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ABSTRACT
We propose a novel multi-mode exponential random graph
model for supervised prediction of gene networks, coupled
with a penalized estimation framework for improved pre-
diction performance. The proposed framework facilitates
the analysis of gene networks with multiple edge types, and
provides a systematic framework for incorporating multiple
sources of biological data, as well as diverse attributes re-
garding function and location of genes, and structure of ob-
served networks. Results of numerical experiments indicate
that the method enjoys superior performance compared to
other state-of-the-art reconstruction methods.

1. INTRODUCTION
Reconstruction of genetic networks is an important and

challenging problem in systems biology, for which many new
technologies [21, 35] and computational methods [5, 3, 22,
23, 9] have been proposed. Despite significant progress on
both technological and computational fronts, a number of
challenges continue to limit the ability of reconstruction
methods for providing reliable estimates of genetic networks.
These challenges include the high level of noise in biological
experiments, high dimensionality of the problem relative to
the available sample size in typical biological experiments,
inadequacy of some of the abundantly available data sources
for revealing genetic interactions, and limitations of com-
putational models for addressing the complexities of gene
networks.

Gene networks represent abstract models for complex in-
teraction mechanisms among genes and proteins. Thus,
while mathematical models can e.g. predict expression lev-
els of a small group of genes in few well-studied pathways,
the nature of genetic interactions remains largely unknown.
Consequently, different assumptions about genetic interac-
tions used in unsupervised network reconstruction methods
may not generalize to other interaction types or organisms.
Examples of assumptions used in unsupervised reconstruc-
tion methods include the presence of linear or nonlinear cor-
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relations among pairs of connected genes [e.g. 22, 9], specific
functional forms for effect of transcription factors on regu-
lated genes [31], or similarity in mRNA expression levels of
genes regulated by the same transcription factor [25]. See [2]
for a review of some of the existing unsupervised methods.

Supervised network reconstruction methods, on the other
hand, offer the opportunity to gain additional insight into
mechanisms of genetic interaction. As more interactions
among genes are experimentally discovered and/or validated,
statistical learning methods can be used to both determine
the nature of such interactions, and also to use this knowl-
edge to predict new, unobserved interactions. However, ex-
isting supervised method of network reconstruction often fo-
cus on a single type of genetic interaction. For instance, the
SIRENE algorithm [25] can only be applied to estimation
of regulatory interactions between transcription factors and
regulated genes, and requires a large set of observed interac-
tions for each transcription factor. On the other hand, [4, 20]
consider estimation of protein-protein interaction networks
from sequence data, while [38, 39] focus on prediction of in-
teractions among enzymes. Thus, the above methods cannot
be applied directly to estimation of other types of interac-
tions among genes, an issue that we will revisit shortly. On
the other hand, a number of existing methods focus solely on
the prediction of new edges without providing direct insight
into the underlying mechanisms of genetic interactions. This
is mainly due to the unprobabilistic nature of such methods,
and the lack of a rigorous framework for testing the model
for presence of interactions among two genes. A typical ex-
ample of this limitation is reconstruction methods based on
support vector machines (SVM), which despite their many
desirable properties, do not directly determine the factors af-
fecting whether two genes/proteins/enzymes would interact
with each other. As we discuss in Section 2, one of the main
challenges in defining probabilistic models for genetic net-
works is computations needed for obtaining a closed-form
probability distribution for the edges of the network; ad-
dressing this challenge is one of the main motivations of the
method proposed in this paper.

Gene networks are known to include at least two types
of interactions, or edges: (i) undirected edges corresponding
to protein-protein interactions, and (ii) directed edges cor-
responding to protein-DNA (PD) interactions among tran-
scription factors (TFs) and target genes (TGs), as well as
protein-protein (PP) interactions among two genes, which
suggest similar patterns of expression for the connected genes.
Moreover, genes in a biological pathways are more likely
to interact with each other than those in other pathways.



Finally, the degree distribution of the network is heteroge-
neous, with few “hub” genes that are connected to many
other genes.

