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Abstract

In the high-dimensional regression setting, the elastic net produces a parsimonious
model by shrinking all coefficients towards the origin. However, in certain settings, this
behavior might not be desirable: if some features are highly correlated with each other
and associated with the response, then we might wish to perform less shrinkage on the
coefficients corresponding to that subset of features. We propose the cluster elastic net,
which selectively shrinks the coefficients for such variables towards each other, rather than
towards the origin. Instead of assuming that the clusters are known a priori, the cluster
elastic net infers clusters of features from the data, on the basis of correlation among
the variables as well as association with the response. These clusters are then used in
order to more accurately perform regression. We demonstrate the theoretical advantages
of our proposed approach, and explore its performance in a simulation study, and in an
application to HIV drug resistance data. Supplementary Materials are available online.

Keywords: correlated variables, feature selection, feature clustering, structured sparsity,
lasso, ridge, p � n

1 Introduction

In this paper, we consider the problem of performing linear regression with a response vector

y of length n and a data matrix X of dimension n × p, where p is the number of features

and n is the number of observations. Least squares linear regression involves estimating the

coefficient vector β by minimizing the sum of squared errors ‖y − Xβ‖2. Unfortunately, it

cannot be performed when X is singular, for instance in high dimensions when p > n.

In recent years, a great number of proposals have been made to overcome this limitation

of least squares regression. Ridge regression involves selecting the coefficient vector β that

minimizes the sum of squared errors, subject to a squared �2 penalty (Hoerl & Kennard

1970). Unfortunately, ridge regression does not produce parsimonious models — the resulting

coefficient estimate β̂ contains no elements that are exactly equal to zero. In contrast, the

lasso (Tibshirani 1996) achieves sparse coefficient estimates by minimizing the sum of squared
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errors with an �1 penalty on the coefficient vector. But the lasso has a major shortcoming

relative to ridge regression: while ridge regression tends to assign similar coefficient values to

correlated variables, the lasso tends to only assign a non-zero coefficient to a single variable out

of a set of correlated variables. To combine ridge regression’s treatment of correlated variables

with the lasso’s sparsity, Zou & Hastie (2005) proposed the elastic net, which combines an

�1 and a squared �2 penalty on β, and achieves model parsimony along with a tendency for

correlated variables to yield similar regression coefficients.

In certain settings, it may be known a priori that there are distinct groups or clusters

among the variables, and we may wish to exploit these groups when performing regression. For

instance, we may wish to predict some response y on the basis of a data matrix X consisting

of p gene expression measurements for n observations. It is known that genes operate as part

of pathways. If the pathways are known, then we could encourage the variables within a group

to have a shared pattern of sparsity — that is, to all be zero or to all be non-zero. The group

lasso proposal of Yuan & Lin (2007) achieves this, through the use of an �2 penalty on the

coefficients within each of K known and non-overlapping groups. Some modifications to this

proposal have been made to allow for an additional lasso penalty to encourage sparsity for

individual elements within a group (Simon et al. 2010), to accommodate overlapping groups

(Jacob et al. 2009), and to encourage a shared sign for the non-zero coefficients within each

group (Chiquet et al. 2012). Another setting in which it may be beneficial to encourage

similarity in estimated coefficients is when a known graph structure for the covariates is

available. In this case, we can perform graph-constrained regression: this is achieved by

performing regression subject to a penalty that encourages covariates that are linked on the

graph to take on similar coefficients (Li & Li 2008, Li & Li 2010, Huang et al. 2011, Shen

et al. 2012).

The group lasso and graph-constrained regression proposals just described can be used to

exploit external information about the covariates in order to potentially obtain more accu-

rate results in high-dimensional settings. However, what if no such external information is

available? For instance, in genetic studies, a given set of pathways may not be relevant to a

response of interest, and so using these known pathways may not lead to improved results.

In such a setting, rather than using known groups in order to exploit covariate structure in
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regression, we might want to estimate the groups, or clusters, from the data. In this paper,

we propose the cluster elastic net (CEN), an approach for identifying clusters among the

variables and simultaneously estimating the regression coefficients. We will show that in the

absence of clusters our proposal is equivalent to the elastic net (Zou & Hastie 2005), and in the

presence of known clusters is closely related to graph-constrained regression (Li & Li 2008, Li

& Li 2010). But in the presence of unknown clusters — which is the case in general, and

is the scenario of interest in this paper — our approach is novel and outperforms existing

approaches by encouraging features within a cluster to have a shared association with the

response.

We are not the first to propose performing clustering together with regression. Several al-

gorithmic proposals have been made for performing clustering and then subsequently perform-

ing regression using the cluster outputs (Hastie et al. 2001, Dettling & Buhlmann 2004, Park

et al. 2007). Penalized regression approaches have also been proposed for exploiting correla-

tion among features in order to obtain improved regression coefficient estimates. For instance,

octagonal shrinkage and clustering algorithm for regression (OSCAR, Bondell & Reich 2008)

and the more recent penalized adaptive clustering and sparsity (PACS, Sharma et al. 2013)

approaches encourage correlated variables to take on identical coefficient estimates via the

use of a novel penalty function that can be interpreted as an octagonal constraint region.

