
LEARN Codes: Inventing low-latency codes via
recurrent neural networks

Yihan Jiang
ECE Department

University of Washington
Seattle, United States

yij021@uw.edu

Hyeji Kim
Samsung AI Center Cambridge
Cambridge, United Kingdom

hkim1505@gmail.com

Himanshu Asnani
ECE Department

University of Washington
Seattle, United States

asnani@uw.edu

Sreeram Kannan
ECE Department

University of Washington
Seattle, United States

ksreeram@ee.washington.edu

Sewoong Oh
ISE Department

University of Illinois at Urbana Champaign
Illinois, United States

swoh@illinois.edu

Pramod Viswanath
ECE Department

University of Illinois at Urbana Champaign
Illinois, United States
pramodv@illinois.edu

Abstract—Designing channel codes under low latency con-
straints is one of the most demanding requirements in 5G
standards. However, sharp characterizations of the performances
of traditional codes are only available in the large block lengths
limit. Code designs are guided by those asymptotic analyses
and require large block lengths and long latency to achieve the
desired error rate. Furthermore, when the codes designed for one
channel (e.g. Additive White Gaussian Noise (AWGN) channel)
are used for another (e.g. non-AWGN channels), heuristics are
necessary to achieve any non trivial performance - thereby
severely lacking in robustness as well as adaptivity.

Obtained by jointly designing recurrent neural network
(RNN) based encoder and decoder, we propose an end-to-end
learned neural code which outperforms canonical convolutional
code under block settings. With this gained experience of
designing a novel neural block code, we propose a new class
of codes under low latency constraint - Low-latency Efficient
Adaptive Robust Neural (LEARN) codes, which outperform the
state-of-the-art low latency codes as well as exhibit robustness
and adaptivity properties. LEARN codes show the potential of
designing new versatile and universal codes for future com-
munications via tools of modern deep learning coupled with
communication engineering insights.

Index Terms—Channel Coding, Low Latency, Communica-
tions, Deep Learning.

I. INTRODUCTION

Channel coding has emerged as an impactful field of
research for the modern information age. Since its inception
in [1], powered by the mathematical insight of information
theory and principles of modern engineering, several capacity-
achieving codes such as Polar, Turbo and LDPC codes [2] [3]
[4] have come close to Shannon limit with large block lengths
under Additive White Gaussian Noise (AWGN) channels.
These then have been successfully adopted and applied in LTE
and 5G data plane [5]. As 5G is under intensive development,
designing codes that have features such as low latency,
robustness, and adaptivity has become increasingly important.

A. Motivation

Ultra-Reliable Low Latency Communication (URLLC)
code [6] requires minimal delay constraints, thereby enabling
scenarios such as vehicular communication, virtual reality,
and remote surgery. While speaking of low-latency require-
ments, it is instructive to observe that there is an interplay of
three different types of delays: processing delay, propagation
delay, and structural delay. Processing and propagation delays
are affected mostly by computing resources and varying
environment [7]. Low latency channel coding, as is the case
in this paper, aims to improve the structural delay caused by
encoder and/or decoder. Encoder structural delay refers to the
delay between receiving the information bit and sending it out
by the encoder. Decoder structural delay refers to the delay
between receiving the bits from the channel and decoding
the corresponding bits. Traditional AWGN capacity-achieving
codes such as LDPC and Turbo codes with small block
lengths show poor performance for URLLC requirement [7],
[8]. There has also been recent interest in developing finite-
block information theory to understand bounds on reliability
of codes at small to medium block length regime [9].

We note that latency translates directly to block-length
when using a block code, however, when using a convolu-
tional code, latency is given by the decoding window length.
Thus there is an inherent difference between block codes and
convolutional codes when considering latency. Since the latter
incorporates locality in encoding, they can also be locally
decoded. While convolutional codes with small constraint
length are not capacity achieving, it is possible that they
can be optimal under the low-latency constraint. Indeed, this
possibility was raised by [7], who showed that convolutional
codes beat a known converse on the performance of block
codes. In this work, we develop further on this hypothesis
and show that we can invent codes similar to convolutional
codes that beat the performance of all known codes in the low-



latency regime. While convolutional codes are state-of-the-art
in the low latency regime, in the moderate latency regime,
Extended Bose-Chaudhuri-Hocquenghem Code (eBCH) is
shown to perform well [10].

