
Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

High-Dimensional Statistical Learning:
Introduction

Jean Feng & Ali Shojaie

November 15, 2020
Sixth Seattle Symposium in Biostatistics

1 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

A Simple Example

I Suppose we have n = 400 people with diabetes for whom we
have p = 3 serum-level measurements (LDL, HDL, GLU).

I We wish to predict these peoples’ disease progression after 1
year.

2 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

A Simple Example

Notation:

I n is the number of observations.

I p the number of
variables/features/predictors.

I y is a n-vector containing
response/outcome for each of n
observations.

I X is a n × p data matrix.

3 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Linear Regression on a Simple Example

I You can perform linear regression to develop a model to
predict progression using LDL, HDL, and GLU:

y = β0 + β1X1 + β2X2 + β3X3 + ε

where y is our continuous measure of disease progression,
X1,X2,X3 are our serum-level measurements, and ε is a noise
term.

I You can look at the coefficients, p-values, and t-statistics for
your linear regression model in order to interpret your results.

I You learned everything (or most of what) you need to analyze
this data set in AP Statistics!

4 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

A Relationship Between the Variables?

progression

−0.10 0.00 0.10 0.20

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
● ●

● ●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●

●
●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

−0.10 0.00 0.10

50
15

0
25

0
35

0

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●●

● ●

●

●

●

●
● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

−
0.

10
0.

00
0.

10
0.

20

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

● ●

● ●

●

● ●

●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●● ●●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

● ●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

● ●

●
●

LDL
●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

● ●

●●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

● ●● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

● ●

● ●

●●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●●●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

● ●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

● ●●

●

● ●

●

●

●●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

● ●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

● ●

●

●
●

●
●●●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●●
●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

● ●●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

● ●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

● ●●

●

● ●

●

●

●●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

● ●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●●

●

●
●

●
●●●

●

●

●

●

●
●●

●

●

●

●
●

●
●

● ●

●

●● ●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

● ●●

●

●●

●
●

●

HDL

−
0.

10
0.

00
0.

10

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

● ●●

●

● ●

●

●

●●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

● ●

●

●
●

●
● ●●

●

●

●

●

●
●●

●

●

●

●
●

●
●

● ●

●

● ●
●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

● ●●

●

● ●

●
●

●

50 150 250 350

−
0.

10
0.

00
0.

10

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

● ●●
● ●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

● ●●
●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●
●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.10 0.00 0.10

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●●
●●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

GLU

5 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Linear Model Output

Estimate Std. Error T-Stat P-Value

Intercept 152.928 3.385 45.178 < 2e-16 ***
LDL 77.057 75.701 1.018 0.309
HDL -487.574 75.605 -6.449 3.28e-10 ***
GLU 477.604 76.643 6.232 1.18e-09 ***

progression measure ≈ 152.9+77.1×LDL−487.6×HDL+477.6×GLU.

6 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Low-Dimensional Versus High-Dimensional

I The data set that we just saw is low-dimensional: n � p.

I Lots of the data sets coming out of modern biological
techniques are high-dimensional: n ≈ p or n � p.

I This poses statistical challenges! AP Statistics no longer
applies.

7 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Low Dimensional

8 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

High Dimensional

9 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

What Goes Wrong in High Dimensions?

I Suppose that we included many additional predictors in our
model, such as
I Age
I Zodiac symbol
I Favorite color
I Mother’s birthday, in base 2

I Some of these predictors are useful, others aren’t.

I If we include too many predictors, we will overfit the data.

I Overfitting: Model looks great on the data used to develop it,
but will perform very poorly on future observations.

I When p ≈ n or p > n, overfitting is guaranteed unless we are
very careful.

10 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Gene Expression Data

11 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

DNA Sequence Data

12 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

DNAse Hypersensitivity Data

13 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Metabolomic Data

14 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

High-Dimensional Omics Analyses

For most omics analyses, we have many more variables than
observations.... i.e. p � n.

I Predict risk of diabetes on the basis of DNA sequence data....
using n = 1000 patients and p = 3000000 variables.

I Cluster tissue samples on the basis of DNase hypersensitivity...
using n = 200 cell types and p = 1000000000 variables.

I Identify genes whose expression is associated with survival
time... using n = 250 cancer patients and p = 20000
variables.

15 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Why Does Dimensionality Matter?

I Classical statistical techniques, such as linear regression,
cannot be applied.

I Even very simple tasks, like identifying variables that are
associated with a response, must be done with care.

I High risks of overfitting, false positives, and more.

This course: Statistical machine learning tools for big – mostly
high-dimensional – data.

16 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Supervised and Unsupervised Learning

I Statistical machine learning can be divided into two main
areas: supervised and unsupervised.

I Supervised Learning: Use a data set X to predict or detect
association with a response y .
I Regression
I Classification
I Hypothesis Testing

I Unsupervised Learning: Discover the signal in X , or detect
associations within X .
I Dimension Reduction
I Clustering

17 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Supervised Learning

18 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Unsupervised Learning

19 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

This Course

I We will cover the big ideas in supervised learning for big data.

I We will focus on applications in biomarker development.

20 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

“Reference Textbook” . . . with applications in R

I Available for (free!) download from www.statlearning.com.

I An accessible introduction to statistical machine learning,
with an R lab at the end of each chapter!!

I To learn more, go through R labs on your own!

21 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Where this fits in the Biomarker world

Goal:

To develop prescriptive/predictive biomarkers — indicate who will
benefit from new treatment over SOC.

If target of therapy is well understood, use it!

likely do not need high-dimensional techniques

22 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Where this fits in the Biomarker world

However, sometimes

I the therapy is not targeted

I the target is complicated (e.g. a large genomic pathway)

I the target turns out to be a poor predictor of effectiveness

In these cases, statistical machine learning can be effective for
developing prescriptive biomarkers.

23 / 24

Classical Statistics
Biological Big Data

Supervised and Unsupervised Learning

Examples from the Biomarker world

Oncotype DX
Exact Sciences

Prolaris, myRisk, etc...
Myriad Genetics

Decipher
GenomeDx (Decipher) Biosciences

24 / 24

High-Dimensional Statistical Learning:
Bias Variance Tradeoff and the Test Error

Jean Feng & Ali Shojaie

November 15, 2020
Sixth Seattle Symposium in Biostatistics

1 / 40

Supervised Learning

2 / 40

Regression Versus Classification

I Regression: Predict a quantitative response, such as
I blood pressure
I cholesterol level
I tumor size

I Classification: Predict a categorical response, such as
I tumor versus normal tissue
I heart disease versus no heart disease
I subtype of glioblastoma

I This lecture: Regression.