Related approaches are proposed in She (2010), Daye & Jeng (2009), and Tutz & Ulbricht

(2009). However, while these proposals encourage correlated features to take on the same

or similar coefficient values, they do not explicitly encourage large sets of correlated features

to take on similar coefficient values. More closely related to our proposal is recent work by

Buhlmann et al. (2012) on the cluster group lasso. This approach involves first identifying

groups among the features using (for instance) hierarchical clustering, and then applying the

group lasso of Yuan & Lin (2007) to the resulting groups. However, this technique assumes

that all correlated features have similar associations with the response. In contrast, CEN

seeks sets of correlated features with similar associations with the response; this is particu-

larly advantageous if some but not all correlated features have a similar association with the

response.

We now illustrate the performance of CEN in a toy example. We generate an n×p matrix
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X with n = 50 and p = 30. The rows of X are i.i.d. draws from a N(0,Σ) distribution, where

Σ is a p× p block diagonal matrix with three equally-sized blocks. Σ has 1’s on the diagonal,

0.8’s within each block, and 0’s elsewhere. Figure 1(a) is a heatmap illustrating the empirical

correlation matrix of X. The coefficient vector β takes the form

β =

⎛
⎝1, . . . , 1︸ ︷︷ ︸

10

,−1, . . . ,−1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

⎞
⎠

T

.

Finally, we generate the response according to y = Xβ + ε, where the elements of ε are

i.i.d. draws from a N(0, 1) distribution. We then set the tuning parameter for the �1 penalty

term in CEN to zero. Figures 1(b)-(d) show the β estimates that result from performing

CEN, PACS (discussed in Section 5.2, Sharma et al. 2013), and ridge regression, with tuning

parameters chosen so that the resulting estimators have the same �2 norms. We see that in this

example, CEN yields the most compact and accurate coefficient estimates within each cluster.

Figures 1(e)-(h) extend this example to the setting in which each of the three groups contains

both positively-correlated and negatively-correlated features, as shown in Figure 1(e). The

coefficient vector is such that Xjβj ≈ Xlβl for the features within each group. CEN performs

very well in this situation, indicating that this approach can handle both negative and positive

correlations among the features within a group, provided that the features share an association

with the response.

The rest of this paper is organized as follows. In Section 2, we present the CEN optimiza-

tion problem and its properties. An algorithm for solving the optimization problem is given

in Section 3. In Section 4, we investigate the differences between the shrinkage performed

by CEN and that performed by the elastic net. We study CEN’s relationship with other

approaches in the literature in Section 5. In Section 6, we study CEN’s performance in a

simulation study. An application to HIV drug resistance data is presented in Section 7, and

the discussion is in Section 8.
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Figure 1: Grouping properties of CEN with p = 30 and n = 50. (a)-(d): There are three
highly correlated sets of features, with coefficient values 1, 0, and -1, shown in green, blue,
and red, respectively. (a): Heatmap of empirical correlation of the design matrix X; positive,
zero, and negative correlations are indicated in blue, green, and beige. (b): Density plot of β̂
using ridge regression. (c): Density plot of β̂ using PACS. (d): Density plot of β̂ using CEN
with δ = 0. (e)-(h): As in panels (a)-(d), but now each group contains both positively- and
negatively-correlated features. In the blue group all coefficients equal zero. Within the red
and green groups, half the coefficients equal 1 and half equal -1, such that Xjβj ≈ Xlβl for all
features within each group. This is captured by CEN (h) but not by ridge (f) or PACS (g).

2 The Cluster Elastic Net

2.1 The CEN Optimization Problem

Throughout this paper, we will assume a fixed design matrix X of dimension n × p and a

response vector y = Xβ + ε, where β is an unknown vector of regression coefficients and

ε is a random vector of uncorrelated noise terms with mean 0 and common variance σ2.

Furthermore, we assume that y has been centered to have mean zero. We will let Xj ∈ R
n

denote the jth column of the matrix X. We will also assume that the columns of X have been

standardized to have mean 0 and an �2 norm of 1:
∑

iXij = 0,
∑

iX
2
ij = 1. In general, we will

assume that we are in the high-dimensional, sparse setting in which p > n, but the majority

of the covariates are not associated with the outcome, i.e. βj = 0 for most j = 1, . . . , p. We

make the following additional assumptions:
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Assumption 1. There are unknown groups, or clusters, among the variables. There are K

distinct but unknown groups of variables, with moderate or high levels of (absolute) correlation

among the variables within a group, and little or no correlation between the groups.

Assumption 2. Variables that are in the same group have a similar association with the

response. If Xj and Xl belong to the same group, then Xjβj and Xlβl take on similar values.