In addition, low latency constraint channel coding must take
channel effects into account under non-AWGN settings, as
pilot bits used for accurate channel estimation increase latency
[7]. This calls for incorporating robustness and adaptivity,
both, as desired features for URLLC codes. A practical
channel coding system requires heuristics to compensate for
channel effects, which leads to sub-optimality when there
exists model mismatch [11]. Robustness refers to the ability to
perform with acceptable degradation without retraining when
model mismatches. Adaptivity refers to the ability to learn to
adapt to different channel model with retraining. In general,
channels without clean mathematical analysis lack the theory
of an optimal communication algorithm, thus relying on
suboptimal heuristics [12]. In short, current channel coding
schemes fail to deliver under the challenges of low latency,
robustness, and adaptivity.

B. Deep Learning inspired Channel Coding : Prior Art

In the past decade, advances in deep learning have greatly
benefitted several fields in engineering such as computer
vision, natural language processing as well as gaming tech-
nology [13].

This has generated recent excitement in applying deep
learning methods to communication system design [16] [17].
Deep learning methods have been typically successful in
settings where there is significant model-deficit [18], i.e., the
observed data cannot be well described by a clean mathe-
matical model. Thus, many of the initial proposals applying
deep learning to communication systems have also focused
on this regime, where there is model uncertainty due to lack
of say channel knowledge [19], [20]. In order to develop
codes for the AWGN channel under low-latency constraints,
there is no model deficit, since the channel is well-defined
mathematically and quite simple to describe. However, the
main challenge is that optimal codes and decoding algorithms
are not known - we term this regime as algorithm-deficit. In
this regime, there has been very little progress in applying
deep learning to communication system design. Indeed, there
is no known code beating state-of-the-art codes in canonical
channels. We construct the first state-of-the-art code for the
AWGN channel in this paper (in the low-latency regime).

Broadly, the following have been two categories of works
that apply deep learning to communications: (a) designing
a neural network decoder (or neural decoder in short) for
a given canonical encoder such as LDPC or turbo codes;
(b) jointly designing both the neural network encoder and
decoder, referred to as Channel Autoencoder (Channel AE)
design [16] (as illustrated in Figure 1).

Neural decoder shows promising performance by mim-
icking and modifying existing optimal decoding algorithm.
Learnable Belief Propagation (BP) decoders for BCH and
High-Density Parity-Check (HDPC) code have been proposed

Fig. 1. Channel AE Block Diagram

in [22] and [23]. Polar decoding via neural BP is proposed in
[24] and [25]. As mimicking learnable Tanner graphs requires
a fully connected neural network, generalizing to longer block
lengths is prohibitive. Capacity-achieving performance for
Turbo Code under AWGN channel is achieved via Recurrent
Neural Network (RNN) for arbitrary block lengths [26].

The joint design of neural code (encoders) and decoders
via Channel Autoencoder (AE), which is relevant to the prob-
lem under consideration in this paper, has witnessed scanty
progress. Deep Autoencoder has been successfully applied for
various problems such as dimensionality reduction, represen-
tation learning, and graph generation [15]. However, Channel
AE significantly differs from the typical deep autoencoder
models in the following two aspects, thereby making it highly
challenging:

1) The number of possible message bits b grows expo-
nentially with respect to block length, thus Channel
AE must generalize to unseen messages with capacity-
restricted encoder and decoder [24].

2) Channel model adds noise between the encoder and the
decoder, and encoder needs to satisfy power constraint
- thus requiring a high robustness in the code.

For the Channel AE training, [16] and [17] introduce learn-
ing tricks emphasizing both channel coding and modulations.
Learning Channel AE without channel gradient is shown in
[28]. Modulation gain is reported in [29]. Beyond AWGN and
fading channels, [30] extended RNN to design code for the
feedback channel, which outperforms existing state-of-the-art
code. Extending Channel AE to MIMO settings is reported in
[21]. Despite the successes, existing research on Channel AE
under canonical channels is currently restricted to very short
block-lengths (for example, achieving the same performance
as a (7,4) Hamming code).

Furthermore, existing works do not focus on the low-
latency, robustness, and adaptivity requirements. In this paper,
we ask the fundamental question:

Can we improve Channel AE design to construct new codes
that comply with low-latency requirements?

We answer this in affirmative as shown in the next subsec-
tion.