In this work, we seek to develop models that allow for
simultaneous analysis and prediction of biological networks
with multiple edge types, while incorporating additional fea-
tures including high degree of clustering and presence of hub
nodes. To achieve these goals, we propose a penalized multi-
mode exponential random graph model, termed MP-ERGM,
for supervised prediction of gene networks from diverse data
sources. This model exploits and extends the framework of
exponential random graph models (ERGMs), also known as
p∗ models, which are widely used for analysis of social net-
works [37].

Another attractive feature of the proposed model is its
flexibility for incorporating different sources of biological
data as variables in the probability distribution. For in-
stance, one can seamlessly integrate mRNA expression lev-
els, gene/protein sequences and data from ChIP-Seq exper-
iments. This is particulary important as recent evidence
shows that integration of multiple sources of biological data
often result in improved estimation of network structure [see
e.g. 29]. In this paper, we focus on a simple setting where
the genetic interactions are modeled using mRNA expres-
sion levels, as well as the pathway membership of genes;
other sources of data can be included in the model through
additional covariates (see Section 2.3).

2. METHODS
Throughout this paper, we denote a graph G = (V,E)

with the node set V, |V | = m and edge set E. An edge is
considered to be directed if (i, j) ∈ E ⇒ (j, i) /∈ E, whereas
an undirected edge implies that (i, j) ∈ E iff (j, i) ∈ E. Here,
we assume that network information is observed on a ran-
domly selected subset of nodes in V , denoted V0, |V0| = m0.
We denote by G0 the subnetwork of G induced by V0. We use
random variables Yij , i, j = 1, . . .m, i 6= j to denote the pres-
ence or absence of an edge between nodes i and j in G. Thus,
Y defines the adjacency matrix of the graph G. Note that for
undirected edges Yij = Yji. For each pair of nodes (genes),
we use random variables Zijk, i, j = 1, . . . ,m, k = 1, . . . p
to denote the set of p corresponding attributes. Each pair
of nodes in the network is often referred to as a dyad. In
general, Zijk can include attributes calculated based on dif-
ferent biological measurements, gene attributes or network
features. For instance, let X be the m×n matrix of gene ex-
pression values from n samples, and W denote the m×q ma-
trix gene attributes. Then, Zijk = hk(Y, Xi, Xj ,Wi,Wj),
where Xi and Wi denote ith rows of X and W . This nota-
tion emphasizes that the kth dyadic attribute is a function
of features of the network (Y), expression levels of the corre-
sponding genes (Xi and Xj), as well as other gene attributes
(Wi and Wj). The function hk denotes any summary mea-
sure based on different data sources, e.g. similarity or dis-
tance based kernels.

Our goal is to develop probabilistic models to relate the
values of Yij to Zijk’s in the settings where Yij ’s can be of
different types. Using such a model, we then predict the val-
ues of Yij ’s for (i, j) ∈ G\G0 by estimating the parameters
of the model on the training set, G0. To this end, we exploit
(and extend) the framework of ERGMs to build supervised
models for predicting network edges based on observed links
in G0, gene attributes, including their mRNA expression lev-

els, as well as other relevant attributes, including whether
two genes are in the same biological pathway, or have similar
protein sequences.

In Section 2.1, we provide a short introduction to ERGMs.
Details about the proposed multi-mode penalized ERGM
framework are given in Section 2.2, where we also discuss
parameter estimation and inference. Section 2.3 discusses
the choice of covariates, as well as implementation consider-
ations.

2.1 The Exponential Random Graph Model
To describe the general ERGM framework, let y denote

a realization of Y as the adjacency matrix of the observed
network. Also, assume that y ∈ Y, where Y denotes the set
of all possible adjacency matrices. In general, Y can be set
to {0, 1}m×m, allowing e.g. for self regulatory interactions,
which can be estimated from time-course gene expression
data. However, for simplicity, here we assume that diagonal
entries are all zero. The multi-mode ERGM framework of
Section 2.2 imposes additional restriction on the set Y.