3 / 40

Linear Models

I We have n observations, for each of which we have p
predictor measurements and a response measurement.

I Want to develop a model of the form

yi = β0 + β1Xi1 + · · ·+ βpXip + εi .

I Here εi is a noise term associated with the ith observation.

I Must estimate β0, β1, . . . , βp — i.e. we must fit the model.

4 / 40

Linear Model With p = 2 Predictors

5 / 40

Least Squares Regression

I There are many ways we could fit the model

yi = β0 + β1Xi1 + · · ·+ βpXip + εi .

I Most common approach in classical statistics is least squares:

minimize
β

n∑

i=1

(yi − (β1Xi1 + · · ·+ βpXip))2

I We are looking for β1, . . . , βp such that

n∑

i=1

(yi − (β1Xi1 + · · ·+ βpXip))2

is as small as possible, or in other words, such that
n∑

i=1

(yi − ŷi)
2

is as small as possible, where ŷi is the ith predicted value.

6 / 40

Least Squares Regression

I When we fit a model, we use a training set of observations.

I We get coefficient estimates β̂1, . . . , β̂p.

I We also get predictions using our model, of the form

ŷi = β̂1Xi1 + · · ·+ β̂pXip.

I We can evaluate the training error, i.e. the extent to which
the model fits the observations used to train it.

I One way to quantify the training error is using the mean
squared error (MSE):

MSE =
1

n

n∑

i=1

(yi − ŷi)
2 =

1

n

n∑

i=1

(yi − (β̂1Xi1 + · · ·+ β̂pXip))2.

I The training error is closely related to the R2 for a linear
model — that is, the proportion of variance explained.

I Big R2 ⇔ Small Training Error.

7 / 40

Least Squares as More Variables are Included in the Model

I Training error and R2 are not good ways to evaluate a
model’s performance, because they will always improve as
more variables are added into the model.

I The problem? Training error and R2 evaluate the model’s
performance on the training observations.

I If I had an unlimited number of features to use in developing
a model, then I could surely come up with a regression model
that fits the training data perfectly! Unfortunately, this model
wouldn’t capture the true signal in the data.

I We really care about the model’s performance on test
observations — observations not used to fit the model.

8 / 40

The Problem

As we add more variables into the model...

... the training error decreases and the R2 increases!

9 / 40

Why is this a Problem?

I We really care about the model’s performance on observations
not used to fit the model!
I We want a model that will predict the survival time of a new

patient who walks into the clinic!
I We want a model that can be used to diagnose cancer for a

patient not used in model training!
I We want to predict risk of diabetes for a patient who wasn’t

used to fit the model!

I What we really care about:

(ytest − ŷtest)
2,

where
ŷtest = β̂1Xtest,1 + · · ·+ β̂pXtest,p,

and (Xtest , ytest) was not used to train the model.

I The test error is the average of (ytest − ŷtest)
2 over a bunch of

test observations.

10 / 40

Training Error versus Test Error

As we add more variables into the model...

... the training error decreases and the R2 increases!

But the test error might not!
11 / 40

Why the Number of Variables Matters

I Linear regression will have a very low training error if p is
large relative to n.

I A simple example:

−2 −1 0 1 2

−
10

−
5

0
5

x

y

−2 −1 0 1 2

−
10

−
5

0
5

x

y

−2 −1 0 1 2

−
10

−
5

0
5

x

y

−2 −1 0 1 2

−
10

−
5

0
5

x

y

−2 −1 0 1 2

−
10

−
5

0
5

x

y

−2 −1 0 1 2

−
10

−
5

0
5

x

y

I When n ≤ p, you can always get a perfect model fit to the
training data!

I But the test error will be awful.

12 / 40

Model Complexity, Training Error, and Test Error

I In this course, we will consider various types of models.

I We will be very concerned with model complexity: e.g. the
number of variables used to fit a model.

I As we fit more complex models — e.g. models with more
variables — the training error will always decrease.

I But the test error might not.

I As we will see, the number of variables in the model is not the
only — or even the best — way to quantify model complexity.

13 / 40

A Simulated Example

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Variables

R
 S

qu
ar

ed

●●●
●●●●

●

0 20 40 60 80 100

1e
−

28
1e

−
21

1e
−

14
1e

−
07

1e
+

00

Number of Variables

Tr
ai

ni
ng

 E
rr

or

●
●
●
●
●

●

●

●

●●●●
●●●●●●

●●●●●●●
●●●

●●●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●

●●●●●●●●
●●●●●

●
●●●

●
●●●

●●●●
●●

●
●●

●

●
●●

●

●
●●

●
●

●

0 20 40 60 80 100

1
2

5
10

20
50

10
0

20
0

50
0

Number of Variables

Te
st

 E
rr

or

I 1st 10 variables are related to response; remaining 90 are not.

I R2 increases and training error decreases as more variables are
added to the model.

I Test error is lowest when only signal variables in model.

14 / 40

Bias and Variance

I As model complexity increases, the bias of β̂ — the average
difference between β and β̂, if we were to repeat the
experiment a huge number of times — will decrease.

I But as complexity increases, the variance of β̂ — the amount
by which the β̂’s will differ across experiments — will increase.

I The test error depends on both the bias and variance:

Test Error = Bias2 + Variance.

I There is a bias-variance trade-off. We want a model that is
sufficiently complex as to have not too much bias, but not so
complex that it has too much variance.

15 / 40

A Really Fundamental Picture

16 / 40

Overfitting

I Fitting an overly complex model — a model that has too
much variance — is known as overfitting.

I In the omics setting, when p � n, we must work hard not to
overfit the data.

I In particular, we must rely not on training error, but on test
error, as a measure of model performance.

I How can we estimate the test error?

17 / 40

Training Set Versus Test Set

I Split samples into training set and test set.

I Fit model on training set, and evaluate on test set.

Q: Can there ever, under any circumstance, be sample overlap
between the training and test sets?
A: No no no no no no.

18 / 40

Training Set Versus Test Set

I Split samples into training set and test set.

I Fit model on training set, and evaluate on test set.

You can’t peek at the test set until you are completely done all
aspects of model-fitting on the training set!

19 / 40

Training Set And Test Set

To get an estimate of the test error of a particular model on a
future observation:

1. Split the samples into a training set and a test set.

2. Fit the model on the training set.

3. Evaluate its performance on the test set.

4. The test set error rate is an estimate of the model’s
performance on a future observation.

But remember: no peeking!