C. Our Contribution

The primary goal is to design a low latency code under
extremely low latency requirements. As pointed out earlier,
convolutional codes beat block codes under the low latency
regime [7]. RNN is a constrained neural structure with a
natural connection to convolutional codes, since the encoded
symbol has a locality of memory and is most strongly
influenced by the recent past of the input bits. Furthermore,



RNN based codes have shown natural generalization across
different block lengths in prior work [26] [24]. We demon-
strate that with carefully designed learnable structure using
Bidirectional RNN (Bi-RNN) for both encoder and decoder,
as well as training methodology developed specifically for
the Channel AE model, our Bi-RNN based neural code
outperforms convolutional code.

We then propose Low-latency Efficient Adaptive Robust
Neural (LEARN) code, which applies learnable RNN struc-
tures for both the encoder and the decoder with an addi-
tional low-latency constraint. LEARN achieves state-of-the-
art performance under extremely low latency constraints. To
the best of our knowledge, this is the first work that achieves
an end-to-end design for a neural code achieving state-of-the-
art performance on the AWGN channel (in any regime). In
summary, the contributions of the paper are:

1. Beating convolutional codes: We propose the Bi-RNN
network structure and a tailored learning methodology
for Channel AE that can beat canonical convolutional
codes. The proposed training methodology results in
smoother training dynamic and better generalization,
which are required to beat convolutional codes (Section
II).

2. State-of-the-art performance in low latency settings:
We design LEARN code for low latency requirements
with specific network design. LEARN code results in
beating SOTA performance in extremely low latency
requirements (Section III).

3. Robustness and Adaptivity: When the channel con-
ditions are varying, LEARN codes show robustness
(ability to work well under unseen channel) as well
as adaptivity (adapt to new channel with few training
symbols), showing an order of magnitude improvement
in reliability over state-of-the-art codes (Section III).

II. DESIGNING NEURAL CODE TO BEAT CONVOLUTIONAL
CODE

In order to beat convolutional code using a learnt neural-
network code, the network architecture as well as training
methodology need to be carefully crafted. In this section, we
provide guidelines for designing learning architecture as well
as training methods that are key to achieve a high reliability of
neural codes. Finally, we demonstrate that the aforementioned
codes outperform Convolutional Code under block coding
setup with solely end-to-end learning.

A. Network Structure Design

Recent research on Channel AE does not show coding
gain for even moderate block lengths [16] [24] with fully
connected neural network, even with nearly unlimited training
examples. We argue that a Recurrent Neural Network (RNN)
architecture is more suitable as a deep learning structure for
Channel AE.

Introduction of RNN
As illustrated in Figure 2 (left), RNN is defined as a general
function f(.) such that (yt, ht) = f(xt, ht−1) at time t, where

xt is the input, yt is the output, ht is the state sent to the next
time slot and ht−1 is the state from the last time slot. RNN can
only emulate causal sequential functions. Indeed, it is known
that an RNN can capture a general family of measurable
functions from the input time-sequence to the output time-
sequence [27]. Illustrated in Figure 2 (right), Bidirectional
RNN (Bi-RNN) combines one forward and backward RNN
and can infer current state by evaluating through both past and
future. Bi-RNN is defined as (yt, h

f
t , h

b
t) = f(xt, h

f
t−1, h

b
t+1),

where hft and hbt stands for the state at time t for forward
and backward RNNs [13].

RNN is a restricted structure which shares parameters
between different time slots across the whole block, which
makes it naturally generalizable to a longer block length.
Moreover, RNN can be considered as an overparameterized
non-linear convolutional code for both encoder and decoder,
since convolutional code encoder can be represented by causal
RNN and BCJR forward-backward algorithm can be emulated
by Bi-RNN [26]. There are several parametric functions f(.)
for RNN, such as vanilla RNN, GRU, or LSTM. Vanilla RNN
is known to be hard to train due to diminishing gradients, in
this paper we use Gated Recurrent Unit (GRU) as our primary
network structure [32]. In this paper we use the terms GRU
and RNN interchangeably.

Fig. 2. Basic RNN structure (left), Bi-RNN (right)

RNN based Encoder and Decoder Design
Our empirical results comparing different Channel AE struc-
tures in Figure 3 shows that for longer block length, RNN
outperforms simply applying fully connected neural network
(FCNN) for Channel AE (both encoder and decoder). RNN
in Figure 3 refers to using Bi-RNN for both encoder and
decoder. The repetition code and extended Hamming code
performances are shown as a reference for both short and
long block length cases.