The general ERGM framework posits an exponential fam-
ily distribution for the observed network [see e.g. 16]:

P(Y = y) = exp
(
θTh(y, X)

)
/φ(θ,y), (1)

where θ is the vector of model parameters, φ is the normaliz-
ing factor, calculated by summing over all configurations of
y. As before, h denotes the set of (node and dyad) attributes
in the model.

The model in (1) provides a flexible framework for incor-
porating different attributes, although it has been mainly
used in social network literature to incorporate features of
the observed networks. The main challenge in application
of ERGMs to high dimensional networks comes from the
calculation of the normalizing factor φ. This involves sum-
ming over all possible configurations in Y, which can be
intractable even for moderate-size networks. Therefore, a
number of approximate algorithms have been proposed for
estimation of model parameters in ERGMs. One such idea
is the pseudo likelihood approach of [33], which we briefly
discuss next.

Let h̃(yij) ≡ h(y+
ij)− h(y−

ij) denote the vector of changes
in h when yij changes from 1 to 0. Then, conditional on the
rest of the dyads in the network Yc

ij = {Ykl, (k, l) 6= (i, j)},
it follows from (1) that

logit
(
P(Yij = 1|Yc

ij = ycij)
)

= θTh̃(yij), (2)

where for 0 < x < 1, logit(x) = log(x/(1− x)).
This reparametrization in terms of change statistics, al-

lows for intuitive interpretation of model parameters in terms
of their effect on probability of an edge from i to j. In addi-
tion, it forms the basis for the pseudo maximum likelihood
(PML) estimation method of [33]. In particular, the PML
estimate of parameters θ can be obtained by assuming inde-
pendence among values of Yij :

P(Yij = 1|Yc
ij = ycij) = P(Yij = 1).

However, empirical evidence indicates that the pseudo like-
lihood method does not provide reliable estimates of model
parameters, and [36] suggest the use of Markov Chain Monte
Carlo (MCMC) methods for estimation of model parame-
ters.

Although the PML framework may not provide a reli-
able estimate of the model parameters, it can be shown that



for a special class of models, called dyadic independent, the
pseudo likelihood and likelihood methods are equivalent, and
hence calculation using (2) provides exact estimates of θ [see
e.g. 33, for more details]. An ERGM is said to satisfy dyadic

independence if change statistics h̃(y, X) for all dyads (i, j)
can be calculated without any knowledge of values of ykl
for (k, l) 6= (i, j), except for (j, i). Clearly, for dyadic in-
dependence models, the estimation of model parameters is
significantly simplified, and can be performed for high di-
mensional networks.

Examples of dyadic independent and dependent ERGMs
are discussed in [33, 16]. In particular, a commonly used
class of dyadic dependent models includes the Markov de-
pendence model of [11], which, as the authors show, involves
parameters for counts of k-stars and triangles. In view of
these theoretical developments, commonly used methods of
biological network reconstruction, based on attributes of
genes fall in the category of dyadic independent models.
However, the equivalence of pseudo likelihood and likelihood
estimates in case of dyadic independent models does not hold
if the network includes directed edges. This is because each
dyad in directed networks consists of two edges; therefore,
calculation of h̃(yij , Xi, Xj), may also depend on yji even in
dyadic independence ERGMs. This implies that the PML
may no longer provide a reliable estimate of parameters of
traditional ERGM models, and hence cannot be used to test
hypotheses about the factors that affect the presence of bi-
ological interactions. On the other hand, the more reliable
MCMC methods become computationally intensive for large
biological networks, and may suffer from convergence issues
[14].

In the next section, we propose a class of multi-mode
ERGMs, which distinguish between directed and undirected
edges in gene networks. We show that these models satisfy
dyadic independence for a general set of attributes. This
implies that parameters of the model can be efficiently es-
timated even for large gene networks. Further, we propose
a penalized version of the model in (2) for simultaneous pa-
rameter estimation and model selection in ERGMs.

2.2 Penalized Multi-Attribute ERGMs
We first describe a penalized version of the regular ERGM

for improved parameter estimation and prediction accuracy.
Penalized estimation are widely used in high dimensional
settings, and different penalties have been recently proposed
to achieve accurate prediction and estimation. Penalized es-
timation methods have also been used in the graphical mod-
els setting, for unsupervised prediction of genetic networks,
both for directed graphs [31, 30, 28], as well as undirected
conditional independence graphs [24, 10].