20 / 40

Choosing Between Several Models

I In general, we will consider a lot of possible models — e.g.
models with different levels of complexity. We must decide
which model is best.

I We have split our samples into a training set and a test set.
But remember: we can’t peek at the test set until we have
completely finalized our choice of model!

I We must pick a best model based on the training set, but we
want a model that will have low test error!

I How can we estimate test error using only the training set?

1. The validation set approach.
2. Leave-one-out cross-validation.
3. K -fold cross-validation.

I In what follows, assume we have split the data into a training
set and a test set, and the training set contains n observations.

21 / 40

Validation Set Approach

Split the n observations into two sets of approximately equal size.
Train on one set, and evaluate performance on the other.

22 / 40

Validation Set Approach

For a given model, we perform the following procedure:

1. Split the observations into two sets of approximately equal
size, a training set and a validation set.

a. Fit the model using the training observations. Let β̂(train)

denote the regression coefficient estimates.
b. For each observation in the validation set, compute the test

error, ei = (yi − xTi β̂(train))
2.

2. Calculate the total validation set error by summing the ei ’s
over all of the validation set observations.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.

23 / 40

Leave-One-Out Cross-Validation

Fit n models, each on n − 1 of the observations. Evaluate each
model on the left-out observation.

24 / 40

Leave-One-Out Cross-Validation

For a given model, we perform the following procedure:

1. For i = 1, . . . , n:

a. Fit the model using observations 1, . . . , i − 1, i + 1, . . . , n. Let
β̂(i) denote the regression coefficient estimates.

b. Compute the test error, ei = (yi − xTi β̂(i))
2.

2. Calculate
∑n

i=1 ei , the total CV error.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.

25 / 40

5-Fold Cross-Validation

Split the observations into 5 sets. Repeatedly train the model on 4
sets and evaluate its performance on the 5th.

26 / 40

K-fold cross-validation

A generalization of leave-one-out cross-validation. For a given
model, we perform the following procedure:

1. Split the n observations into K equally-sized folds.

2. For k = 1, . . . ,K :

a. Fit the model using the observations not in the kth fold.
b. Let ek denote the test error for the observations in the kth fold.

3. Calculate
∑K

k=1 ek , the total CV error.

Out of a set of candidate models, the “best” one is the one for
which the total error is smallest.

27 / 40

After Estimating the Test Error on the Training Set...

After we estimate the test error using the training set, we refit the
“best” model on all of the available training observations. We then
evaluate this model on the test set.

28 / 40

Big Picture

29 / 40

Big Picture

30 / 40

Big Picture

31 / 40

Big Picture

32 / 40

Big Picture

33 / 40

Summary: Four-Step Procedure

1. Split observations into training set and test set.

2. Fit a bunch of models on training set, and estimate the test
error, using cross-validation or validation set approach.

3. Refit the best model on the full training set.

4. Evaluate the model’s performance on the test set.

34 / 40

Why All the Bother?

Q: Why do I need to have a separate test set? Why can’t I just
estimate test error using cross-validation or a validation set
approach using all the observations, and then be done with it?

A: In general, we are choosing between a whole bunch of models,
and we will use the cross-validation or validation set approach to
pick between these models. If we use the resulting estimate as a
final estimate of test error, then this could be an extreme
underestimate, because one model might give a lower estimated
test error than others by chance. To avoid having an extreme
underestimate of test error, we need to evaluate the “best” model
obtained on an independent test set. This is particularly important
in high dimensions!!

35 / 40

Regression in High Dimensions

I We usually cannot perform least squares regression to fit a
model in the omics setting, because we will get zero training
error but a terrible test error.

I Instead, we must fit a less complex model, e.g. a model with
fewer variables.

If you

I fit your model carelessly;

I do not properly estimate the test error;

I or select a model based on training set rather than test set
performance;

then you will woefully overfit your training data, leading to a
model that looks good on training data but will perform
atrociously on future observations.

Our intuition breaks down in high dimensions, and so rigorous
model-fitting is crucial.

36 / 40

The Curse of Dimensionality

37 / 40

The Curse of Dimensionality

Q: A data set with more variables is better than a data set with
fewer variables, right?

A: Not necessarily!

Noise variables – such as genes whose expression levels are not
truly associated with the response being studied – will simply
increase the risk of overfitting, and the difficulty of developing an
effective model that will perform well on future observations.

On the other hand, more signal variables – variables that are truly
associated with the response being studied – are always useful!

38 / 40

Wise Words

In high-dimensional data analysis, common mistakes are simple,
and simple mistakes are common.

– Keith Baggerly

39 / 40

Before You’re Done Your Analysis

I Estimate the test error.
I Do a “sanity check” whenever possible.

I “Spot-check” the variables that have the largest coefficients in
the model.

I Rewrite your code from scratch. Do you get the same answer
again?

Fitting models in high-dimensions: one mistake away from disaster!

40 / 40

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

High-Dimensional Statistical Learning:
Regression Methods

Jean Feng & Ali Shojaie

November 15, 2020
Sixth Seattle Symposium in Biostatistics

1 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Linear Models in High Dimensions

I When p � n, least squares regression will lead to very low
training error but terrible test error.

I Next, we’ll talk about approaches for fitting linear models for
high-dimensional settings.

2 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Motivating example

I We would like to build a model to predict survival time for
breast cancer patients using a number of clinical
measurements (tumor stage, tumor grade, tumor size, patient
age, etc.) as well as some high-dimensional biomarkers.

I For instance, these biomarkers could be:
I the expression levels of genes
I protein levels.
I mutations in genes potentially implicated in breast cancer.

3 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

What are our options for analyzing high-dimensional data?

I Variable Pre-Selection

I Subset Selection

I Ridge Regression

I Lasso Regression

I ...

4 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Variable Pre-Selection

A simple approach:

1. Choose a small set of variables, say the q variables that are
most correlated with the response, where q < n.

2. Use least squares to fit a model predicting y using only these
q variables.

5 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Variable Pre-Selection: Bias-Variance Trade-off

Variable pre-selection tries to find the right trade-off between the
bias and variance.

6 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Variable Pre-Selection: Bias-Variance Trade-off

Different values of q correspond to different model complexities.

7 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

How Many Variable to Use?

I Q: We need to choose q, the number of variables to select.
How do we find the value of q that minimizes the test error?

I A: For a range of values of q, estimate the test error using:
I validation set approach,
I leave-one-out cross-validation,
I or K -fold cross-validation.

Choose the value of q whose estimated test error is the
smallest.

8 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Estimating the Test Error For a Given q

This is the wrong way to estimate the test error using the
validation set approach:

1. Identify the q variables most associated with the response on
the full data set.

2. Split the observations into a training set and a validation set.

3. Using the training set only:

a. Use least squares to fit a model predicting y using those q
variables.

b. Let β̂1, . . . , β̂q denote the resulting coefficient estimates.

4. Use β̂1, . . . , β̂q obtained on training set to predict response on
validation set, and compute the validation set MSE.

9 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Estimating the Test Error For a Given q

This is the right way to estimate the test error using the validation
set approach:

1. Split the observations into a training set and a validation set.

2. Using the training set only:

a. Identify the q variables most associated with the response.
b. Use least squares to fit a model predicting y using those q

variables.
c. Let β̂1, . . . , β̂q denote the resulting coefficient estimates.

3. Use β̂1, . . . , β̂q obtained on training set to predict response on
validation set, and compute the validation set MSE.

10 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Finding the best subset of variables

I The variable pre-selection approach is simple and easy to
implement, but it might not work well.

I Variable pre-selection finds the variables that are most
correlated with the response.

I We might not have found the combination of variables that
are most predictive of the response.

11 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Subset Selection

Several Approaches:

I Best Subset Selection: Consider all subsets of predictors
Computational intractable

I Stepwise Regression: Greedily add/remove predictors
Heuristic and potentially inefficient

I Modern Penalized Methods

12 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Ridge Regression and the Lasso

I Variable pre-selection and forward selection control model
complexity by selecting subsets of the predictors.

I Ridge regression and the Lasso control model complexity by
shrinking the regression coefficients.

I Ridge regression and the Lasso are examples of
“regularization” or “penalization” methods.

13 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Crazy Coefficients

I When p > n, some of the variables will be highly correlated in
the training data just by chance.

I Why does correlation matter?
I Suppose that X1 = X2 on the training data and this model is a

good fit for the data:

ŷ = X1 − 2X2 + 3X3.

I But this model will be have the same training error!

ŷ = 100000001X1 − 100000002X2 + 3X3.

I When there are too many variables, the least squares
coefficients can get crazy!

I This craziness is directly responsible for poor test error.

14 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

A Solution: Don’t Let the Coefficients Get Too Crazy

I Recall that least squares solves

minimize
β

n∑

i=1

(yi − (β1Xi1 + · · ·+ βpXip))2

I Ridge regression solves

minimize
β

n∑

i=1

(yi − (β1Xi1 + · · ·+ βpXip))2 + λ

p∑

j=1

β2j

︸ ︷︷ ︸
Ridge penalty

I The ridge penalty can be written as a squared norm:

‖β‖22 =

p∑

j=1

β2j

15 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Ridge penalty parameter λ

β̂
R
λ = argmin

β

n∑

i=1

(yi − (β1Xi1 + · · ·+ βpXip))2 + λ‖β‖22.

Here λ is a nonnegative tuning parameter that shrinks the
coefficient estimates.

I When λ = 0, then ridge regression is just the same as least
squares.

I As λ increases, coefficients shrink towards zero.

I When λ =∞, β̂
R
λ = 0.

16 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Ridge Regression As λ Varies

17 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Selecting λ

I Perform cross-validation or the validation set approach to
search over a fine grid of λ values and find the one with the
smallest test error.

I Use the selected λ to perform ridge regression on the full data
set.

18 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Ridge Summary

I Using ridge regression, the final model will contain all p
variables, no matter what. This works well when most of your
predictors have some non-zero effect on the outcome.

I But what if you believe the outcome depends on only a small
number of predictors? Or what if you want a simpler model
that depends on a small number of features?

19 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

The Lasso

I The lasso involves performing a little tweak to ridge regression
so that the resulting model contains mostly zeros.

I In other words, the resulting model is sparse. We say that the
lasso performs feature selection.

20 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

The Lasso

I The lasso solves

β̂
L
λ = argmin

β

n∑

i=1

(yi − (β1Xi1 + · · ·+ βpXip))2 + λ

p∑

j=1

|βj |
︸ ︷︷ ︸

Lasso penalty

I So lasso is just like ridge, except that β2j has been replaced
with |βj |.

I The lasso can be written using the L1-norm:

‖β‖1 =

p∑

j=1

|βj |

21 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

The Lasso

I Lasso is a lot like ridge:
I λ is a nonnegative tuning parameter that controls model

complexity.
I When λ = 0, we get least squares.
I When λ is very large, we get β̂L

λ = 0.

I But unlike ridge, lasso will give some coefficients exactly equal
to zero for intermediate values of λ!

22 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Lasso vs Ridge

I Lasso finds the best linear model such that the lasso penalty is
no larger than c > 0.

I Ridge regression finds the best linear model such that the
ridge penalty is no larger than c > 0.

23 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Lasso As λ Varies

(a) Ridge (b) Lasso

24 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Selecting λ

I Perform cross-validation or the validation set approach to
search over a fine grid of λ values and find the one with the
smallest test error.

I Use the selected λ to perform the lasso on the full data set.

25 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Pros/Cons of Each Approach

Approach Sparsity?* Predictions?**

Pre-Selection Yes Ok
Forward Stepwise Yes Ok

Ridge No Better
Lasso Yes Better

* Does this approach perform feature selection?
** How good are the predictions resulting from this model?

26 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

No “Best” Approach

I There is no “best” approach to regression in high dimensions.
I Some approaches will work better than others. For instance:

I Lasso will work well if it’s really true that just a few features
are associated with the response.

I Ridge will do better if all of the features are associated with
the response.

I For a given dataset, how do you decide which approach to
use?

27 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Modeling non-linear relationships

What if the relationship isn’t linear?

y = 3 sin(x) + ε

y = 2ex + ε

y = 3x2 + 2x + 1 + ε

If we know the functional form we can still use “linear regression”

28 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Linear regression for non-linear functions

y = 3 sin(x) + ε:
x

→

sin(x)

y = 3x2 + 2x + 1 + ε:

x

→

x x2

29 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Linear regression for non-linear functions

What if we don’t know the right functional form?

Use a flexible basis expansion h1, h2, . . . , hk :

x

→

h1(x) h2(x) · · · hk(x)

For example, the polynomial basis:

x

→

x x2 · · · xk

30 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Example

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

sin
poly

31 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Non-linear modeling for multiple variables

Expand each variable and use the Lasso:

x1 x2 · · · xp

→

x1 · · · xk1 x2 · · · xk2 · · · xp · · · xkp

32 / 33

Variable Pre-Selection
Subset Selection
Ridge Regression
Lasso Regression

Summary

I You can use variable pre-selection or subset selection to limit
the number of variables you feed into ordinary least squares.