The last two assumptions indicate that there are unknown groups among the variables, and

that knowing these groups would allow us to more accurately estimate β. With these as-

sumptions in mind, we propose the cluster elastic net, which is the solution to the following

optimization problem:

minimize
C1,...,CK ,β

⎧⎨
⎩‖y −Xβ‖2 + δ‖β‖1 + λ

2

K∑
k=1

1

|Ck|
∑

j,l∈Ck

‖Xjβj −Xlβl‖2
⎫⎬
⎭ . (1)

Here δ and λ are nonnegative tuning parameters, and C1, . . . , CK denotes a partition of the

p features into K groups, such that Ck ∩Cl = ∅ if k �= l and C1 ∪C2 ∪ . . . ∪CK = {1, . . . , p}.
The ‖β‖1 term is simply a lasso (�1) penalty, which will encourage the coefficient estimates

to be sparse when δ is large. On the other hand, the behavior of the cluster penalty, which

can also be re-written as follows,

1

2

K∑
k=1

1

|Ck|
∑

j,l∈Ck

‖Xjβj −Xlβl‖2 =
K∑
k=1

∑
j∈Ck

‖Xjβj − 1

|Ck|
∑
l∈Ck

Xlβl‖2, (2)

is more subtle. Assume for a moment that the clusters C1, . . . , CK are known. Then when λ

is large, the cluster penalty term will encourage Xjβj ≈ Xlβl for j, l ∈ Ck.

In this paper, we are interested in the setting where the clusters are unknown, and so the

cluster penalty term will encourage these clusters to be selected on the basis of the Xjβj ’s.

As we will see shortly, we can solve the optimization problem (1) by repeatedly estimating

the clusters C1, . . . , CK by performing k-means clustering of the Xjβj ’s, and then estimating

β by encouraging variables within a given cluster to take on similar coefficient estimates. If

the jth and lth features are in the same cluster and have high (absolute) correlation, then (2)

encourages βj and βl to take on similar values. If the jth and lth features are in the same

cluster and have low correlation, then the penalty encourages βj and βl to be near zero.
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In what follows, we will refer to (1) as the CEN optimization problem. Occasionally, we will

also consider a simpler version of (1) with C1, . . . , CK fixed — we will refer to this modified

version of CEN as CEN with known clusters. We will also refer to the special case of CEN

when δ = 0 as cluster ridge regression (CRR) due to similarities between the �2 penalty and

the cluster penalty, which we will explore shortly.

2.2 Properties of the Cluster Elastic Net

We first show that lasso and elastic net are special cases of CEN when K = 1 or K = p.

Property 1. If K = p, so that each feature is in its own cluster, then CEN reduces exactly

to the lasso.

Property 2. If K = 1, so that all features are in the same cluster, then CEN is equivalent

to the elastic net on scaled versions of X and y.

Property 1 can be seen by inspection of (1), but Property 2 requires further comment. Note

that when K = 1, then provided that λ < p, we can use (2) to rewrite (1) as

‖ỹ − X̃β‖2 + δ‖β‖1 + λ‖β‖2,

where ỹ = y/
√

1− λ/p and X̃ = X
√

1− λ/p, and where we are omitting an additive constant

that is a function of only y, λ, and p. Together, Properties 1 and 2 indicate that the CEN

defines a spectrum of regularized regression problems, at one end of which is the lasso (K = p)

and at the other end of which is the elastic net (K = 1).

We will next show that for an intermediate value of K, 1 < K < p, CEN will result in

pooling of regression coefficients for variables within a cluster, provided that those variables

are correlated. Letting rjl ≡ XT
j Xl, we can re-write the objective of (1) as follows:

‖y −Xβ‖2 + λ

2

K∑
k=1

1

|Ck|
∑

j,l∈Ck

[
(1− rjl)

(
β2
j + β2

l

)
+ rjl (βj − βl)

2
]
+ δ ‖β‖1 . (3)

Therefore, if the jth and lth variables are in the same group and rjl is large, then the (βj − βl)
2

term in (3) will dominate and CEN will shrink βj and βl towards each other. On the other
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hand, if rjl is close to zero, then (β2
j + β2

l ) — a term that amounts to a ridge penalty on a

subset of the variables — will dominate and CEN will shrink βj and βl towards zero. And if

rjl is negative, then

(1− rjl)
(
β2
j + β2

l

)
+ rjl (βj − βl)

2 = (1− |rjl|)
(
β2
j + β2

l

)
+ |rjl| (βj + βl)

2 ,

which indicates that βj ≈ −βl is encouraged. In other words, depending on the correlations

among the variables within a group, the variables will either be shrunken towards each other,

towards zero, or towards each other in absolute value but with opposite signs.

We also observe from (1) that (absolutely) correlated variables that are associated with

the response — that is, variables for which Xjβj ≈ Xkβk — are encouraged to belong to the

same cluster, as this results in less shrinkage in their coefficients, and hence, smaller values of

the objective.