Fig. 3. Encoder and Decoder Structure Design. Channel AE for block length
4 (left), and block length 100 (right)

Figure 3 (left) shows that for short block length (4), the
performance of FCNN and RNN are close to each other,



since for short block length enumerating all possible code
is not prohibitive. On the other hand, for longer block length
(100), Figure 3 (right) shows that in using FCNN for longer
block length, the Bit Error Rate (BER) is even worse than
repeat code, which shows failure in generalization. RNN
outperforms FCNN due to its generalization via parameter
sharing and adaptive learnable dependency length. Thus in
this paper, we use RNN for both the encoder and the decoder
to gain generalization across block length. We can also see
from Figure 3 that RNN with a tailored training methodology
outperforms simply applying RNN or FCNN for Channel AE;
we illustrate those training methodology used in Section B
below.

Power Constraint Module
The output of the RNN encoder can take arbitrary values and
does not necessarily satisfy the power constraint. To impose
the power constraint, we use a power constraint layer followed
by the RNN. As shown in Figure 1, before transmitting
codewords, we force the output of power constraint module
to generate codewords s.t. Ex2i = 1 and Exi = 0, which
is referred as bit-wise normalization. During training phase
bit-wise normalization applies xi = xi−mean(xi)

std(xi)
where

mean(xi) and std(xi) refer to the mean and standard devia-
tion (std) given the training mini-batch. During testing phase,
the mean and std are precomputed by passing through many
samples to ensure that the estimation is accurate.

B. Training Methodology

The following training methods result in a faster learning
trajectory and better generalizations with the learnable struc-
ture discussed above.

1) Train with large batch size.
2) Train encoder and decoder separately. Train encoder

once, and then train decoder 5 times.
3) Adding minimum distance regularizer on encoder.
4) The decoder has more capacity (parameters) than the

encoder.
Some of the training methods are not common in deep

learning due to the unique structure of Channel AE. We
briefly discuss three of the most significant enhancements to
the training methodology here.

Large Batch Size
Empirically the batch size for Channel AE has to be larger
than 1000 to generalize well. Large batch size gives a better
gradient estimations. Also with a large batch size, power
constraint module offers a better estimation of mean and
std [33], which makes the output of the encoder less noisy,
thus the decoder can be optimized accordingly.

Separately Train Encoder and Decoder
Training encoder and decoder jointly with end-to-end back-
propagation leads to saddle points. We argue that training
Channel AE entails separately training encoder and decoder
[28]. The accurate gradient of the encoder can be computed
when the decoder is optimal for a given encoder. Thus after
training encoder, training decoder until convergence will make
the gradient of encoder more trustable. However, at every

step training decoder till convergence is computationally
expensive. Empirically we find training encoder once and
training decoder 5 times shows the best performance.

Adding Minimum Distance Regularizer
Naively optimizing Channel AE results in paired local op-
timum: a bad encoder and a bad decoder can be locked in
a saddle-point. Adding regularization to loss is a common
method to escape local optima [13]. Coding theory suggests
that maximizing minimum distance between all possible input
messages [5] improves coding performance. However since
the number of all possible messages increases exponentially
with respect to code block length, computing loss with
maximized minimum distance for long block code becomes
prohibitive.

Exploiting the locality inherent to RNN codes, we intro-
duce a different loss term solely for the encoder which we
refer to as the partial minimum code distance regularizer.
Partial minimum code distance dist(us) is the minimum
distance among all possible codewords with length s, which
contains 2s codes. Computing pairwise distance requires
O(

(
2s

2

)
) computations. Partial minimum code distance is a

compromise over computation, which still guarantees large
minimum distance under small block length s, while hoping
the minimum distance on longer block length would still be
large. Empirically partial minimum code distance improves
block code performance significantly.

C. Design to beat Convolutional Code

Applying the network architecture guidelines and the train-
ing methodology improvements proposed hitherto, we design
neural code with Bi-GRU for both encoder and decoder
as shown in Figure 4. The hyperparameters are shown in
Figure 5.