In addition to general benefits of regularized estimation
methods, there are two main motivations for using penal-
ized ERGMs to predict edges of genetic networks. First, as
pointed out in [26], inclusion of terms corresponding to dif-
ferent network features may introduce linear dependencies
(i.e. multi-collinearity) among features of the model, which
can result in unreliable parameter estimation. The addi-
tion of regularization penalties will facilitate model fitting
in such settings and generalizes the applicability of ERGMs.
Second, with multiple sources of biological data, and addi-
tional gene and network attributes, the number of predictors
in the model p can increase relative to the size of the net-
work. Consequently, the direct application of ERGMs for

prediction of gene networks may suffer from over-fitting of
the model to the training data. In such cases, the addition of
the regularization penalty can result in improved prediction
accuracy. Note that this is especially important in our set-
ting, where the available network information is incomplete,
wherein over-fitting can further imped the performance of
predictive models.

Let J(θ) denote a general penalty function. Examples of
J include the l2 or Ridge [15], and l1 or Lasso [34] penal-
ties. The Ridge penalty encourages similarity amongst pa-
rameters for correlated variables, while the Lasso penalty
encourages sparsity (and hence model selection) by setting
some of the θ coefficients to zero. Here, we use the elastic
net penalty [40], a combination of Ridge and Lasso penalties
which offers improved estimation in settings with correlated
predictors.

Using the elastic net penalty, the penalized ERGM for
prediction of genetic networks is obtained by solving the
following optimization problem:

θ̂ = argmax
θ

l(θ;y)− J(θ) (3)

J(θ) = αλ‖θ‖1 + (1− α)λ‖θ‖22
Here, l(θ;y) is the log-likelihood as a function of θ, and
α and λ are tuning parameters controlling the size of the
penalty. Equation (1) gives the form of the log-likelihood for
the general ERGM. However, as we discussed in Section 2.1,
in dyadic independent ERGMs, the log-likelihood function
reduces to the log pseudo likelihood, given by the sum over
all observed dyads in the network:

l(θ;y) =
∑
y

yij log(πij) +
∑
y

(1− yij) log(1− πij), (4)

where πij = P(Yij = 1). In this case, our network prediction
problem corresponds to a penalized logistic regression model,
and can be efficiently solved for large networks. Here, we
use the coordinate descent algorithm of [12] for estimation
of generalized linear models with the elastic net panalty,
which is implemented in the R-package glmnet.

As discussed earlier, pseudo likelihood estimation can be
used to obtain exact estimates of model parameters in case of
dyadic independent ERGMs. However, in presence of multi-
ple edges types, including directed edges, pseudo likelihood
estimation may not give valid estimates of model parame-
ters. This includes the case where the model only includes
node attributes, and/or simple networks attributes. Next,
we introduce the class of multi-mode ERGMs, which allevi-
ate this problem and allow for efficient parameter estimation
with multiple edge types. It should be noted that when the
goal is solely network prediction, the pseudo likelihood ap-
proach in (4) can be still utilized, as there is no need for
calculating the normalizing factor φ(Y, θ) (in this case, only
the ratio of the two probabilities is needed). However, such
a model would no longer provide insight into the underlying
mechanisms of genetic interactions. On the other hand, as
we will show later, the additive flexibility resulting from joint
modeling of multiple edge types can also result in improved
reconstruction performance.

As pointed out in the Introduction, different types of as-
sociations govern the underlying interaction mechanism of
genes in biological networks. The penalized multi-mode
ERGM (MP-ERGM) framework described next, extends the
model of Section 2.1 to allow for multiple edge types and



addresses the general problem of supervised network recon-
struction in the setting of gene networks.