Furthermore, we note that

1

2

K∑
k=1

1

|Ck|
∑

j,l∈Ck

(
β2
j + β2

l − 2βjβlrjl
)
= βTMβ (4)

where M is a positive semi-definite matrix of the form

Mjl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(|Ck| − 1)/|Ck| if j = l ∈ Ck

−rjl/|Ck| if j �= l and j, l ∈ Ck

0 otherwise

(5)

and Mjl is the (j, l) entry of M. Therefore, the optimization problem for CEN with known

groups can equivalently be written as

minimize
β

{‖y −Xβ‖2 + λβTMβ + δ‖β‖1
}
, (6)

where M is a matrix that effectively reduces the amount of penalization that is applied to

pairs of correlated variables within a given group. If M ∝ I, as will be the case if the design

matrix has orthogonal columns and |C1| = |C2| = . . . = |CK |, then (6) reduces to the elastic
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net. This results in the following property.

Property 3. In the case of an orthogonal design matrix, XTX = Ip, and equally-sized clus-

ters, |C1| = |C2| = . . . = |CK |, the CEN is equivalent to the elastic net.

Therefore, when K = p, K = 1, or X has orthogonal columns, the CEN reduces to the lasso

or the elastic net. When K = 1, (3) also reveals a very close connection between CEN and

the proposal of Tutz & Ulbricht (2009). However, when 1 < K < p and the columns of X are

not orthogonal, the CEN yields a new regularization procedure. Unlike the elastic net or the

lasso, it shrinks coefficients towards each other or towards the origin based on the pairwise

correlations of features that belong to the same cluster.

2.3 Coefficient Profiles

Figure 2 displays the coefficient profiles of five regression techniques — the elastic net, the

group lasso, PACS, CEN, and CEN with known groups — on the toy example from Fig-

ures 1(a)-(d). We see that the coefficients corresponding to features within a given cluster are

grouped together far more tightly by CEN than by the elastic net. Furthermore, the group

lasso (which can only be performed if the clusters are known) yields grossly inaccurate coeffi-

cient estimates because it does not encourage similar coefficient estimates for features within

a cluster. PACS fails to group together the coefficient estimates within each cluster: only a

few truly relevant variables are given non-zero coefficient values before the truly irrelevant

variables. We also see that in this setting, the results of CEN with unknown clusters and

CEN with clusters known a priori are virtually indistinguishable.

2.4 Contour Plots for CEN

In order to better understand the CEN penalty relative to existing penalties, we consider its

contour plots. Figure 3 displays the contour plots of the penalty function P (β), where P (β)

is a lasso penalty (Figure 3(a)), ridge penalty (Figure 3(b)), elastic net penalty (Figure 3(c)),

or a CEN penalty (Figures 3(d)-(f)). In particular, Figures 3(d)-(f) display the contours of

the CEN penalty under the following three scenarios:
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Figure 2: Coefficient profiles for (a): elastic net, (b): group lasso, (c): PACS, (d): CEN, and
(e): CEN with known groups. The �2 norm of the estimated coefficient vector is displayed
on the x-axis, and the coefficient estimates are on the y-axis. Colors indicate the cluster to
which each set of features belongs; red, green, and blue indicate true coefficient values of 1,
-1, and 0, respectively.

Figure 3(d): Here there are p = 2 positively-correlated features and K = 1, so that

P (β) = (λ/2)‖X1β1−X2β2‖2+δ|β1|+δ|β2| = (λ/2)(β2
1 +β2

2 −2β1β2r12)+δ|β1|+δ|β2|.

Therefore, the contours for P (β) are an ellipse (centered at the origin) plus a diamond.

Figure 3(e): Here there are p = 4 positively-correlated predictors belonging to a single

cluster. β1 is on the x-axis, and β2 is on the y-axis. We assume that β3 = β4 = 1.

Contour plots for P (β) are shown, with β3 and β4 held fixed at their true values. In

other words, contour plots for

(λ/4)

⎛
⎝||X1β1 −X2β2||2 +

4∑
j=3

(||X1β1 −Xj ||2 + ||X2β2 −Xj ||2
)
⎞
⎠+ δ|β1|+ δ|β2|

are displayed. This is the sum of an ellipse (not centered at the origin) and a diamond.

This indicates that β1 and β2 are encouraged to take on similar positive values.

Figure 3(f): Here there are p = 8 predictors and K = 2. β1 is on the x-axis, and β5 is

on the y-axis. The first four features are highly correlated and belong to a cluster, as

do the remaining four features. Furthermore, we assume that β2 = β3 = β4 = 1 and

that β6 = β7 = β8 = −1. Contour plots for P (β), with β2, β3, β4, β6, β7, β8 held fixed at
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Figure 3: Contour plots are shown for (a) the lasso; (b) ridge regression; (c) the elastic net;
(d) CEN with p = 2, positive correlation between the variables, and K = 1; (e) CEN with two
positively-correlated variables in the same cluster; (f) CEN with two uncorrelated variables
in different clusters. Details about (d)-(f) are provided in the text.

their true values, are shown. That is, we display

(λ/8)

⎛
⎝ 4∑

j=2

‖X1β1 −Xj‖2 +
8∑

j=6

‖X5β5 +Xj‖2
⎞
⎠+ δ|β1|+ δ|β5|;

this is the sum of a circle (not centered at the origin) and a diamond. Consequently, β1

and β5 are encouraged to take on positive and negative values, respectively.

