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Online Appendix. Proofs
This appendix briefly reviews the notation and definitions and establishes basic lemmas before proving
the results of the paper. Basic second-order expectations are given in Lemma 1, Lemma 2 gives the
expansion of a matrix inverse, Lemma 3 shows first- and second-order expansions of �1 �̂� and �V −1,
Lemma 4 shows expansions of �B, Lemma 5 shows expansions of �w, Lemma 6 derives matrix traces,
and Lemma 7 derives the expectations that are needed to derive the adjusted performance measures
and their properties.
We define the first-order statistical differential terms � and � so that �̂ = � + � and �V = V + �,

while B is defined as B = 	�1 ��′V −1�1 ��
−1 so that w = V −1�1 ��B
( 1
�0

)
, while B is estimated as �B =

	�1 �̂�′ �V −1�1 �̂�
−1. We also define the scalar � = �0 1�B�1 �0�
′ = B22��0 −�∗�, where �∗ =−B12/B22. We

will let Si�f � denote the term of order i in the Taylor series expansion of f , while Si�f ��� denotes the
term of order i including only � (i.e., setting �= 0�, and similarly Si�f ��� is obtained by including only
� terms with �= 0. We will use E�	f ��̂� �V �
 to denote the expectation of the second-order expansion
of f at ���V � with respect to � and � so that

E�	f ��̂� �V �
 = f ���V �+E�S2	f ��̂� �V �
�
= f ���V �+E�S2	f ��̂� �V ���
�+E�S2	f ��̂� �V ���
� (EC1)

because any second-order term that includes both � and � will have expectation zero.

Lemma 1. For any symmetric n × n matrix Q, E��Q�� = 	VQV + V tr�QV �
/�T − 1� and E��′Q�� =
tr�QV �/T .

Proof. The expectation involving � follows from Theorem 3.1(iii) of Haff (1979), while the expecta-
tion involving � may be found, for example, Seber (1984, p. 14). �

Lemma 2. The first- and second-order expansion terms of the inverse of the matrix Q+ �, where Q and �
are n×n matrices with both Q and Q+ � invertible, are given by

S1	�Q+ ��−1� �
=−Q−1�Q−1� (EC2)

S2	�Q+ ��−1� �
=Q−1�Q−1�Q−1� (EC3)

Proof. Begin by observing directly that the identity matrix may be written as

In = �Q+ ���Q−1 −Q−1�Q−1 +Q−1�Q−1�Q−1�− �Q−1�Q−1�Q−1� (EC4)

Next, premultiply both sides by �Q+ ��−1 to obtain

�Q+ ��−1 = Q−1 −Q−1�Q−1 +Q−1�Q−1�Q−1 − �Q+ ��−1�Q−1�Q−1�Q−1

= Q−1 −Q−1�Q−1 +Q−1�Q−1�Q−1 +O�
�
3�� (EC5)

from which we can identify the first- and second-order terms. �

ec1
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Lemma 3. First- and second-order expansions of �1 �̂� and �V −1 are as follows:

S1	�1 �̂�� �
= ��0 1�� (EC6)

S2	�1 �̂�� �
= �0 0�� (EC7)

S1� �V −1���=−V −1�V −1� (EC8)

S2� �V −1���= V −1�V −1�V −1� (EC9)

S1	�1 �̂�� �
= S2	�1 �̂�� �
= �0 0�� and S1� �V −1���= S2� �V −1���= 0� (EC10)

Proof. Equations (EC6) and (EC7) follow directly from the definition �̂ = � + �, while (EC8)
and (EC9) follow from Lemma 2 using �V = V +�. Equation (EC10) follows because �̂ does not depend
on � and �V does not depend on �. �

Lemma 4. First- and second-order expansions of �B with respect to � and � are as follows:

S1� �B���=−B
[(

0
1

)
�′V −1�1 ��+ �1 ��′V −1��0 1�

]
B� (EC11)