Assume that the network is comprised of T different edge
types: Y = Y1

⊕
. . .
⊕
YT , where

⊕
denotes partition of

the space of interactions into different interaction types.
Throughout this paper, we focus on the case of T = 2, cor-
responding to PD and PP interactions in the gene networks.
However, the general framework can be used to allow for
other types of genetic interactions (e.g. post-transcriptional
regulations through miRNA’s).

The above framework can also be extended to allow for
presence of multiple edge types for the same dyad. In par-
ticular, if we instead consider the union of all possible edges
for each dyad, Y = Y1

⊎
. . .
⊎
YT , more than one edge types

can be estimated for each dyad. Finally, before discussing
the parametrization and estimation in this framework, it is
worth noting that the above framework differs from the mul-
tivariate ERGM framework of [27] in that the partitioning
of edge types further limits the set of possible edges for each
subclass Yt. An issue that facilitates the estimation and can
result in improved prediction as further discussed below.

Using the above decomposition, we consider the following
extension of (3), which estimates different parameters for

each edge type, θ̂t, and can be used for edge prediction via
the multi-mode ERGM:

argmax
θ

∑
yt

yij log(πij) +
∑
yt

(1− yij) log(1− πij)− J(θ),

where yt are observed dyads for edge type t, with t = 1, 2
corresponding to PD and PP interactions, respectively. In
this framework, PD interactions are only estimated between
transcription factors (TFs) and target genes (TGs). Thus,
edges corresponding in Y1 correspond to TF to TG interac-
tions in the network. On the other hand, TG to TG edges
correspond to Y2, which represent undirected associations
among genes. These associations could correspond to both
PP interactions, as well as any other undirected associations
between two genes i and j. In particular, since directed TF
to TF interactions cannot be estimated from steady state
expression data, in this paper we also allow for estimation
of undirected edges among TFs. Finally, under this model,
no TG to TF, or self-regulatory edges are estimated.

2.3 Implementation Considerations
Covariates. In general, three classes of covariates can be
incorporated into the proposed MP-ERGM framework: (a)
network attributes, including degrees of nodes i and j, and
the sparsity of the observed network; (b) data on gene ac-
tivity in the cell, including steady state, or time course gene
expression levels; (c) functional genes attributes, including
whether genes i or j are transcription factors, and their path-
way membership. In all models considered in Section 3, we
focus mainly on attributes from classes (b) and (c) above.
However, we also use the sparsity of the observed network in
order to propose a weighted estimation scheme for improved
prediction, as discussed next.

For each dyad, we consider four expression-based attributes,
namely empirical correlation matrix and its absolute value,
as well as estimated partial correlation matrix and its ab-
solute value. The estimate of the correlation and partial
correlation matrices are obtained using the graphical lasso
(glasso) algorithm [13], which results in more robust es-
timates in small sample settings. Further, we define two

function-based attributes, namely whether genes i and j are
in the same KEGG pathway, and whether (i, j) dyad cor-
respond to a TF to TG association. The last attribute is
only used in the penalized ERGM estimator (referred to as
ERGM hereafter), while the remaining attributes are shared
between the ERGM and MP-ERGM estimators.
Weighted Parameter Estimation. It is well known that
genetic networks are sparse, in the sense that the total num-
ber of edges in the network is far less than the m2 possible
edges, and it often scales linearly with the number of genes.
Therefore, the training data for the proposed framework, are
highly unbalanced in terms of number positive and negative
examples (i.e. the number of 1’s compared to the number
of 0’s in y). A number of solutions have been explored in
the literature for obtaining better estimators, including sub-
sampling from the negative examples, or over-sampling from
positive ones. Here, we consider an alternative strategy, mo-
tivated by developments in the area of survey sampling [8].
Specifically, we consider an observation weight for positive
labels given by (2

∑
y/|Y|)−1. Note that for equal num-

ber of positive and negative labels, this weighting scheme
amounts to equal weights for the two classes. However, in
unbalanced settings, this method results in higher weights
for positive examples.

