-transformed,

heteroscedastic linear regression model,

log Yi = β0 + β1Xi1 + . . . + β4Xi4 + exp{(θ0 + θ1Xi1 + . . . + θ4Xi4)/2}εi. (10)

Our data set consists of 483 patients. Each data line is a patient record, starting from his/her in-patient

charge Yi and followed by covariates Xi1, . . . , Xi4. A part of data set is illustrated in Figure 5. The estimates

of parameters in (9) and (10) and their standard deviations are given in Figure 4. Using these parameter

estimates, we can estimate the average charge of a patient with the given covariate values and the associated

standard deviation. As shown in Figure 5, for a 55-year old white female patient with the general health

score of 50, the estimated average charge is û∗0 = $1156.67 using the externally weighted estimator with

95% confidence interval of ($489.85,$1823.49) and û0 = $1160.98 using the internally weighted estimator

with 95% confidence interval of ($485.81,$1836.16).
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5 Discussion

We developed a computer program for modelling skewed, heteroscedastic data with zero observations. The

program is an implementation of the two-part regression model proposed by Welsh and Zhou (2005). It

computes two nonparametric estimates of the mean cost, their asymptotic standard derivations, asymp-

totically normal-based confidence intervals, and optional bootstrap confidence intervals.

The program can be run in both the used friendly interactive mode and more efficient batch mode. It

also provides flexibility for users to extend the program to a more general context. The two-part regression

model can be generalized by re-coding some of modularized functions. For parameters in the two-part

regression model, users can choose from different estimates and/or different numerical approaches.

Our program is written in free statistical computing language R and can be run on a wide variety of

platforms. The program is available from http://faculty.washington.edu/ azhou.
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Please specify the name of input data file: example.dat

Please choose method for estimating parameters beta and theta
1: MLE estimator, maximize log-likelihood function (default)
2: MLE estimator, solve estimating equation

1

Do you want to give initial guess of parameters (default: all zeros)? (Y/N)n
alpha.0 = 0 0 0 0 0
beta.0 = 0 0 0 0 0
gamma.0 = 0 0 0 0 0

Please specify (1-r) confidence interval (default r=0.05):
r =
r = 0.05

Do you want to calculate bootstrap confidence interval? (Y/N)y

Please specify bootstrap sample size (default 100): 100

Do you want to assign seed for random number generator? (Y/N)n
Seed not assigned.

Figure 1: Example of screen display in interactive mode: part I.
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Please input covariates values:
1: 55 1 0 50
Covariate = 55 1 0 50

Do you want to see estimation results for another covariate? (Y/N) y

Please input covariates values:
1: 65 1 0 50
Covariate = 65 1 0 50

Do you want to see estimation results for another covariate? (Y/N) n

Figure 2: Example of screen display in interactive mode: part II.

16



0 56 0 0 32
0 64 1 1 25
1952.05 68 1 1 42
0 54 1 1 50
......

Figure 3: Example of input data file.
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estimator of parameter alpha =
1.513531 -0.008025662 0.4702371 0.3740364 0.007434743

std of alpha estimator =
0.7334805 0.01321834 0.3182745 0.2856736 0.006093177

estimator of parameter beta =
9.538691 -0.004213263 -0.8231364 0.02954837 0.003566381

std of beta estimator =
0.701519 0.0126878 0.3566817 0.2814012 0.005726485

estimator of parameter theta =
-0.9736211 0.05375912 -1.048779 -0.5785688 -0.01572478

std of theta estimator =
0.9676426 0.01870368 0.4402539 0.3763115 0.00826068

Figure 4: Example of output file for regression parameters.
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Function name Notation Description

fh h transformation function h in (3)

fhinv h−1 inverse function of h

dfh h′ derivative of h

fm m mean function in transformed space, appearing as xT β in (3)

dfm.beta ∂m/∂β first order partial derivative of m w.r.t. β

fg g variance function in transformed space

logfg log(g) logarithm of g

dfg.beta ∂g/∂β first order partial derivative of g w.r.t. β

dfg.gamma ∂g/∂θ first order partial derivative of g w.r.t. θ

d2fg.beta ∂2g/∂β2 second order partial derivative of g w.r.t. β

d2fg.betagamma ∂2g/∂β∂θ second order partial derivative of g w.r.t. β and θ

d2fg.gammabeta ∂2g/∂θ∂β second order partial derivative of g w.r.t. θ and β

d2fg.gamma ∂2g/∂θ2 second order partial derivative of g w.r.t. θ

Table 1: List of functions in regression model.
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Source data file: example.dat
Number of observations: 483
Number of covariates: 4
----------------------------------------------------------

Covariate = 55 1 0 50

Externally weighted estimator:
mean = 1156.673

standard deviation = 340.2204
95% confidence interval = [489.8531, 1823.493]

95% bootstrap confidence interval = [278.9567, 2667.711]

Internally weighted estimator:
mean = 1160.983

standard deviation = 344.4845
95% confidence interval = [485.8061, 1836.160]

95% bootstrap confidence interval = [401.0650, 2736.815]
----------------------------------------------------------

Covariate = 65 1 0 50

Externally weighted estimator:
mean = 1544.924

standard deviation = 539.8988
95% confidence interval = [486.7414, 2603.106]

95% bootstrap confidence interval = [685.6556, 4059.045]

Internally weighted estimator:
mean = 1556.870

standard deviation = 555.9018
95% confidence interval = [467.3222, 2646.417]

95% bootstrap confidence interval = [722.824, 4266.309]
----------------------------------------------------------

Figure 5: Example of output file for summary statistics.
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