I Ridge regression protects against overfitting by shrinking
model coefficients to zero.

I Lasso regression protects against overfitting by setting some
model coefficients to exactly zero.

I To model non-linear relationships, expand the features using a
basis expansion.

33 / 33

Classification
Performance Assessment

Batch Effects

High-Dimensional Statistical Learning:
Classification

Jean Feng & Ali Shojaie

November 15, 2020
Sixth Seattle Symposium in Biostatistics

1 / 30

Classification
Performance Assessment

Batch Effects

Classification

I Regression involves predicting a continuous-valued response,
like tumor size.

I Classification involves predicting a categorical response:
I Cancer versus Normal
I Tumor Type 1 versus Tumor Type 2 versus Tumor Type 3

I Just like regression,
I Classification cannot be blindly performed in high-dimensions

because you will get zero training error but awful test error;
I Properly estimating the test error is crucial; and
I There are a few tricks to extend classical classification

approaches to high-dimensions, which we have already seen in
the regression context!

2 / 30

Classification
Performance Assessment

Batch Effects

Classification

I There are many approaches out there for performing
classification.

I We will discuss two, logistic regression and support vector
machines.

3 / 30

Classification
Performance Assessment

Batch Effects

Logistic Regression

I Logistic regression is the straightforward extension of linear
regression to the classification setting.

I For simplicity, suppose y ∈ {0, 1}: a two-class classification
problem.

I The logistic regression model is defined as

f (X) =
exp(XTβ)

1 + exp(XTβ)
.

I Logistic regression solves the following problem:

minimize
β

n∑

i=1

log(1 + exp(−fβ(xi)yi))

4 / 30

Classification
Performance Assessment

Batch Effects

Extending Logistic Regression to High Dimensions

1. Variable Pre-Selection

2. Forward Stepwise Logistic Regression

3. Ridge Logistic Regression

minimize
β

n∑

i=1

log(1 + exp(−fβ(xi)yi)) + λ ‖β‖22︸︷︷︸
Ridge

4. Lasso Logistic Regression

minimize
β

n∑

i=1

log(1 + exp(−fβ(xi)yi)) + λ ‖β‖1︸︷︷︸
Lasso

5 / 30

Classification
Performance Assessment

Batch Effects

Extending Logistic Regression to High Dimensions

How to decide which approach is best, and which tuning parameter
value to use for each approach?

I Cross-validation or validation set approach

6 / 30

Classification
Performance Assessment

Batch Effects

Support Vector Machines

I Suitable for binary classification.

I Unlike logistic regression, there is no probability model for the
data. Instead, SVMs are geometrically motivated.

I Shares many similarities with logistic regression.

7 / 30

Classification
Performance Assessment

Batch Effects

Separating Hyperplane

8 / 30

Classification
Performance Assessment

Batch Effects

Classification Via a Separating Hyperplane

Blue class if β0 + β1X1 + β2X2 > c; red class otherwise.

9 / 30

Classification
Performance Assessment

Batch Effects

Maximal Separating Hyperplane

Support vector classifiers try to find a separating hyperplane that
maximizes the margin. Points used to define the hyperplane are
called support vectors.

10 / 30

Classification
Performance Assessment

Batch Effects

What if There is No Separating Hyperplane?

11 / 30

Classification
Performance Assessment

Batch Effects

Support Vector Classifier: Allow for Violations

Instead, find a hyperplane that maximizes the margin such that the
total violation is below some tuning parameter C ≥ 0.

12 / 30

Classification
Performance Assessment

Batch Effects

Support Vector Machine

I Support vector machines extend support vector classifiers by
fitting non-linear decision boundaries using a kernel with some
basis expansion {h1, h2, . . . , hk}:

x

→

 h1(x) h2(x) · · · hk(x)

I Example kernels: Radial Basis Function (RBF) and polynomial

I Note that this “kernel trick” can also be used for linear and
logistic regression to fit non-linear classifiers as well.

13 / 30

Classification
Performance Assessment

Batch Effects

Non-Linear Class Structure

This will be hard for a linear classifier!

14 / 30

Classification
Performance Assessment

Batch Effects

Try a Support Vector Classifier

Uh-oh!!

15 / 30

Classification
Performance Assessment

Batch Effects

Support Vector Machine

Much Better.
16 / 30

Classification
Performance Assessment

Batch Effects

Is A Non-Linear Kernel Better?

I Yes, if the true decision boundary between the classes is
non-linear, and you have enough observations to accurately
estimate the decision boundary.

I No, if you are in a very high-dimensional setting such that
estimating a non-linear decision boundary is hopeless.

17 / 30

Classification
Performance Assessment

Batch Effects

Another view of SVMs

It turns out that SVMs can be written in a similar form as logistic
regression with a ridge penalty:

minimize
β

n∑

i=1

L(fβ(xi), yi) + λ‖β‖2

I Hinge loss: max(0, 1− f (xi)yi)

I Logistic loss:
log(1 + exp(−f (xi)yi))

18 / 30

Classification
Performance Assessment

Batch Effects

In High Dimensions...

I In SVMs, the tuning parameter C controls the amount of
flexibility of the classifier.

I Because SVMs can be written as ridge regression but with a
hinge loss, tuning C is similar to tuning the penalty parameter
in ridge regression. The SVM decision rule involves all p
variables.

I Can get a sparse SVM using a lasso penalty; this yields a
decision rule involving only a subset of the features.

I People used to claim that SVMs overcome the “curse of
dimensionality”. This is not true!

19 / 30

Classification
Performance Assessment

Batch Effects

Assessing the Performance of Classifiers

I A binary classifier can have two types of errors: false positives
and false negatives

Predicted Class
− +

True − TN FP
Class + FN TP

I False Positive Rate (FPR) = FP/(TN + FP), also known as
1− Specificity

I True Positive Rate (TPR) = TP/(TP + FN), also known as
Sensitivity

20 / 30

Classification
Performance Assessment

Batch Effects

Assessing the Performance of Classifiers

I By default, all classification methods assume that all errors
have the same “cost”; i.e., FP and FN are equally costly

I However, in many applications (e.g. in cancer diagnostics) it
may be more costly to have FN than FP

I We can obtain different classifiers by changing the “cutoff”...

21 / 30

Classification
Performance Assessment

Batch Effects

Cutoffs for binary classifiers

I The cutoff for logistic regression is...
I the estimated probabilities.