Fig. 4. RNN-based Channel AE encoder (left), decoder (middle), and
Network Structures (right)

Encoder 2-layer Bi-GRU with 25 units
Decoder 2-layer Bi-GRU with 100 units

Power constraint bit-wise normalization
Batch size 1000

Learning rate 0.001, decay by 10 when saturate
Num epoch 240

Block length 100
Batch per epoch 100

Optimizer Adam
Loss Binary Cross Entropy (BCE)

Min Dist Regularizer 0.0
Train SNR at rate 1/2 mixture of 0 to 8dB
Train SNR at rate 1/3 mixture of -1 to 2dB
Train SNR at rate 1/4 mixture of -2 to 2dB

Train method train encoder once decoder 5 times
Min Distance Regularizer 0.001 (s = 10)

Fig. 5. RNN-based Channel AE hyperparameters



D. Performance of RNN-based Channel AE: AWGN Setting

We design the block code under short block lengths and
compare the performance with Tail-biting Convolutional Code
(TBCC), as TBCC bridges the gap between run-length code
and block code. The BER performance in AWGN channel
under various code rates is shown in Figure 6. The TBCC
BER curve is generated by the best generator function from
Figure 7 (left). Figure 6 shows that RNN-based Channel AE
outperforms all convolutional codes under memory size 7.
RNN-based Channel AE empirically shows the advantage of
jointly optimizing encoder and decoder over AWGN channel.

Fig. 6. Comparing RNN-based Channel AE with Conv Code on rate 1/4
(left), 1/3 (middle), 1/2 (right). Block length = 100

III. DESIGN LOW LATENCY CODES: LEARN

Designing codes for low latency constraints is challenging
as many existing block codes require inevitably long block
lengths. In this section, to address this challenge, we propose
a novel RNN based encoder and decoder architecture that
satisfies low latency constraint, which we call LEARN. We
show that the LEARN code is (a) significantly more reliable
than convolutional codes, which are state-of-the-art under
extreme low latency constraint [7], and (b) more robust and
adaptive for various channels beyond AWGN channels. In the
following, we first define the latency and review the literature
under the low latency setting.

A. Low Latency Convolutional Code

Formally, decoder structural delay D is understood in the
following setting: to send message bt at time t, the causal
encoder sends code xt, and the decoder has to decode bt
as soon as it received yt+D. The decoder structural delay
D is the number of bits that the decoder can look ahead to
decode. The convolutional code has 0 encoder delay due to
its causal encoder, and the decoder delay is controlled by
the optimal Viterbi Decoder [31] with a decoding window of
length w which only uses the last w future branches in the
trellis to compute the current output. For code rate R = k

n
convolutional code, the structural decoder delay is D = k −
1 + kw [8]. When information bit is k = 1, the structural
decoder delay is D = w. Convolutional code is the state-of-
the-art code under extreme low latency where D ≤ 50 [7].

In this paper, we confine our scope at investigating extreme
low latency with no encoder delay under extremely low
structural decoder delay D = 1 to D = 10 with code rates 1/2,
1/3, and 1/4. The benchmark we are using is convolutional
code with variable memory length. Under unbounded block

length setting, longer memory results in better performance,
however under low latency constraint longer memory might
not necessarily mean better performance since the decoding
window is shorter [7]. Hence we test for all memory lengths
under 7 to get the state-of-the-art performance of the Recur-
sive Systematic Convolutional (RSC) Code, whose generating
functions are shown in Figure 7 (left), with convolutional code
encoder shown in Figure 7 (right). The decoder is Viterbi
Decoder with decoding window w = D.

Fig. 7. Convolutional Code generator matrix (left) and Encoder (right)

B. LEARN network structure

Following the network design proposed in previous section,
we propose a novel RNN based neural network architecture
for the LEARN (both the encoder and the decoder) that satis-
fies the low latency constraint. Our proposed LEARN encoder
is illustrated in Figure 8 (left). The causal neural encoder
is a causal RNN with two layers of GRU added to Fully
Connected Neural Network (FCNN). The neural structure
ensures that the optimal temporal storage can be learnt and
extended to non-linear regime. The power constraint module
is bit-wise normalization as described in previous section.

Fig. 8. LEARN encoder (left), LEARN decoder (middle), and Network
Structures (right)

Applying Bi-RNN decoder for low latency code requires to
compute lookahead instances for each received information
bit, which is computationally expensive in both time and
memory. To improve efficiency, the LEARN decoder uses two
GRU structures instead of Bi-RNN structures. The LEARN
decoder has two GRUs: one GRU runs till the current time
slot, another GRU runs further for D steps, then the outputs
of two GRUs are summarized by a FCNN. LEARN decoder
ensures that all the information bits satisfying delay constraint
can be utilized with the forward pass only. When decoding
a received signal, each GRU just needs to process one step
ahead, which results in decoding computation complexity
O(1). Viterbi and BCJR low latency decoders need to go
through the trellis and backtrack to the desired position, which
requires going forward one step and backward with delay
constraints steps, thus resulting in O(D) computation for
decoding each bit. Although GRU has a large computational
constant due to the complexity of the neural network, with



emerging AI chips the computation time is expected to
diminish [34]. The hyper-parameters of LEARN are different
from block code settings and is shown in Figure 9.