Computational Complexity. As discussed earlier, the
dyadic independence in the proposed MP-ERGM framework
allows for efficient estimation of parameters using a penal-
ized logistic regression model. To determine the computa-
tional complexity of the this procedure, it suffices to note
that the computational cost of the algorithm is dominated
by the cost of obtaining estimates of the parameters θ which
requires O(m2

0 p
2) computations. However, the MP-ERGM

algorithm also requires calculation of the covariates described
in Section 2.3. This involves estimation of (partial) correla-
tion matrix of genes using the glasso algorithm, which re-
quires O(m3) operations. Thus, the computational complex-
ity of the proposed MP-ERGM algorithm isO(max(m3,m2

0p
2)).

3. RESULTS
We consider network of genetic interactions of yeast Sac-

charomyces cerevisiae, for which information on transcrip-
tion regulatory and protein-protein interactions are available
from perturbation screens and two-hybrid experiments. To
evaluate the proposed MP-ERGM estimator, we compare its
performance with a number of state-of-the-art methods for
gene network reconstruction. The competing methods have
been chosen to provide a representative sample of network
reconstruction methods, and include both supervised and
unsupervised methods. We also consider different evaluation
methods, as well as both real and simulated data. Next, we
briefly describe each of the competing methods considered in
our analysis.

1) COEXP: Coexpression analysis is perhaps the sim-
plest method for reconstructing biological networks. In this
method, a network is simply built by thresholding the ab-
solute values of pairwise correlations between genes at a
threshold τ . The resulting network is by default undirected,
and is well known to include spurious edges e.g. due to high
correlations between genes regulated by the same transcrip-
tion factor.

2) GLASSO: In this method, the gene network is es-
timated by the graph of conditional dependencies among
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genes. More specifically, if the mRNA expression levels
follow a joint normal distribution X ∼ N(0,Σ) (after log-
transformation, and centering), the nonzero entries of Σ−1

define conditional dependence relationships among variables,
and can be represented by an undirected graph. A number
of regularization methods have been recently proposed for
estimation of Σ−1 when the number of variables (genes) is
larger than the sample size. Here, we use the graphical lasso
algorithm as implemented in the R-package glasso [13].

3) CLR: The CLR method estimates the gene network
using mutual information between pairs of genes [9]. This
method is based on a background correction for the Rele-
vance Network method [5], and is considered one of the best
unsupervised method of network reconstruction. We use
the matlab implementation of CLR, using the ‘rayleigh’
method for calculating mutual information, as suggested by
the authors for small to medium graphs.

4) PCALG: This method is based on the PC-algorithm
of [17], wherein the gene network is estimated by a par-
tially directed graph estimated based on conditional inde-
pendence relations among genes. The PC-algorithm is the
only method considered here that builds a partially directed
network, and is used to provide an unsupervised benchmark
for estimation of mixed edge types.

5) SVM: We develop a supervised estimation method us-
ing kernel-SVM’s. This method is motivated by the pro-
posal of [4], however, it differs from their proposal in that it
uses expression data instead of sequence information. More
specifically, to obtain a fair comparison, the SVM model
is trained using the same set of covariates as in the penal-
ized ERGM model (see Section 2.3), which includes mRNA
expression levels, as well as pathway membership informa-
tion. We use the C-svc method with Gaussian kernels (us-
ing σ = 0.1). We use the R-implementation in the package
kernlab [19], which is based on the LIBSVM library [6].
The value of the penalty parameter C is chosen based on
best performance in validation data among the set of values
{100, 200, . . . , 900, } ∪ {1000, . . . , 5000}.

3.1 Reconstruction of gene network of yeast
The network considered in our first experiment is com-

prised of list of documented transcription regulatory inter-
actions between TFs and TGs in yeast obtained from YEAS-
TRACT [1], coupled with protein-protein interactions in
yeast from BioGRID [32] downloaded using the BioGRID
Cytoscape plug-in.

Here, we focus on the subset of genes involved in ‘metabolism’
and ‘cell growth’ in yeast, which provide a window into
changes in yeast cells at different stages of growth, and under
different environmental conditions. In particular, we con-
sider the genes in Amino Acid Metabolism, Carbohydrate
Metabolism, and Cell Growth based on information from
KEGG [18]. Expression levels for these genes were obtained
from the data in [7] (GEO Accession No. GSE5499), which
includes 270 arrays under different conditions. The result-
ing network included a network of 411 yeast genes with both
gene expression data and network information.