S2� �B���= �′	V −1�1 ��B�1 ��′V −1 −V −1
�B

(
0
1

)
�0 1�B+B22B�1 ��′V −1��′V −1�1 ��B

+B
(
0
1

)
�0 1�B�1 ��′V −1��′V −1�1 ��B+B�1 ��′V −1��′V −1�1 ��B

(
0
1

)
�0 1�B� (EC12)

S1� �B���= B�1 ��′V −1�V −1�1 ��B� (EC13)

S2� �B���= B�1 ��′V −1�	V −1�1 ��B�1 ��′V −1 −V −1
�V −1�1 ��B� (EC14)

Proof. Equations (EC11) and (EC12) follow from identifying first- and second-order terms in the
expansion of �B with respect to �, using Lemma 2 while setting �= 0 (because we are expanding with
respect to � only), as follows:

	�1 �̂�′V −1�1 �̂�
−1

=
{[
�1 ��′ +

(
0
1

)
�′
]
V −1	�1 ��+��0 1�


}−1

=
{
B−1+

(
0
1

)
�′V −1�1 ��+�1 ��′V −1��0 1�+

(
0
1

)
�′V −1��0 1�

}−1

� B−B
{(

0
1

)
�′V −1�1 ��+�1 ��′V −1��0 1�+

(
0
1

)
�′V −1��0 1�

}
B

+B
{(

0
1

)
�′V −1�1 ��+�1 ��′V −1��0 1�

}
B

{(
0
1

)
�′V −1�1 ��+�1 ��′V −1��0 1�

}
B� (EC15)

By identifying, moving, and transposing selected embedded scalars, the second-order term may be
re-expressed as

S2� �B��� = −B
(
0
1

)
��′V −1���0 1�B+B

(
0
1

)[
�′V −1�1 ��B

(
0
1

)]
�′V −1�1 ��B

+B
(
0
1

)
	�′V −1�1 ��B�1 ��′V −1�
�0 1�B+B�1 ��′V −1�

[
�0 1�B

(
0
1

)]
�′V −1�1 ��B

+B�1 ��′V −1�	�0 1�B�1 ��′V −1�
�0 1�B

= �′	V −1�1 ��B�1 ��′V −1−V −1
�B

(
0
1

)
�0 1�B+B22B�1 ��′V −1��′V −1�1 ��B

+B
(
0
1

)
�0 1�B�1 ��′V −1��′V −1�1 ��B+B�1 ��′V −1��′V −1�1 ��B

(
0
1

)
�0 1�B� (EC16)
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Equations (EC13) and (EC14) follow from identifying first- and second-order terms in the expansion
of �B with respect to �, using Lemma 2 twice while setting �= 0, as follows:

	�1 ��′ �V −1�1 ��
−1 = 	�1 ��′�V +��−1�1 ��
−1

� 	�1 ��′�V −1−V −1�V −1+V −1�V −1�V −1��1 ��
−1

= 	B−1−�1 ��′V −1�V −1�1 ��+�1 ��′V −1�V −1�V −1�1 ��
−1

� B−B	−�1 ��′V −1�V −1�1 ��+�1 ��′V −1�V −1�V −1�1 ��
B

+B	−�1 ��′V −1�V −1�1 ��
B	−�1 ��′V −1�V −1�1 ��
B� � (EC17)

Lemma 5. First-order expansions of �w with respect to � and � are as follows:

S1� �w���=
[
�V −1 −V −1�1 ��B

(
0
1

)
w′ − �V −1�1 ��B�1 ��′V −1

]
�� (EC18)

S1� �w���= 	V −1�1 ��B�1 ��′V −1 −V −1
�w� (EC19)

Proof. Note that �w = �V −1�1 �̂� �B( 1
�0

)
. Expanding with respect to �, we may set � = 0 using (EC6)

and (EC11) to find

S1� �w��� = V −1S1	�1 �̂� �B��

(
1
�0

)
= V −1�S1	�1 �̂�� �
B+ �1 ��S1� �B����

(
1
�0

)
= V −1

{
��0 1�B− �1 ��B

[(
0
1

)
�′V −1�1 ��+ �1 ��′V −1��0 1�

]
B

}(
1
�0

)
= �V −1�−V −1�1 ��B

(
0
1

)[
�′V −1�1 ��B

(
1
�0

)]
− �V −1�1 ��B�1 ��′V −1�� (EC20)