Encoder One 2-layer GRU with 25 units
Decoder Two 2-layer GRU with 100 units
Num epoch 120
Min Dist Regularizer 0.0

Fig. 9. LEARN hyperparameters

C. Performance of LEARN: AWGN Setting

Figure 10 shows the BER of LEARN code and SOTA
RSC code from varying memory lengths in Figure 7 (left)
for rates 1/2, 1/3, and 1/4 as a function of SNR under latency
constraints D = 1 and D = 10. As we can see from the
figure, for rates 1/3 and 1/4 under AWGN channel, LEARN
code under extreme delay (D = 1 to D = 10) shows better
performance in Bit Error Rate (BER) as compared to the
SOTA RSC code from varying memory lengths from Figure
7 (left). LEARN outperforms all RSC code listed in Figure 7
(left) with D ≤ 10 with code rates 1/3 and 1/4, demonstrating
a very promising application of neural code under low latency
constraint.

Fig. 10. BER curves comparing Low latency Convolutional Code vs LEARN
under AWGN channel with rate 1/4, 1/3, and 1/2.

For higher code rates such as R = 1
2 and D ≥ 5, LEARN

shows comparable performance to convolutional codes but
degrades at high SNR. We expect further improvements can
be made via improved structure design and hyperparameter
optimization, especially at higher rates.

D. Robustness and Adaptivity

We test the robustness and adaptivity of LEARN on three
families of channels:

1) AWGN channel: y = x+ z, where z ∼ N(0, σ2).
2) Additive T-distribution Noise (ATN) channel: y = x+z,

where x ∼ T (v, σ2), for v = 3, 5. This noise is a model
for heavy-tailed distributions.

3) Radar channel: y = x+w+z, where z ∼ N(0, σ2
1) and

w ∼ N(0, σ2
2), w.p. p. (Assume σ1 � σ2). This noise

model shows up when there is bursty interference, for
example when a Radar interferes with LTE [12], [35]

Robustness
Robustness shows when LEARN is trained for AWGN chan-
nel, the test performance with no re-training on a different

channel (ATN and Radar) should not degrade much. Most
existing codes are designed under AWGN since AWGN has
a clean mathematical abstraction, and AWGN is the worst
case noise under a given power constraint [1]. When both
the encoder and the decoder are not aware of the non-
AWGN channel, the BER performance degrades. Robustness
ensures both the encoder and the decoder perform well under
channel mismatch, which is a typical use case for low latency
scheme when channel estimation and compensation are not
accurate [5].

Adaptivity
Adaptivity allows LEARN to learn a decoding algorithm from
enough data even under no clean mathematical model [26].
We train LEARN under ATN and Radar channels with the
same hyperparameter as shown in Figure 9 and with the same
amount of training data to ensure LEARN converges. With
both encoder and decoder learnable, two cases of adaptivity
are tested. First is the decoder adaptivity, where encoder
is fixed and decoder can be further trained. Second is the
full adaptivity on both encoder and decoder. In our findings,
encoder adaptivity doesn’t show any further advantage, and
is thus omitted.

Performance
The performance of LEARN with reference to robustness and
adaptivity is shown in Figure 11 with three different settings:
(1) delay D = 10, code rate R = 1/2, with ATN(ν = 3)
channel; (2) delay D = 2, code rate R = 1/3, with ATN(ν =
3) channel; (3) delay D = 10, code rate R = 1/2, with
Radar(p = 0.05, σ2 = 5.0) channel. As shown in Figure 11
(left), with ATN (ν = 3) that has a heavy-tail noise, LEARN
with robustness outperforms convolutional code. Adaptivity
with both encoder and decoder performs best, and is better
than only decoder is adaptive. By utilizing the degree of
freedom of designing encoder and decoder, neural designed
coding scheme can match canonical convolutional codes with
Channel State Information at Receiver (CSIR) at low code rate
(R = 1/2), and outperform convolutional codes with CSIR
at high code rate (R = 1/3).