Figure 1 shows the number of true positive (TP) edges for
each reconstruction method as a function of the total num-
ber of edges (TE) in the estimated network. Such a compar-
ison removes the need for choosing a cutoff parameter for
determining whether an edge is present among two genes,
and provides a more complete picture of performance of dif-
ferent methods across the range of the tuning parameters.
The result includes a line for each of the methods described
previously, with the exception of PCALG; the PC-algorithm
implementation in the R-package pcalg uses the probability
of false positives α as the tuning parameter, which limits
the total number of edges in the network, and results in an
incomplete TP-TE line.

It is worth noting that the unsupervised estimates (CO-
EXP/GLASSO/CLR) are based solely on gene expression
measurements. On the other hand, the supervised methods
(SVM/ERGM/MP-ERGM) can incorporate multiple types
of biological information, and are developed using the co-
variates discussed in Section 2.3. We split the network into
training and test sets, by randomly selecting 75% of the
genes and the network of interactions amongst them for
training. We then evaluate the performance of each of the
estimators on the remaining part of the network. Note that
unsupervised methods do not require a training network.
However, GLASSO and CLR are designed to remove spuri-
ous edges using information from other genes in the network.
Therefore, to prevent bias, GLASSO and CLR estimates are
obtained based on the complete gene expression matrix for
411 genes; we then take the subset of the network corre-
sponding to the test genes for evaluation.

The results in Fig 1 show that, as expected, incorporating
the knowledge of the network and gene attributes results in
significant gain in performance for the supervised methods.
Interestingly, the unsupervised methods have very similar
performances, with CLR and GLASSO having a slight edge
over COEXP.

On the other hand, these results indicate that the meth-
ods based on exponential random graph models, ERGM and
MP-ERGM, offer significant advantages compared to other
methods considered here, including the kernel SVM method.
Finally, while MP-ERGM seems to have a slight edge over
ERGM, the difference does not seem to be significant.

3.2 Reconstruction from simulated data
In this section, we focus on the performance of network
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the network of yeast genes using different prediction methods.

reconstruction methods, when the cutoff parameter for each
method is optimally determined. For supervised classifica-
tion methods, this corresponds to choosing the cutoff for
probability of an edge. In unsupervised methods, on the
other hand, the choice of tuning parameter is often deter-
mined based on the properties of the estimator, or the fit
to the data. However, when edges in the network are par-
tially known, such information can be used to choose the
cutoff and/or tuning parameter in order to improve the per-
formance of the method. This amounts to a bridge between
supervised and unsupervised methods. Here, we consider
variants of GLASSO and COEXP methods where the cor-
responding tuning parameter – the threshold parameter τ
for COEXP and the penalty coefficient λ for GLASSO –
is chosen so that the method gives an optimal performance
on the available network. To evaluate the performance of
the reconstruction methods, we report for each method its
precision P and recall R, as well as their harmonic mean,
F1.

We consider ERGM, MP-ERGM and modified versions of
GLASSO and COEXP. However, considering the equivalent
performances of CLR and GLASSO, we do not include CLR
in the analysis of this section. Also, considering the inferior
performance of kernel SVM, and its larger computational
cost, compared to other supervised methods, we do not in-
clude this method either. The last method included in this
section is the PCALG estimator, which as mentioned be-
fore, provides a partially directed estimate and can hence be
more directly compared to the MP-ERGM estimator. This
method also provides a benchmark for comparing the effect
of using partial knowledge of the network, either to train the
classifier (in case of ERGM and MP-ERGM), or to choose
the tuning parameter (in case of COEXP and GLASSO).
Following the suggestion of the [17], we set the probability
of false positive in PCALG to α = 0.01.