Transposing an embedded scalar and factoring establishes (EC18). To prove (EC19), expand with
respect to � while setting �= 0, so that �̂=�, using (EC8) and (EC13) to find

S1� �w��� = S1	 �V −1�1 �� �B��

(
1
�0

)
= S1� �V −1����1 ��B

(
1
�0

)
+V −1�1 ��S1� �B���

(
1
�0

)
= −V −1�V −1�1 ��B

(
1
�0

)
+V −1�1 ��B�1 ��′V −1�V −1�1 ��B

(
1
�0

)
� (EC21)

which simplifies to complete the proof. �

Lemma 6. Some useful traces are given by

tr	V −1�1 ��B�1 ��′
= 2 and (EC22)

tr
[
V −1�1 ��B

(
0
1

)
w′V

]
= B22��0 −�∗�� (EC23)

Proof. Equation (EC22) follows from commutativity of matrices within the trace operator and the
definition of B as follows: tr	V −1�1 ��B�1 ��′
= tr	�1 ��′V −1�1 ��B
= tr	I2
= 2. Equation (EC23) fol-
lows for similar reasons as follows:

tr
[
V −1�1 ��B

(
0
1

)
�w′V �

]
= tr

[
�w′V �V −1�1 ��B

(
0
1

)]
= tr

[
�1 �0�B

(
0
1

)]
=�=B22��0−�∗�� � (EC24)

Lemma 7. Some useful expectations may be computed as follows:

E	S2� �B���
=− n− 2
T − 1

B� (EC25)

E	S2� �B���
=
1
T
B22B−

n− 4
T

B

(
0
1

)
�0 1�B� (EC26)
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E	S2���2
0 �
=

B22

T
�2
0 −

n− 4
T

B2
22��0 −�∗�

2 − n− 2
T − 1

�2
0 � (EC27)

E	S2� �w′� �w�
=−2�n− 2�
T − 1

�2
0 � (EC28)

E	�′S1� �w�
=
n− 3
T

B22��0 −�∗�� (EC29)

E	S2� �w′V �w�
= B22

T
�2
0 −

n− 4
T

B2
22��0 −�∗�

2 + n− 2
T − 1

�2
0 � (EC30)

E	S2� �w′��′ �w�
= �2
0

T
− 2�0

n− 3
T

B22��0 −�∗�� (EC31)

Proof. To prove Equation (EC25), use Lemma 1 to evaluate the expectation of (EC14), simplify
while recognizing that �1 ��′V −1�1 ��= B−1, and using (EC22) to evaluate a trace as follows:

E	S2� �B���
 = B�1 ��′V −1E��	V −1�1 ��B�1 ��′V −1 −V −1
��V −1�1 ��B

= 1
T − 1

B�1 ��′V −1��1 ��B�1 ��′ −V +V tr	V −1�1 ��B�1 ��′ − In
�V −1�1 ��B

= − n− 2
T − 1

B� (EC32)

For Equation (EC26), apply Lemma 1 to (EC12) to find:

E	S2� �B���
 = tr	V −1�1 ��B�1 ��′ −In
B
(
0
1

)
�0 1�B/T +B22B�1 ��′V −1�1 ��B/T

+B
(
0
1

)
�0 1�B�1 ��′V −1�1 ��B/T +B�1 ��′V −1�1 ��B

(
0
1

)
�0 1�B/T � (EC33)

Using (EC22) and the definition of B, (EC33) simplifies to establish (EC26). For Equation (EC27),
use (EC25) and (EC26) with the fact that ��2

0 = �1 �0� �B�1 �0�
′ to find

E	S2���2
0 �
 = �1 �0�E	S2� �B���+ S2� �B���


(
1
�0

)
= �1 �0�

[
1
T
B22B−

n− 4
T

B

(
0
1

)
�0 1�B− n− 2

T − 1
B

](
1
�0

)
� (EC34)

which, recognizing that �1 �0�B�0 1�′ = � = B22��0 −�∗�, simplifies to (EC27). For Equation (EC28), by
symmetry and using (EC19), we have