Therefore, we see that unlike ridge regression, the lasso, and the elastic net, the contours of

CEN are data driven: their shape depends on the correlation structure of the design matrix,

X. If the design matrix is orthogonal, then the contours will simply be circles (centered at

the origin) plus diamonds; this amounts to the contours of the elastic net. In contrast, in the

presence of high correlation between features within a cluster, the contours corresponding to

features within a cluster will be ellipses (not centered at the origin) plus diamonds, and the

contours corresponding to pairs of features in different clusters will be circles (not centered at

the origin) plus diamonds. In the presence of a non-orthogonal design matrix, the contours of

the penalty function are not centered at the origin because correlated features are encouraged

to take on similar coefficient values.

3 Computational Considerations

3.1 Algorithm for the CEN Problem

We now consider the task of solving the CEN problem (1). This problem is non-convex, and

finding the global optimum would require considering all O(Kp) possible partitions of the p
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features into K clusters. Then for each partition, (1) could be solved with C1, . . . , CK held

fixed. Unfortunately, this exhaustive approach is infeasible unless p is very small.

Therefore, instead of seeking the global optimum to (1), we seek a local optimum. In

particular, we take an iterative approach, in which we hold C1, . . . , CK fixed and solve with

respect to β, and then hold β fixed and solve with respect to C1, . . . , CK . In the latter step,

we find a local optimum of (1) with β held fixed by applying the k-means clustering algorithm

on X1β1, . . . , Xpβp (see e.g. Hastie et al. 2009). Details are presented in Algorithm 1.

Since the CEN optimization problem is not convex, Algorithm 1 is not guaranteed to

converge to the global optimum. However, it is a descent algorithm in which each iteration

decreases the objective. Since we initialize the algorithm using the elastic net coefficient

estimates, and since each iteration reduces the objective, the algorithm yields quite good

empirical results that improve upon the elastic net by exploiting grouping among the variables.

We now consider solving (9) in Step 2(b) of Algorithm 1. The problem is convex in β.

We take a coordinate descent approach (see e.g. Friedman et al. 2007), which amounts to

repeatedly performing a single update, given in Proposition 1.

Proposition 1. Let X−j be the n × (p − 1) submatrix containing all but the jth column of

X, β−j the (p − 1)-vector containing all but the jth element of β, ỹj = y − X−jβ−j, and

suppose that j ∈ Ck. Then the following update to βj minimizes the objective function in (9)

with respect to βj while holding all other variables fixed:

βj ←
S
(
ỹT
j Xj +

λ
|Ck|

∑
l∈Ck,j �=l βlrjl, δ/2

)

rjj

(
1 + λ |Ck|−1

|Ck|
) . (7)

where S indicates the soft-thresholding operator, defined as S(a, b) = sign(a)max(0, |a| − b).

Therefore, to solve (9), we simply iterate through the variables j = 1, . . . , p, repeating the

update (7) until convergence to the global optimum. We see from the form of (7) that βj will

be encouraged to take on large values if correlated variables that are in the same cluster also

take on large values. The proof of Proposition 1 follows from simple algebra and is omitted.
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Algorithm 1 Algorithm for solving the CEN optimization problem (1)

1. Initialize β as the solution to the elastic net optimization problem,

minimize
β

{‖y −Xβ‖2 + δ‖β‖1 + λ‖β‖2} .

2. Iterate until convergence:

(a) Hold β fixed and minimize (1) with respect to C1, . . . , CK . That is, solve

minimize
C1,...,CK

⎧⎨
⎩

K∑
k=1

1

|Ck|
∑

j,l∈Ck

‖Xjβj −Xlβl‖2
⎫⎬
⎭ . (8)

A local optimum can be found by performing k-means clustering onX1β1, . . . ,Xpβp
with K clusters.

(b) Hold C1, . . . , CK fixed and and solve for β. That is, solve

minimize
β

⎧⎨
⎩‖y −Xβ‖2 + λ

2

K∑
k=1

1

|Ck|
∑

j,l∈Ck

‖Xjβj −Xlβl‖2 + δ‖β‖1

⎫⎬
⎭ . (9)

3.2 Computations

In our implementation of Algorithm 1, k-means clustering is performed in Step 2(a) using the

kmeans function with nstart=20 in the MASS library in R. Coordinate descent is performed in

Step 2(b) using our own implementation in R.

In principle, each time Step 2(b) is performed, the computations should be comparable

to performing the elastic net once using the coordinate descent approach of Friedman et al.

(2007). However, to speed up computations in our implementation, instead of iterating the

update (7) until the global optimum is obtained in Step 2(b), we perform at most 50 iterations

of the update (7) each time Step 2(b) is performed. We iterate between Steps 2(a) and 2(b)

until the relative change in the estimated coefficients, ‖β̂(i) − β̂
(i−1)‖2/‖β̂(i)‖2, falls below

10−5, where β̂
(i)

denotes the coefficient estimates from the ith iteration of Step 2.

On a MacBook Pro 2.66 GHz Intel Core i7, running CEN in the simulation set-up of

Section 6 (for which n = 200 and p = 1000) took an average of 5 seconds. Computations can

be reduced using warm starts over a grid of λ or δ values, or using an active set approach.
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3.3 Tuning Parameter Selection

In order to select the tuning parameters δ, λ, and K, cross-validation or a training set / test

set approach can be used. Recall from Section 2.2 that for certain values of λ and K, CEN

simplifies to the lasso or the elastic net. Therefore, if for a particular data set the assumptions

underlying CEN do not hold, cross-validation should in principle result in a selection of tuning

parameters such that either the lasso or the elastic net is performed. Furthermore, Properties

1 and 2 suggest that a broad range of K values might give good results.

4 Analysis of Between-Group Shrinkage

While the elastic net shrinks all coefficient estimates towards the origin, the cluster elastic

net shrinks the coefficients for correlated features that belong to the same cluster towards

each other instead of towards the origin. We explore this property in a very simple setting, in

which (for simplicity) we take the clusters to be known. We make the following assumptions:

(A1) There are two known clusters, each with size m = p/2. The features are ordered such

that those in the first cluster precede those in the second cluster.

(A2) The true β is (b1, . . . , b1, b2, . . . , b2)
T . That is, the true value of β is the same within

each cluster. We also assume without loss of generality that b1 > b2.

(A3) y = Xβ + ε, where ε ∼ N(0, σ2In).

(A4) rjl = r1 for j and l in the same cluster, and rjl = r0 for j and l in different clusters.

This means that

XTX = (1− r1) I+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1 · · · r1 r0 · · · r0
...

. . .
...

...
. . .

...

r1 · · · r1 r0 · · · r0

r0 · · · r0 r1 · · · r1
...

. . .
...

...
. . .

...

r0 · · · r0 r1 · · · r1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Furthermore, we assume that r1 > r0 > 0.
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While assumptions (A1)-(A3) are reasonable, assumption (A4) is quite simplistic. Note that

with a random design matrix, (A4) corresponds to a simple block-correlation model, and thus

is reasonable for observed data as n → ∞.

Now, we will compare the CRR estimator β̂CRR to the ridge regression estimator β̂RR. It

is straightforward to show that both estimators are normally distributed.

Theorem 1. Suppose that (A1)-(A4) hold, and that λRR =
(
1− 1−r1

m

)
λCRR.

1. If the jth and lth features are in the same cluster, then

β̂CRR,j − β̂CRR,l
D
= β̂RR,j − β̂RR,l ∼ N

(
0, 2σ2 (1 + λRR − r1)

−2 (1− r1)
)
.

2. If the jth and lth features are in different clusters, then

E(β̂CRR,j − β̂CRR,l) =
(βj − βl)(−1 +m(r0 − r1) + r1)

λCRR(−1 +m)(−1 + r1)/m+ (−1 +m(r0 − r1) + r1)
, (10)

E(β̂RR,j − β̂RR,l) =
(βj − βl)(−1 +m(r0 − r1) + r1)

−1− λRR +m(r0 − r1) + r1
. (11)

Corollary 1. Under the assumptions of Theorem 1, if the jth and lth features are in different

clusters, then

1 ≥ E(β̂CRR,j − β̂CRR,l)

βj − βl
≥ E(β̂RR,j − β̂RR,l)

βj − βl
≥ 0.

Furthermore, if r1 = 1, then

E(β̂CRR,j − β̂CRR,l)

βj − βl
= 1 and

E(β̂RR,j − β̂RR,l)

βj − βl
=

m(1− r0)

λRR +m(1− r0)
< 1.

Theorem 1 (proven in the Supplementary Materials) and Corollary 1 can be interpreted

as follows. Theorem 1 indicates that there exists a simple relationship between λRR and λCRR

such that β̂CRR,j − β̂CRR,l and β̂RR,j − β̂RR,l have the same distribution, provided that the

jth and lth features are in the same cluster. In other words, with tuning parameters chosen

in this way, CRR and RR perform the same amount of shrinkage within a cluster.

However, how does the shrinkage performed by CRR and RR compare for features in

different clusters? Corollary 1 reveals that the tuning parameter relationship that leads to
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the same amount of within-cluster shrinkage results in more between-cluster shrinkage by RR

than by CRR. Stated in another way, both RR and CRR successfully shrink coefficients of

features within the same cluster towards each other; RR also shrinks together the coefficients

of features that are in different clusters. For instance, when r1 = 1 and the jth and lth features

are in different clusters, then E(β̂CRR,j − β̂CRR,l) = βj − βl, but E(β̂RR,j − β̂RR,l) < βj − βl.

The tendency of RR to perform between-cluster shrinkage is illustrated in Figure 4; as can

be seen from the figure, CRR does not exhibit this behavior to the same extent.

Interestingly, Theorem 1 reveals that provided that r1 > 0, then even if r0 = 0 — that is,

even in the absence of any correlation between the features in different clusters — then RR

still shrinks coefficients for features in different clusters towards each other more than does

CRR. This is a byproduct of the fact that RR shrinks all coefficients towards zero more than

does CRR, regardless of cluster membership. This is an undesirable property of RR.

0.2 0.4 0.6 0.8 1.0
r1

0.2

0.4

0.6

0.8

1.0

Β
�

j � Β
�

l

Figure 4: Under the assumptions of Theorem 1, E(β̂CRR,j − β̂CRR,l) (blue solid line) and

E(β̂RR,j − β̂RR,l) (red solid line) are displayed as a function of r1. Here the jth and lth
features belong to different groups. Furthermore, r0 = 0.1, m = 10, βj −βl = 1, and λRR = 5.
Unlike CRR, RR tends to shrink together the coefficients of features in different groups. The
dashed lines are expectations plus and minus one standard deviation of β̂j − β̂l.

5 Relationship With Other Approaches

In Section 2.2, we discussed the relationship of CEN with the lasso and the elastic net. Here

we discuss the relationship of CEN with some other recent proposals.
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5.1 Relationship With Graph-Constrained Regularization

A series of recent papers have proposed an approach for high-dimensional regression with

graph-structured variables (Li & Li 2008, Li & Li 2010). Consider a weighted graph G =

(E, V,W ) where V = {1, . . . , p} is a set of vertices that correspond to the p predictors,

E = {j ∼ l} is the set of edges between the vertices in the graph, and w(j, l) denotes the

(positive) weight of the edge between the jth and lth vertices. Let dl =
∑

j∼l w(j, l) be the

degree of the lth vertex, and assume that the graph G is known a priori. Then the graph-

constrained estimator (GRACE) of Li & Li (2008) and Li & Li (2010) amounts to solving (6),

where M = Mgrace, given by

Mgrace
jl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− w(j, j)/dj if j = l and dj �= 0

−w(j, l)/
√
djdl if j and l share an edge on the graph

0 otherwise

. (12)

Now we will consider a special case of the graph G in order to highlight the relationship

between CEN and GRACE. Suppose that the graph G is composed of K disjoint components,

and w(j, l) = 1 if the jth and lth vertices are in the same component. In other words, within a

given component, all vertices are connected and have equal weights. Clearly w(j, l) = 0 if the

jth and lth vertices are in different components. If we let Ck be a set containing the indices

of the vertices in the kth component, for k = 1, . . . ,K, then it is easy to see that dj = |Ck| if
the jth vertex is in the kth component. In this case, (12) reduces to

Mgrace
jl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(|Ck| − 1)/|Ck| if j = l ∈ Ck

−1/|Ck| if j �= l and j, l ∈ Ck

0 otherwise.

(13)

Comparing (13) to (5), we find that the M matrices for CEN and for this special case of

GRACE are quite similar. In fact, CEN and this special case of GRACE would be identical

if CEN were performed with known groups, and if rjl = 1 for j, l ∈ Ck. However, in practice,

|rjl| < 1 for j �= l. Therefore, the penalty applied by CEN is somewhat milder than the
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GRACE penalty. Furthermore, GRACE requires the network to be known a priori, whereas

in CEN the clusters, and hence the structure of the graph, are inferred from the data.

5.2 Relationship With Pairwise Absolute Clustering and Sparsity

The OSCAR proposal (Bondell & Reich 2008) involves applying an �∞ penalty to each pair

of coefficients. Sharma et al. (2013) showed that OSCAR can be reformulated as

minimize
β

⎧⎨
⎩‖y −Xβ‖2 + λ

⎛
⎝∑

j

wjβj +
∑
j<k

wjk−|βk − βj |+
∑
j<k

wjk+|βj + βk|
⎞
⎠
⎫⎬
⎭ , (14)

where wjk+ = wjk− = α for all 1 ≤ j < k ≤ p and where wj = 1 for all j = 1, . . . , p.