As for Figure 11 (middle) ATN (ν = 3) channel with code
rate R = 1/3 and Figure 11 (right) Radar (σ2 = 5.0) channel
with code rate R = 1/4, the same trend holds. Note that under
Radar channel, we apply the heuristic proposed in [12]. We
observe that LEARN with full adaptation gives an order-of-
magnitude improvement in reliability over the convolutiona
code heuristic [12]. The experiment shows that by jointly
designing both encoder and decoder, LEARN can adapt to
a broad family of channels. LEARN offers an end-to-end low
latency coding design method which can be applied to any
statistical channels and ensure good performance.

IV. CONCLUSION

In this paper, we have demonstrated the power of neu-
ral network based architectures in achieving state-of-the-art
performance for simultaneous code and decoder design. In
the long block length case, we showed that our learnt codes
can significantly outperform convolutional codes. However, in



Fig. 11. LEARN robustness and adaptivity in ATN (ν = 3, R = 1/2,
D = 10)(left), ATN (ν = 3, R = 1/3, D = 2)(middle), and Radar
(p = 0.05, σ2 = 5.0, R = 1/4, D = 10)(right) channels

order to beat state-of-the-art codes such as Turbo or LDPC
codes, we require additional mechansims such as interleaving
to introduce long-term dependence. This promises to be a
fruitful direction for future exploration.

In the low-latency regime, we showed that we can achieve
state-of-the-art performance with LEARN codes. Further-
more, we showed that LEARN codes beat existing codes by
an order of magnitude in reliability when there is channel
mismatch. Our present design is restricted to extreme low
latency, however, with additional mechanisms for introducing
longer term dependence [36], [37], it is possible to extend
these designs to cover a larger range of delays. This is another
interesting direction for future work.

We refer the reader to our full paper [38] for further details
on training methodology as well as interpretation of learnt
codes.

REFERENCES

[1] Shannon, C.E. “A mathematical theory of communication.” Bell system
technical journal 27.3 (1948): 379-423.

[2] Arikan, Erdal. “A performance comparison of polar codes and Reed-
Muller codes.” IEEE Communications Letters 12.6 (2008).

[3] Berrou, Claude, Alain Glavieux, and Punya Thitimajshima. “Near
Shannon limit error-correcting coding and decoding: Turbo-codes. 1.”
Communications, 1993. ICC’93.

[4] MacKay, D. JC, and Radford M. N. “Near Shannon limit performance
of low density parity check codes.” Electronics letters 32.18 (1996).

[5] Richardson, Tom, and Ruediger Urbanke. Modern coding theory. Cam-
bridge university press, 2008.

[6] Sybis, Michal, et al. “Channel coding for ultra-reliable low-latency
communication in 5G systems.” Vehicular Technology Conference
(VTC-Fall), IEEE 84th. IEEE, 2016.

[7] Rachinger, Christoph, Johannes B. Huber, and Ralf R. Mller. “Compar-
ison of convolutional and block codes for low structural delay.” IEEE
Transactions on Communications 63.12 (2015): 4629-4638.

[8] Maiya, Shashank V., Daniel J. Costello, and Thomas E. Fuja. “Low
latency coding: Convolutional codes vs. LDPC codes.” IEEE Transac-
tions on Communications 60.5 (2012): 1215-1225.

[9] Polyanskiy, Yury, H. Vincent Poor, and Sergio Verd. ”Channel coding
rate in the finite blocklength regime.” IEEE Trans. on Info. Theory 56.5
(2010): 2307-2359.

[10] Shirvanimoghaddam, Mahyar, et al. “Short Block-length Codes
for Ultra-Reliable Low-Latency Communications.” arXiv:1802.09166
(2018).

[11] Li, Junyi, Xinzhou Wu, and Rajiv Laroia. OFDMA mobile broadband
communications: A systems approach. Cambridge University Press,
2013.

[12] Safavi-Naeini, Hossein-Ali, et al. “Impact and mitigation of narrow-
band radar interference in down-link LTE.” 2015 IEEE ICC, 2015.

[13] Goodfellow, Ian, et al. Deep learning. Vol. 1. Cambridge: MIT press,
2016.

[14] Han, Song, Huizi Mao, and William J. Dally. “Deep compression:
Compressing deep neural networks with pruning, trained quantization
and Huffman coding.” arXiv:1510.00149 (2015).

[15] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the
dimensionality of data with neural networks.” science 313.5786 (2006):
504-507.