E	S2� �w′� �w�
= 2w′E	�S1� �w���
= 2w′E��	V −1�1 ��B�1 ��′V −1 −V −1
��w� (EC35)

Using Lemma 1 to evaluate the expectation and (EC22) to evaluate a trace, we simplify to find

E	S2� �w′� �w�
 = 2w′�	�1 ��B�1 ��′ −V 
+V tr	V −1�1 ��B�1 ��′ − In
�w/�T − 1�

= 2w′�	�1 ��B�1 ��′ −V 
+ �2−n�V �w/�T − 1�

= 2
[
�1 �0�B

(
1
�0

)
− �n− 1��2

0

]/
�T − 1�= 2

T − 1
	�2

0 − �n− 1��2
0 


= −2�n− 2�
T − 1

�2
0 � (EC36)

For Equation (EC29), first note that E	�′S1� �w�
 = E	�′S1� �w���
 because E	�′S1� �w���
 = 0 by indepen-
dence of � and �, then substitute using (EC18), evaluate the expectation using Lemma 1, and find the
trace using (EC22) and (EC23) to obtain

E	�′S1� �w���
 = E

{
�′
[
�V −1 −V −1�1 ��B

(
0
1

)
w′ − �V −1�1 ��B�1 ��′V −1

]
�

}
= 1
T
tr
[
�In−V −1�1 ��B

(
0
1

)
w′V − �V −1�1 ��B�1 ��′

]
= 1
T
	n�− �− 2�
� (EC37)
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which simplifies to (EC29). To prove (EC30), observe that

E	S2� �w′V �w�
= E	S2� �w′ �V �w− �w′� �w�
= E	S2���2
0 �
−E	S2� �w′� �w�
� (EC38)

Substituting using (EC27) and (EC28), then simplifying, establishes (EC30). To prove (EC31), note
using �0 = �w′�̂ that

S2� �w′��′ �w� = S2	 �w′��̂−����̂−��′ �w+ 2�0 �w′�−�2
0
= S2	 �w′��′ �w+ 2�0 �w′�−�2

0


= w′��′w+ 2�0S2� �w′��� (EC39)

The expectation may be found using Theorem 1 as follows:

E	S2� �w′��′ �w�
 = w′E���′�w+ 2�0E	S2� �w′��


= w′Vw
T

− 2�0
n− 3
T

B22��0 −�∗�� (EC40)

completing the proof. �

Proof of Theorem 1. Because RT+1 is independent of �w (and observing that second-order terms
containing both � and � will have expectation zero), we may write

E�� �w′�� = E�� �w′�̂�−E�	 �w′��̂−��
=�0 −E���′ �w�
= �0 −E	S2��′ �w�
=�0 −E	�′S1� �w�
� (EC41)

which simplifies using (EC29) from Lemma 7 to establish (7). To prove Equation (9), we expand
E���̂adjusted� to second order as follows:

E�

{
�0 −

n− 3
T

�B22��0 − �̂∗�
}
= �0 −

n− 3
T

B22��0 −�∗�+E
{
S2

[
�0 −

n− 3
T

�B22��0 − �̂∗�
]}

= E�� �w′RT+1�+O
(

1
T 2

)
� (EC42)

where the last equality was obtained by observing that expectations of second-order expansion terms
with respect to either � or � will be O�1/T � by Lemma 1. �

Proof of Theorem 2. Equation (10) is obtained by applying (EC27) from Lemma 7 to the delta-
method expansion E����2

0 �= �2
0 + E	S2���2

0 �
. Having used iterated expectation to establish the second
equality of (11), we next expand as follows:

E�	 �w′V �w+ �w′��′ �w
− 	E�� �w′��
2 = �2
0 +E	S2� �w′V �w�
+�2

0 +E	S2� �w′��′ �w�
− 	E�� �w′��
2 (EC43)

and then use (EC30), (EC31), and Theorem 1 to evaluate the resulting delta-method expectations,
finally simplifying to complete the proof. To prove (13), note that E����2

adjusted�= 	1+�2n− 3�/T 
E����2
0 �+

O�1/T 2�, then substitute from (10) and simplify. �

Proof of Theorem 3. Begin with the naïve frontier that expresses ��0 as a function of �0:

��0 =
√
��2∗ + �B22��0 − �̂∗�2� (EC44)

then substitute for �0 − �̂∗ by solving Equation (8), and substitute for ��0 by solving (12). �

Proof of Theorem 4. When rf < �̂∗ , the naïve Sharpe ratio Snaïve, which maximizes ��0 − rf �/��0
for the naïve frontier (EC44), may be written as

Snaive =
√

1
�B22

+ ��̂∗ − rf �2
��2∗

� (EC45)
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Because the adjusted frontier remains geometrically a hyperbola with the equation given by (14)
instead of (EC44), it follows that we may make the corresponding substitutions in the naïve Sharpe
ratio formula (EC45). These substitutions, ��∗ → 	1 + �n− 1�5�/T 
��∗ and �B22 → �B22	1+ �n− 1�5�/T 
2 ·
	1− �n− 3� �B22/T 


−2, establish the first equality in (15). The second equality follows by solving (EC45)
for ��̂∗ − rf �2/��2

∗ , substituting, and simplifying. �

Proof of Theorem 5. From the definition of the Sharpe-ratio maximizing portfolio, the naïve CML
is defined as

�̂CML�naive��rf �= xrf + �1− x�
(
�̂∗ +

��2
∗

�B22��̂∗ − rf �
)
� (EC46)

��CML�naive��rf �= �1− x���∗

√
1+ ��2∗

�B22��̂∗ − rf �2
� (EC47)

Because the adjusted frontier remains geometrically a hyperbola with the equation given by (14)
instead of (EC44), it follows that (as in the proof of Theorem 4) we may make corresponding substi-
tutions in the naïve CML formulae to obtain (16) and (17). �

Proof of Corollary to Theorem 5. This follows by reversing Equation (3) to define the naïve
target mean as function of the adjusted target mean and then substituting the risky component of
Equation (16) for the adjusted Sharpe-ratio maximizing portfolio performance. �

Proof of Theorem 6. For �w on the estimated efficient frontier (1), we have �w′ �V 1= n�1 ˆ̄�� �B( 1
�0

)
and

��2
0 = �w �V �w = �1 �0� �B

( 1
�0

)
, where ˆ̄�=∑n

i=1 �̂i/n is the equally weighted average of the estimated asset
means. The diversification measure D̂iv= � �w− �1/n�1�′ �V � �w− �1/n�1� can be expanded as follows:

D̂iv = �1 �0� �B
(
1
�0

)
− 2�1 �0� �B

(
1
ˆ̄�
)
+ 1
n2

1′ �V 1

= �B22��0 − ˆ̄��2 + 1
n2

1′ �V 1− �1 ˆ̄�� �B
(
1
ˆ̄�
)
� (EC48)

Hence, D̂iv is closer to zero the closer �0 is to ˆ̄�, ceteris paribus. The target mean that maximizes the
naïve Sharpe ratio can be written as follows:

�̂0� S−max−naive = �̂∗ +
��2
∗

�B22��̂∗ − rf �
� (EC49)

Using Equation (19) for the naïve mean corresponding to the adjusted Sharpe-ratio maximizing port-
folio, one can see that the target mean for the naïve Sharpe-ratio maximizing portfolio will always
be greater than the naïve mean corresponding to the adjusted Sharpe-ratio maximizing portfolio, pro-
vided n > 3 and �̂∗ > rf . Hence, the adjusted Sharpe-ratio maximizing portfolio is more diversified
whenever

ˆ̄�< �̂0� S−max−naive + �̂0� S−max−adj

2
� (EC50)

Equation (EC50) leads to the third restriction in the theorem statement and completes the proof. �


