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Goals

* Methods for GWAS pathway analysis with SNP
chips



Many Shared Issues

* Many of the issues/choices/methodological
approaches discussed for microarray data are

true across all “-omics”

* Many methods have been readily extended
for other omic data

* There are several biological and technological
issues that may make just “off the shelf” use
of pathway analysis tools inappropriate



Genome-Wide Association Studies
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Advantages

e relatively unbiased, covers
most of genome

e current cost is reasonable

eFine mapping compared to
linkage

Concerns
® missing heritability
» Single SNPs explain
little variation

e underlying assumptions not
always true

e Standard analysis looks
variant-by-variant



Feasibility of identifying genetic variants by risk allele
frequency and strength of genetic effect (odds ratio).
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Possible Association Models

1. Each of several genes may have a variant
that confers increased risk of disease

independent of other genes

2. Several genes in contribute additively to the
malfunction of the pathway

3. There are several distinct combinations of
gene variants that increase relative risk but
only modest increases in risk for any single

variant



Hypothetical Disease Mechanism
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Enrichment Testing in GWAS

e Testing pathway enrichment is possible in GWAS data

— Many of the same issues that exist in gene expression
enrichment testing occur in GWAS enrichment testing (e.g.
choice of statistics, competitive vs self-contained)

* Primary difference:

— In expression data the unit of testing is a gene
— In GWAS data the unit of testing is a SNP

* Challenges:
— ldentifying the SNP (set) -> Gene mapping

— Summarizing across individual SNP statistics to compute a per-
gene measure



Mapping SNPs to Genes

* All SNPs in physical proximity of each gene
— Pros:
* All/most genes represented
— Cons:
* Varying number of SNPs per gene
* Many of the SNPs may dilute signal
* Defining gene proximity can affect results

e eSNPs (Expression associated SNPs)

— Pros:
* 1SNP per gene
* SNPs functionally associated

— Cons:
* Assumes variants effect expression
* Not all genes have eSNPs
* eSNPs may be study and tissue dependent



Gene summaries

* Initial studies propose different
statistics for summarizing the overall
gene association prior to enrichment
analysis
— Number/proportion of SNPs with pvalue < 0.05

— Mean(-log10(pvalue))
— Min(pvalue)

— 1-(1-Min(pvalue))V

— 1-(1-Min(pvalue))(N+1)/2



First approaches: combining p-values

 Compute gene-wise p-value:
— Select most likely variant - ‘best’ p-value
— Selected minimum p-value is biased downward
— Assign ‘gene-wise’ p-value by permutations (Westfall-Young)

e Permute samples and compute ‘best’ p-value for each
permutation

 Compare candidate SNP p-values to this null distribution of
‘best’ p-values

« Combine p-values by Fisher’ s method, across SNPs
(biased in the presence of correlation)

v ==—>log(p,)

g,eG

P = P(Z(zzk) > 21)



Next approaches

* Additive model: log(—) Zﬂll

g;€G

— Where n; indexes the number of allele Bs of a SNP in
geneiinthe geneset G

— Select subset of most likely SNP’ s
— Fit by logistic regression (glm() in R)

* Significance by permutations
— Permute sample outcomes

— Select genes and fit logistic regression again
* Assess goodness of fit each time

— Compare observed goodness of fit



Competitive vs. Self-Contained Tests

 Competitive cutoff tests
— Require only permuting SNP or Gene labels

— May only allow to assess relative significance

e Self-contained distribution tests

— Require permuting phenotype-genotype
relationships

— Resource intensive, may be difficult for large
meta-analyses

— Allow to assess overall significance



Competitive vs. Self-Contained Tests

e Self-contained null hypothesis

— no genes in gene set are differentially expressed

* Competitive null hypothesis

— genes in gene set are at most as often
differentially expressed as genes not in gene set

What does this mean for SNP data?



Choice of Pathways/Gene Sets

|”

* Relatively less “signal” in GWAS than in gene expression (GE)

— GE enrichment typically test which gene sets/pathways show
enrichment

— GWAS enrichment typically test if there is enrichment

A (Anti-Conservative) B (Uniform)

* Typically want to be conservative
about selecting the number of
pathways to test, otherwise will be
difficult to overcome multiple testing

* Prioritized Approach:

— Limited number of specific hypotheses (e.g. gene sets from
experiment, co-expression modules, disease-specific
pathways/ontologies)

— Exploratory analyses such as all KEGG/GO sets



Some Specific Methods

 SSEA
— SNP Set Enrichment Analysis

* I-GSEA4AGWAS
* MAGENTA

— Meta-Analysis Gene-set Enrichment of variant
Associations



SSEA

Zhong et al. AJHG (2010)

eSNP analysis to map SNPs to genes
— More on this later.....