To gain further insight into the performance of reconstruc-
tion methods, in this section we compare their performances
using data simulated according to the given gene network.
By doing this, we guarantee that the underlying network
is a gold standard, in the sense that no missing or incor-

rect edges are present in the network. The availability of
gold standard is one of the main challenges in evaluating
the performance of network reconstruction methods, and by
simulating data from the network, we can directly compare
the performance of the competing methods in reconstructing
the network from available data. However, a clear limitation
of this approach is that in order to generate data from the
network, we need to pose different assumptions on the dis-
tribution of the data, as well as effects of regulatory and
protein-protein interactions.

To prevent any bias towards the proposed methods, and
to see whether supervised methods offer any advantages in
the settings where unsupervised methods correctly capture
the data generation mechanism, we generate data from a
Gaussian graphical model (GGM). In this setting, the (log)
expression profiles are assumed to follow a normal distribu-
tion N(0,Σ). To determine the joint covariance matrix Σ,
we consider a model wherein the gene network corresponds
to the conditional independence graph. In other words, the
presence of an edge between two genes indicates that they
are conditionally dependent, given all other genes. Consid-
ering the symmetry of the covariance matrix, we remove the
directionality of the edges in the network, and transform the
adjacency matrix A into a symmetric matrix. It then fol-
lows, from the theory of GGMs, that the adjacency matrix
has the same non-zero pattern as Σ−1.

For simplicity, we assign a constant value of partial cor-
relation to all edges of the network (set here as ρ = 0.6).
However, to obtain a well-defined probability distribution,
we need Σ−1 to be positive definite. We achieve this by mak-
ing the matrix sub-stochastic (a.k.a. diagonally dominant).
Expression levels can then be generated as multivariate nor-
mal with covariance matrix Σ. We generate n = 100 i.i.d.
samples. Note that the data generated from such a pro-
cedure matches exactly the underlying assumption of the
GLASSO estimator, except for presence of directed edges
in the network. Therefore, it is expected that by obtaining
the optimal value of tuning parameter based on the par-
tial knowledge of network, GLASSO would result in good
reconstruction performance.

The distributions of P , R and F1 for different network
reconstruction methods are shown in Figure 2. The results
are for 100 randomly selected sets of training and test net-
works. As in Section 3.1, it can be seen that, ERGM and
MP-ERGM outperform the other methods in terms of F1

measure. (p-values for pairwise tests between supervised
and unsupervised methods based on Wilcoxon Rank Sum
tests are all < 10−4.) In this setting, GLASSO and COEXP
have high recall values, which is expected as the underlying
data generation mechanism obeys the multivariate normal
assumption of these methods. These results also suggest
that the use of partial knowledge of network in selection
of tuning parameters for GLASSO and COEXP results in
considerable improvements compared to the unsupervised
PCALG method.

The results of above experiment further highlight the ad-
vantages of the supervised methods, even when the underly-
ing model matches the assumptions of unsupervised meth-
ods. Clearly, this advantage can be more pronounced if the
underlying model does not correspond to the assumption
of unsupervised methods. These results also suggest that
the joint modeling of multiple edge types in MP-ERGM can
offer additional improvements in network reconstruction.



4. DISCUSSION
In this paper, we proposed a multi-mode exponential ran-

dom graph model for supervised prediction of genetic inter-
actions. The proposed model offers a systematic framework
for analysis of gene networks with multiple edge types, and
allows for seamless integrations of diverse sources of biolog-
ical data, as well as additional information on function and
location of genes in the cell. Numerical experiments indi-
cate that this model offers improved predictive performance
compared to existing models. Another appealing feature of
this framework, compared to some of the existing supervised
methods, is that by considering different models for multiple
types of genetic interactions, and providing an exact infer-
ence framework, it offers additional insight into mechanisms
of genetic interactions.

The proposed framework offers a number of possible ex-
tensions. In particular, it is of interest to further explore the
capability of this model to integrate multiple data sources,
include other sources of association measures and more com-
plex network features, and extend its applicability to other
types of biological networks, such as metabolic networks.
The model developed in this paper implicitly assumes that
the available network information are selected randomly from
the set of all possible interactions. Investigating the effects
of such assumptions, and developing models that allow for
different sampling mechanisms remain the topic of future
research.
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