I The cutoff for a support vector classifier is...
I how much above the observation is relative to the separating

hyperplane.

22 / 30

Classification
Performance Assessment

Batch Effects

ROC

I The ROC (Receiver Operating Characteristic) curve summarizes the
performance of a binary classifier over a range of decisions

Toys: ROC curves

How well does your model predict Y ?

• Decide if fitted value β̂0 + β̂1xi + β̂2zi... ≥ some threshold
• What proportion are ≥ threshold, for Y = 0 and Y = 1?
• Rinse and repeat, for all threshold values

●

no
rm

al
Y

=
0

lo
w

Y
=

1

0.1 0.2 0.3 0.4 0.5 0.6

expit(fitted value)

ou
tc

om
e

●●
●

●
●

●
●

●● ● ●● ●●●
● ●

● ●
● ●●●

●●
●

●
●

● ●●
●

●
●

●● ●●●
●

●●
●● ●

●
● ●● ●

●
●●

●
● ●
●●

●●●
● ●● ●

●
●● ● ●

●● ● ●
●●

●
●

●●
●

● ●
●
● ●

●●● ●
● ●● ●

●
●● ●

●● ●
● ●

● ●●
●

● ● ●● ●●●●
●●
●●

●● ● ●
●●●●

●●
●

●●
● ● ●● ●

●●●
●

●●
●●●

●●
●

● ●
●●●● ●

●● ● ●
● ●●●

●● ●●●
●

● ●
●

●
●● ●

●● ●
●

●
●

●● ●
●
●●

Outcome vs fitted value

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity, a.k.a. 'False Positive Rate'

S
en

si
tiv

ity
, a

.k
.a

. '
T

ru
e

P
os

iti
ve

 R
at

e'

ROC curve (color−coded)

I Each point on the curve represents a single decision (cutoff)
I The area under the ROC curve (AUC) measures the overall

performance of a classifier (over the range of cutoffs)
23 / 30

Classification
Performance Assessment

Batch Effects

The partial ROC

I In many cases, the AUC summarizes the performance of a
classifier over regions of no practical interest.
I In diagnostic testing, we only care about the performance in

the region with high TPRs.
I In population screening, we only care about the performance in

the region with low FPRs.
I The partial AUC calculates the AUC only in the region of

interest.

24 / 30

Classification
Performance Assessment

Batch Effects

Batch Effects

I In omics experiments, batch effects are non-biological factors,
such as inter-machine or inter-lab or inter-operator variability,
time of day, and day of week, that confound the relationship
between the predictors and outcome of interest.

I It has been shown many times that batch effects can be much
stronger than biological effects of interest!

25 / 30

Classification
Performance Assessment

Batch Effects

Batch Effects: A cautionary tale

I Petricoin et. al. (2002) reported that their predictive model
could use proteomic patterns to discriminate between healthy
patients and those with ovarian cancer with 100% sensitivity
and 95% specificity!

I However, when independent researchers looked at the publicly
released data, they found:
I inadvertent changes in protocol mid-experiment
I problems with instrument calibration.
I difference in processing between tumor and normal samples.

26 / 30

Classification
Performance Assessment

Batch Effects

Steps to Reduce Batch Effects

Good experimental design is the best strategy for reducing batch
effects and avoiding faulty conclusions.

I Randomize sample run times: e.g. don’t run cases first and
controls second.

I Document how the data was collected (date, machine, cell
culture medium, ...)

I Avoid any extraneous sources of variation, e.g. due to change
in person running the experiment.

27 / 30

Classification
Performance Assessment

Batch Effects

Steps to Reduce Batch Effects

When analyzing the data...

I Apply methods that adjust for potential batch effects

I Train on data from different institutions, rather than using a
single data set.

I Validate results on independent data sets from a different
institution.

I Make sure your data analysis is reproducible. Clearly
document your code that contains every step, from data
pre-processing to the final analysis.

28 / 30

Classification
Performance Assessment

Batch Effects

Cross-Validation when combining datasets

When training models on datasets across different institutions,
remember to do site-wise cross-validation!

29 / 30

Classification
Performance Assessment

Batch Effects

Summary

I Logistic regression can be extended to high-dimensional
settings using variable subset selection techniques and
penalization methods.

I Support vector machines try to find a decision boundary that
best separates the data.

I Be wary of batch effects! They can make you think that your
classifier is much better than it really is.

30 / 30

Decision Trees
Bagging

Random Forest
Boosting

High-Dimensional Statistical Learning:
Tree-Based Methods

Jean Feng & Ali Shojaie

November 15, 2020
Sixth Seattle Symposium in Biostatistics

1 / 30

Decision Trees
Bagging

Random Forest
Boosting

Tree-Based Methods

Tree-based methods can be used in both regression and
classification tasks.

I Trees are able to model non-linearities and interactions
between variables very naturally.

I The basic steps are:

1) Stratify or segment the predictor space into small and simple
regions

2) Predict the mean (regression) or mode (classification) of
observed outcomes in that segment

2 / 30

Decision Trees
Bagging

Random Forest
Boosting

Toy Example: predicting salaries of baseball players I

I Outcome: Salary of baseball
players (in millions)

I Two predictors: years of experience
in MLB (Years) and number of
hits made in the previous year
(Hits)

3 / 30

Decision Trees
Bagging

Random Forest
Boosting

Toy Example: predicting salaries of baseball players II

I The top split predicts that baseball
players having Years < 4.5 earn $5.11
million.

I Among players with > 4.5 Years of
experience...
I For those with < 117.5 Hits, the

predicted salary is $6.00 million.
I For those with > 117.5 Hits, the

predicted salary is $6.74 million.

4 / 30

Decision Trees
Bagging

Random Forest
Boosting

Toy Example: predicting salaries of baseball players III

The tree divides the predictor space into 3 regions

R1 = {X | Years < 4.5}
R2 = {X | Years ≥ 4.5,Hits < 117.5}
R3 = {X | Years ≥ 4.5,Hits ≥ 117.5} 5 / 30

Decision Trees
Bagging

Random Forest
Boosting

Decision Trees: the general idea

I The regression tree in the above example is likely an
over-simplification of the true relationship between Hits,
Years, and Salary.

I However, it is very easy to interpret and have a nice graphical
representation.

6 / 30

Decision Trees
Bagging

Random Forest
Boosting

Decision Trees: the general idea

Steps for building a regression (or classification) tree:

1) Stratify/Segment: Partition the predictor space into J disjoint
regions R1,R2, . . . ,RJ .
I How should we construct the regions R1, . . . ,RJ?
I How many regions should there be? (How big should J be?)