Pathway statistic = one-sided Kolmogorov-
Smirnov test statistic

Pathway p-value assessed by permuting
genotype-phenotype relationship

FDR used to control error due to the number of
pathways tested



I-GSEA4GWAS

Zhang et al. Nucl Acids Res (2010)
http://gseadgwas.psych.ac.cn/

Categorizes genes as significant or not significant
— Significant: At least 1 SNP in the top 5% of SNPs
— Does not adjust for gene size

Pathway score: k/K

— k = Proportion of significant genes in the geneset
— K = Proportion of significant genes in the GWAS

FDR assessed by permuting SNP labels



Home | Documents | Template Program | Citation

Demo Run
¥ Load demo data @

Job name: |untitled |

| RUN | | CLEAR |

Upload your GWAS data @
Select data type: o SNP J CNV -~ Gene

GWAS file: | crcase file | no file selected

Select mapping rules of SNPs->genes®
) 500kb upstream and downstream of gene

" 20kb upstream and downstream of gene
" within gene

Gene set database @

¥ canonical pathwways | GO biclogical process | GO molecular function

OR upload your own gene sets file: @ | cacose file | no file selected

Options for gene set database

Improved - Gene Set Enrichment Analysis for

Genome-Wide Association Study

server for identification of pathways/gene sets associated with traits

Emall {links for result will be sent to your email): |

~) “oganthm transformation {necessary ONLY for P-value data)

- 100kb upstream and downstream of gene

- 5kb upstream and downstream of gene

- functional SNP {nonsynonymous, stop gained/lost, frame shift,
essential splice site, regulatory region)

~) GO celiular component

gene name (e.g. CD4)

Keyword:l |.ncude ::exclude

Limit gene sets by keyword (e.g. iImmune). The keyword can be

Mask MHC/xMHC region®
# NO [ mask MHC ~ mask xMHC

Number of genes in gene set @

Minimum (typical 5-20): |20 ]
Maximum (typical 200-inf): 200 |

RUN | | CLEAR
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MAGENTA

Segre et al. PLoS Genetics (2010)

Software download:

— http://www.broadinstitute.org/mpg/magenta/

— Requires MATLAB!!

— Less convenient, but more customizable than iGSEA4GWAS

Customizable proportion of “significant” genes

Customizable gene window (upstream & downstream)
Option for Rank-Sum test

Gene Summary = min(p)

— Uses stepwise regression to adjust for multiple possible
factors: e.g. gene size, SNP density


http://www.broadinsFtute.org/mpg/magenta/

MAGENTA Results

positive regulation
of osteoblast

differentiation 3.36E-01 8.02E-01 1 2 3.00E-04 7.91E-02 6 14
one-carbon

metabolic process 2.20E-03 3.55E-01 1 6 1.60E-03 1.44€-01 7 15
placenta

development 3.36E-01 8.06E-01 1 2 4.00E-04 1.45E-01 6 14
carbohydrate

transport 8.19E-01 9.46E-01 2 1 3.20E-03 3.45E-01 8 16



Adaptations of GSEA

* Order log-odds ratios or linkage p-values for
all SNPs

* Map SNPs to genes, and genes to groups

* Use linkage p-values in place of t-scores in
GSEA

— Compare distribution of log-odds ratios for SNPs in
group to randomly selected SNP’ s from the chip



XGR

Fang H, Knezevic B, Burnham KL, Knight JC. XGR software for enhanced interpretation of genomic summary data, illustrated
by application to immunological traits. Genome Med. 2016 Dec 13;8(1):129.

XGR
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Schematic workflow of XGR: achieving enhanced interpretation of genomic summary data. This flowchart illustrates the
basic concepts behind XGR. The user provides an input list of either genes, SNPs, or genomic regions, along with their
significance levels (collectively referred to as genomic summary data). XGR, available as both an R package and a web-app, is
then able to run enrichment, network, similarity, and annotation analyses based on this input. The analyses themselves are
run using a combination of ontologies, gene networks, gene/SNP annotations, and genomic annotation data (built-in data).
The output comes in various forms, including bar plots, directed acyclic graphs (DAG), circos plots, and network
relationships. Furthermore, the web-app version provides interactive tables, downloadable files, and other visuals (e.g.
heatmaps)



XGR Functions

Functions Tasks achieved Runtime?
Enrichment analysis
xEnricher A template for enrichment analysis ~40
xEnricherGenes Gene-based enrichment analysis using a wide variety of ontologies® ~40
XEnricherSNPs SNP-based enrichment analysis using Experimental Factor Ontology on GWAS traits = ~70
xEnricherYours Custom-based enrichment analysis using user-defined ontologies ~5
xEnrichConciser Removing redundant ones from enrichment outputs ~15
XxEnrichBarplot Barplot of enrichment outputs <1
xEnrichCompare Side-by-side barplots of comparative enrichment outputs <1
XEnrichDAGplot DAG plot of enrichment outputs <1
XxEnrichDAGplotAdv = DAG plot of comparative enrichment outputs <1
Annotation analysis
xGRviaGeneAnno Annotation analysis using nearby gene annotations by a wide variety of ontologies? = ~60
XGRviaGenomicAnno Annotation analysis using a wide variety of genomic annotations* ~30
Similarity analysis
xSocialiser A template for similarity analysis ~60
“SocialiserGenes Gene-based similarity analysis using structured ontologies on functions, diseases, 70
and phenotypes
xSocialiserSNPs SNP-based similarity analysis using Experimental Factor Ontology on GWAS traits ~60
xCircos Circos plot of similarity outputs ~10
xSocialiserDAGplot DAG plot of one set of terms used for similarity analysis <1
xSocialiserDAGplotAdv DAG plot of two sets of terms used for similarity analysis <1
Network analysis
xSubneterGenes Gene-based network analysis ~60
xSubneterSNPs SNP-based network analysis ~60
xVisNet Network visualisation <1
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Fig. 3

Informativeness of using cross-disease GWAS summary data in characterising relationships between
immunological disorders. a Gene scoring from GWAS SNPs prior to network analysis. b Heatmap of cross-disease
gene scores for 11 common immunological disorders based on ImmunoBase GWAS summary data. ¢ Consensus
neighbour-joining tree based on the gene-scoring matrix resolves disease classification/taxonomy according to the
genetic and cellular basis of autoinflammation and autoimmunity. Subdivided into 1) polygenic autoinflammatory
diseases with a prominent autoinflammatory component, 2) polygenic autoimmune diseases with a prominent
autoimmune component, and 3) mixed diseases having both components. Inter-disease distance is defined as the

cumulative difference in gene scores
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Fig. 4
SNP-modulated gene networks underlying three immunological disease categories. a The top-scoring gene

network for the three disease categories: autoinflammatory diseases (orange), mixed diseases (cyan), and
autoimmune diseases (red). b Network genes shared by and unique to disease categories. Genes involved in the
Jak-STAT signalling pathway are in bold text. c Pathway enrichment analysis of network genes using all pathway
ontologies and eliminating redundant pathways. The horizontal dotted line separates pathways common to all
three disease categories (top section; e.g. Jak-STAT signalling pathway), those shared by any two categories

(middle), and those only enriched in one category (bottom)
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Functional and phenotypic annotation analysis of genes harbouring GWAS SNPs for three immunological disease
categories. Visualised in aside-by-side bar plot and/or DAG plot using functional ontologies, including a GO
molecular function and b GO biological process; and using phenotype ontologies in human and mouse, including c
human phenotype phenotypic abnormality, and d mammalian phenotype



Other Functionalities

* Cross-condition comparative enrichment
analysis

* SNP similarity analysis based on disease trait
profiles

— eQTLs

» Epigenetic annotation/enrichment



Summary Points for GWAS

In GWAS, few SNPs typically reach genome-wide significance
Biological function of those that do can take years of work to unravel

Incorporating biological information (expression, pathways, etc) can help
interpret and further explore GWAS results

Enrichment tests can be used to explore biological pathway enrichment
— Different tests tell you different things

Annotation choices very different that in gene expression data, though still
rely on the same resources.... not necessarily so for other ‘omics”



Questions?