[16] O’Shea, Timothy J., Kiran Karra, and T. Charles Clancy. “Learning
to communicate: Channel auto-encoders, domain specific regularizers,
and attention.” Signal Processing and Information Technology (ISSPIT),
2016 IEEE International Symposium on. IEEE, 2016.

[17] O’Shea, Timothy, and Jakob Hoydis. “An introduction to deep learning
for the physical layer.” IEEE Transactions on Cognitive Communica-
tions and Networking 3.4 (2017): 563-575.

[18] Kannan, Sreeram and Kim, Hyeji and Oh, Sewoong, “Deep learning
and Information theory: An emerging interface.” Tutorial at IEEE
International Symposium on Information Theory (ISIT), June 2018.

[19] Farsad, Nariman and Goldsmith, Andrea, “Neural Network Detection
of Data Sequences in Communication Systems.” IEEE Transactions on
Signal Processing, Jan 2018.

[20] Dörner, Sebastian and Cammerer, Sebastian and Hoydis, Jakob and
Brink, Stephan ten, “Deep learning-based communication over the air.”
arXiv preprint arXiv:1707.03384

[21] O’Shea, Timothy J., Tugba Erpek, and T. Charles Clancy. “Deep learn-
ing based MIMO communications.” arXiv preprint arXiv:1707.07980
(2017).

[22] Nachmani, Eliya, Yair Be’ery, and David Burshtein. “Learning to
decode linear codes using deep learning.” Communication, Control,
and Computing (Allerton), 2016 54th Annual Allerton Conference on.
IEEE, 2016.

[23] Nachmani, Eliya, et al. “Deep learning methods for improved decoding
of linear codes.” IEEE Journal of Selected Topics in Signal Processing
12.1 (2018): 119-131.

[24] Gruber, Tobias, et al. “On deep learning-based channel decoding.” In-
formation Sciences and Systems (CISS), 2017 51st Annual Conference
on. IEEE, 2017.

[25] Cammerer, Sebastian, et al. “Scaling deep learning-based decoding of
polar codes via partitioning.” GLOBECOM 2017-2017 IEEE Global
Communications Conference. IEEE, 2017.

[26] Kim, Hyeji and Jiang, Yihan and Rana, Ranvir and Kannan, Sreeram
and Oh, Sewoong and Viswanath, Pramod. ”Communication Algo-
rithms via Deep Learning” Sixth International Conference on Learning
Representations (ICLR).

[27] Hammer, Barbara, “On the approximation capability of recurrent neural
networks.” Neurocomputing Vol. 31, pp. 107–123, 2010.

[28] Aoudia, Fayal Ait, and Jakob Hoydis. “End-to-End Learning of
Communications Systems Without a Channel Model.” arXiv preprint
arXiv:1804.02276 (2018).

[29] Felix, Alexander, et al. “OFDM-Autoencoder for End-to-End Learning
of Communications Systems.” arXiv preprint arXiv:1803.05815 (2018).

[30] Kim, Hyeji, et al. “Deepcode: Feedback codes via deep learning.” arXiv
preprint arXiv:1807.00801 (2018).

[31] Viterbi, Andrew. “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm.” IEEE transactions on Informa-
tion Theory 13.2 (1967): 260-269.

[32] Chung, Junyoung, et al. “Empirical evaluation of gated recurrent neural
networks on sequence modeling.” arXiv:1412.3555 (2014).

[33] Ioffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift.” arXiv
preprint arXiv:1502.03167 (2015).

[34] Ovtcharov, Kalin, et al. “Accelerating deep convolutional neural net-
works using specialized hardware.” MSR Whitepaper 2.11 (2015).

[35] Sanders, Geoffrey A, “Effects of radar interference on LTE (FDD)
eNodeB and UE receiver performance in the 3.5 GHz band.” US De-
partment of Commerce, National Telecommunications and Information
Administration, 2014.

[36] Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V, “Sequence to
sequence learning with neural networks.” NIPS 2014.

[37] Jaderberg, Max and Simonyan, Karen and Zisserman, Andrew and
others, “Spatial transformer networks.” NIPS 2015.

[38] Y. Jiang, H. Kim, H. Asani, S. Kannan, S. Oh, and P. Viswanath,
“LEARN Codes: Inventing low-latency codes via recurrent neural
networks.” to appear on arXiv. https://infotheory.ece.uw.edu/papers/
learn 2018.pdf