2) Prediction: For observation X in region Rj , output the mean
(regression) or mode (classification) of the observed outcomes
for the training observations in region Rj

7 / 30

Decision Trees
Bagging

Random Forest
Boosting

Partitioning the Predictor Space

For now assume J is known.

I Unfortunately, it is not possible to consider every possible
partition of the space into J regions.

I We introduce two simplifications:

1. We will only split the region into rectangles/boxes.
2. We’ll split the data in a greedy manner. We’ll do this using

recursive binary splitting.

8 / 30

Decision Trees
Bagging

Random Forest
Boosting

Recursive Binary Splitting

I Start with all the data.
I For all predictors Xj and cut points t:

I Consider splitting the space into:

R1(j , t) = {X | Xj < t}, R2(j , t) = {X | Xj ≥ t}

I Evaluate the quality of this candidate split according to some
metric (e.g. drop in mean squared error).

I Choose the split that minimizes this metric.

I Rinse and repeat the above process for each new region until
there are J regions.

9 / 30

Decision Trees
Bagging

Random Forest
Boosting

Recursive Binary Splitting

10 / 30

Decision Trees
Bagging

Random Forest
Boosting

Tuning the number of regions

I The complexity of the regression tree is determined by the
number of regions J.

I A tree with large J might overfit to the training data!

I A smaller tree with fewer splits might have lower variance
(and better interpretability), at the cost of a little bias.

I To find a good small tree, a common approach is to:

1. Grow a large tree, e.g. until no region has > 5 observations.
2. Prune the tree to obtain a subtree.
3. Use cross-validation to select J.

11 / 30

Decision Trees
Bagging

Random Forest
Boosting

Full Tree for the Hitters Data Set

12 / 30

Decision Trees
Bagging

Random Forest
Boosting

Cross-validation for the Hitters Data Set

13 / 30

Decision Trees
Bagging

Random Forest
Boosting

Final tree for the Hitters Data Set

14 / 30

Decision Trees
Bagging

Random Forest
Boosting

Regression vs Classification Trees

Regression Classification

I Predict mean

I Evaluate split by
improvement in mean
squared error: how
different are the outcomes
from the mean for that
split

I Predict mode

I Evaluate split by decrease
in impurity: how often do
outcomes differ from the
mode for its split (e.g.
Gini Index and
Cross-Entropy)

15 / 30

Decision Trees
Bagging

Random Forest
Boosting

Classification Tree for the Heart Data

16 / 30

Decision Trees
Bagging

Random Forest
Boosting

Trees vs Linear Models

17 / 30

Decision Trees
Bagging

Random Forest
Boosting

Trees: Pros and Cons

I Pros:
I very easy to interpret and explain to others
I can easily handle both categorical and continuous predictors

I Cons:
I Decision trees have high variance but low bias. If we split the

training data into two parts, we get very different trees.

18 / 30

Decision Trees
Bagging

Random Forest
Boosting

Bagging

I Bootstrap aggregation, or bagging, is a general-purpose
procedure for reducing the variance of a statistical learning
method by averaging.

I We know that averaging reduces the variance:
I Specifically, if we take the average of n independent

observations Z1, . . . ,Zn, each with variance σ2, Var(Z̄) = σ2/n

I Idea: What if we can average models estimated on the B
datasets?

f̂avg (x) =
1

B

B∑

b=1

f̂ b(x)

19 / 30

Decision Trees
Bagging

Random Forest
Boosting

Bagging: The Main Idea

I How do we make B datasets when we only have one dataset?
I We create bootstrap samples:

For b = 1, . . .B: Randomly draw n of them with replacement.

I Bagging averages the models trained on B bootstrap samples:

f̂bag (x) =
1

B

B∑

b=1

f̂ ∗b(x)

20 / 30

Decision Trees
Bagging

Random Forest
Boosting

Bagging for Trees

I For classification trees, output the average as a probability or
do majority voting.

I The value of B is not critical:
I As B increases, the bagged model will converge.
I In practice B = 100 to B = 1000 works pretty well

I Note: Because bagging outputs the average of many trees,
the bagged model is harder to interpret.

21 / 30

Decision Trees
Bagging

Random Forest
Boosting

Random Forests: The Motivation

I Suppose that there is one very strong predictor in the data
set, along with a number of moderately strong ones

I Then in the collection of bagged trees, most or all of the trees
will use this strong predictor in the top split, and they all look
somewhat similar

I This means that predictions from the bagged trees can be
highly correlated.

I In this setting, bagging will only reduce the model variance
slightly.

22 / 30

Decision Trees
Bagging

Random Forest
Boosting

Random Forests: The Idea

Idea: Make the trees less similar.

I When fitting a tree for each bootstrap sample, randomly pick
m variables for each split.

I By randomly selecting variables to use in each tree, we
“decorrelate” the trees and achieve a larger reduction in
variance.

I How big should m be?
I Typical choice is m =

√
p. Still, you should think about the

bias-variance tradeoff.
I As m increases, the trees become more similar.
I If m is very small, the randomly selected variables will have

very little predictive power and the trees will have higher bias.

23 / 30

Decision Trees
Bagging

Random Forest
Boosting

Application to gene expression microarrays

24 / 30

Decision Trees
Bagging

Random Forest
Boosting

Interpreting The Results

I Unfortunately, bagging and random forest result in models
that are not easily interpretable.

I A very useful tool for gaining insight about individual variables
is the variable importance plot

25 / 30

Decision Trees
Bagging

Random Forest
Boosting

Boosting

I Boosting is another approach for improving the performance
of tree-based methods

I Like bagging and random forests, boosting aggregates trees to
construct a final model.

I Boosting is also a general-purpose method that can be
combined with other machine learning algorithms, not just
trees.

26 / 30

Decision Trees
Bagging

Random Forest
Boosting

Boosting: Main Idea

I In boosting, the trees are grown sequentially: each tree is
grown using information from previously grown trees
I Each tree is small, with just a few terminal nodes
I Given the current model, we fit a decision tree to the residuals

from the previous model as the response
I We then add this new decision tree into the fitted function and

update the residuals

I Because we are fitting small trees at each iteration, the
training error will decrease slowly over time.

27 / 30

Decision Trees
Bagging

Random Forest
Boosting

Tuning Parameters

Boosting has three tuning parameters that give us very fine control
over the model complexity:

I The number of splits in each tree d : Controls the complexity
of each tree. In practice, a single split d = 1 can actually
work quite well.

I The number of trees B: As B increases, the complexity of our
boosted model increases (unlike in bagging and random
forests!)

I The shrinkage parameter λ: λ controls the rate of learning,
where a smaller value means the model changes slowly.

28 / 30

Decision Trees
Bagging

Random Forest
Boosting

Comparison on Gene Expression Data

29 / 30

Decision Trees
Bagging

Random Forest
Boosting

Summary

I Tree-based models are easy to interpret and naturally
equipped to learn interactions between predictors.

I Because single classification and regression trees have high
variance, we can aggregate many trees to reduce the variance.

I Bagging and random forests reduce the variance by averaging.

I Boosting fits trees sequentially by modifying the datasets
repeatedly. We tune its hyperparameters to obtain the
optimal bias-variance tradeoff.

30 / 30

Machine Learning for Biomarker Development

High-Dimensional Statistical Learning:
Biomarkers

Jean Feng & Ali Shojaie

November 15, 2020
Sixth Seattle Symposium in Biostatistics

1 / 18

Machine Learning for Biomarker Development

The Data

On each of n patients measure

yi – outcome
(eg. tumor growth, treatment response, survival time)

xi – p-vector of features
(eg. SNPs, gene expression values)

2 / 18

Machine Learning for Biomarker Development

Biomarkers

Prognostic

Gives information on outcome independent of treatment

Generally not informative for treatment decisions

(main effect term)

Predictive

Gives information on relative effectiveness of treatments

Informative for treatment decisions

(interaction term)

3 / 18

Machine Learning for Biomarker Development

Actionable Predictive Biomarkers

We only care about actionable (qualitative) interactions:

These are interactions which result in a crossing of response curves

Actionable

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

biomarker level

re
sp

on
se

non-Actionable

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

biomarker level

re
sp

on
se

4 / 18

Machine Learning for Biomarker Development

Biomarkers

Prognostic

Interested in understanding

E [y |x]

Predictive/Prescriptive

Interested in finding all x with

ET [y |x] > EC [y |x]

5 / 18

Machine Learning for Biomarker Development

Prognostic Biomarkers

How do we characterize E [y |x]?

Statistical Machine Learning!!

Everything developed so far aims at this problem.

6 / 18

Machine Learning for Biomarker Development

Predictive Biomarkers

How do we find all x with ET [y |x] > EC [y |x]?

Pretty simple:

Statistical Machine Learning −→ ET [y |x]

Statistical Machine Learning −→ EC [y |x]

and finally

Statistical Machine. . . nevermind

Subtraction −→ ET [y |x]− EC [y |x]
?
> 0

7 / 18

Machine Learning for Biomarker Development

Predictive Biomarkers — Cox

For survival data, using Cox Model, need to be a bit more careful.

I Assumes hazard factors as

H(time, x) = h(time)f (x)

I Decisions are generally made based on f (x)

I shared baseline hazard, h(time), often considered a nuisance

8 / 18

Machine Learning for Biomarker Development

Predictive Biomarkers — Cox

However if we completely separately estimate

HT (time, x) −→ ĥT (time)f̂T (x)

HC (time, x) −→ ĥC (time)f̂C (x)

then

I no longer shared baseline hazard: ĥT (time) 6= ĥC (time)

I h(time) is no longer a nuisance

I f̂T (x) and f̂C (x) are no longer comparable

9 / 18

Machine Learning for Biomarker Development

Predictive Biomarkers — Cox

Instead estimate a single hshared(time):

[
HT (time, x)
HC (time, x)

]
−→

[
ĥshared(time)f̂T (x)

ĥshared(time)f̂C (x)

]

and make inference on

f̂T (x) vs f̂C (x)

10 / 18

Machine Learning for Biomarker Development

Evaluating Predictive Biomarkers

What are we not particularly interested in?

I How well we estimate ET [y |x] and EC [y |x]

I Whether or not there is a general shape difference between
ET [y |x] and EC [y |x].

11 / 18

Machine Learning for Biomarker Development

Evaluating Predictive Biomarkers

What are we particularly interested in?

How well does treatment perform in the identified subgroup?

Specifically, we care about

∫

identified subgroup
(ET [y |x]− EC [y |x])

the average treatment effect of the indicated population.

12 / 18

Machine Learning for Biomarker Development

Finding something is better than finding nothing!

In an ideal world, we would find a perfect characterization of who
does/doesn’t benefit from treatment.

In the real world, with a complex set of covariates, this is
unreasonable.

If treatment is not effective on average in the entire population, or
the effect is too small to find, then finding any subset for which
there is benefit, is pretty darn useful!

13 / 18

Machine Learning for Biomarker Development

Evaluating Predictive Biomarkers

As in all high-dimensional settings,

we cannot build and evaluate models on the same data.

How do we evaluate average treatment effect then?

Two options:

I Sample splitting

I Cross validation

14 / 18

Machine Learning for Biomarker Development

Sample Splitting

1. Split data in training and validation set

2. Build models for ET [y |x] and EC [y |x] on training data

3. For each observation in validation data, calculate a biomarker
score:

Zi = ÊT [y |xi]− ÊC [y |xi]
4. For the subset predicted to benefit from treatment (Zi > 0),

run a test comparing treatment to control in the validation
data.

In clinical trials, known as “adaptive signature design”

15 / 18

Machine Learning for Biomarker Development

Cross Validation

1. Split data into folds: fold1, . . . , foldK .

2. Cycle through the folds; for each k train and evaluate:

folds−k −→
(

ÊT [y |x]

ÊC [y |x]

)

apply

(
ÊT [y |x]

ÊC [y |x]

)
to foldsk −→ Z1,k , . . . ,Znk ,k

3. Have a cross-validated Zi for each observation

4. For obs with Zi > 0, compare treatment to control.

16 / 18

Machine Learning for Biomarker Development

Testing in Cross Validation

I Cannot directly run a t-test on obs with Zi > 0 when
comparing treatment to control.

I Because of cross-validation, empirical variance is wrong!

I Use permutation test instead.

17 / 18

Machine Learning for Biomarker Development

Permutation Test

1. Run CV-procedure and calculate a t-statistic, T , for obs with
Zi > 0

2. For b = 1, . . . ,B:

2.1 Permute the treatment labels

2.2 Run the CV procedure on permuted data to get permuted

scores, Z
(b)
i

2.3 Calculate a t-statistic, Tb, comparing permuted treatment to

control for those with Z
(b)
i > 0

3. Compare T to empirical distribution of {Tb}Bb=1

In clinical trials, known as “cross-validated adaptive signature
design”

18 / 18