Sharma et al. (2013) instead consider (14) with wjk+ = (1 + rjk)
−1, wjk− = (1 − rjk)

−1

or wjk+ = 1{rjk<−c}, wjk− = 1{rjk>c} where 1{A} is an indicator variable that equals one if

the event A holds, and equals zero otherwise. This pairwise absolute clustering and sparsity

(PACS) approach is intended to encourage correlated features to take on similar coefficient

values. In contrast, CEN encourages features that share an association with the response

to take on similar coefficient values. This distinction can be seen from the form of (3),

recalling that C1, . . . , CK are obtained based on X1β̂1, . . . , Xpβ̂p. In both CEN and PACS, the

correlation among features plays a role in determining the extent to which features’ coefficient

estimates are pooled; however, only in CEN does association with the response also play a

role. Another difference involves the use of an �1 penalty on pairs of coefficients by PACS

(and OSCAR), as opposed to a squared �2 penalty by CEN; CEN performs a more mild form

of shrinkage, as it does not encourage coefficient values to be exactly identical.

The performances of PACS and CEN were compared in Figures 1 and 2.

6 Simulation Study

6.1 Simulation Set-Up

We simulated data according to the model y = Xβ + ε with p = 1, 000 features. The errors

ε1, . . . , εn are i.i.d. from a N(0, 2.52) distribution. The observations (rows of X) are i.i.d. from
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a N(0,Σ) distribution, where Σ is a p× p block diagonal matrix, with elements as follows:

Σij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = j

ρ if i ≤ 50, j ≤ 50, i �= j

ρ if 51 ≤ i ≤ 100, 51 ≤ j ≤ 100, i �= j

0 otherwise

. (15)

We explored various values of ρ, ranging from 0 to 0.8. Furthermore, βj ∼ Unif[0.9, 1.1] for

1 ≤ j ≤ 25, βj ∼ Unif[−1.1,−0.9] for 51 ≤ j ≤ 75, and βj = 0 otherwise. In other words,

there are two sets of 50 correlated features; half of the features in each set are associated

with the response. The remaining 900 features are not correlated with each other and not

associated with the response. This simulation set-up is motivated by gene pathways, where

genes within the same pathway have correlated expression values, but only a fraction of genes

in the pathway have expression that is associated with a response of interest.

Using this set-up, we generated a training set of 200 observations, a validation set of 200

observations, and a test set of 800 observations. The training set was used to fit the model,

and the validation set was used for purposes of tuning parameter selection only. In greater

detail, we fit each approach on the training set using a range of tuning parameter values.

We then selected the final model to be the model that yielded the smallest prediction error,

defined as ||y −Xβ̂||2, on the validation set.

6.2 Simulation Results

We compared the performances of the following approaches: [1] The elastic net (EN). [2]

Ridge regression. [3] The lasso. [4] CEN with K = 3. [5] CEN with known groups. [6]

K-means clustering with K = 3, followed by the group lasso on the resulting clusters; this is

the cluster group lasso (CGL) proposal of Buhlmann et al. (2012). [7] The group lasso (GL)

with known groups. Recall that CEN groups variables with similar values of Xj β̂j . Thus,

from the perspective of CEN, in this simulation study there are three groups of variables:

C1 = {j : 1 ≤ j ≤ 25}, C2 = {j : 51 ≤ j ≤ 75}, and C3 = {1, . . . , p}\{C1 ∪ C2}. We

treat these groups as the “true variable clusters” in what follows. We used these clusters in
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performing CEN with known groups, and in performing GL with known groups.

In Table 1, we report the following quantities for various values of ρ: [1] The test set

prediction error, given as ||Xβ−Xβ̂||2. [2] Correct sparsity, defined as the fraction of features

that are either correctly determined to be zero, or correctly determined to be non-zero: that

is, 1
p

∑p
j=1Aj , where

Aj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if β̂j = βj = 0

1 if β̂j �= 0, βj �= 0

0 else

.

[3] The number of nonzero elements in β̂. [4] The Rand Index (Rand 1971), which measures

the agreement between the true clusters and estimated clusters. The Rand Index ranges from

0 to 1; a value close to 1 indicates a high level of agreement between the true and estimated

clusters, and a value close to 0 indicates a low level of agreement. In the case of CEN and

CGL, the estimated clusters are obtained directly via the algorithm, whereas in the case

of ridge, lasso, and elastic net, the estimated clusters are obtained by performing k-means

clustering on X1β̂1, . . . ,Xpβ̂p. For CEN with known groups and GL with known groups, the

Rand Index necessarily equals one.

As expected, the elastic net always outperforms ridge since β is sparse; it also tends to

outperform the lasso due to the presence of correlations among the features, especially as ρ

increases. The cluster elastic net performs comparably to the elastic net when 0 ≤ ρ ≤ 0.1,

since in this case there is little or no correlation structure among the features. As the level

of correlation within a group increases, the performance of CEN relative to EN improves.

When ρ ≥ 0.2, CEN outperforms EN by a sizeable margin. Not surprisingly, CEN with

known groups performs better than CEN with unknown groups, though of course the setting

of unknown groups is of primary interest in this paper.

We see that group lasso with known groups performs extremely well across all simu-

lation settings, and far outperforms even CEN with known groups. However, recall that

here the known groups used by group lasso are different from the groups used by CGL, be-

cause CGL finds groups by clustering X1, . . . ,Xp whereas the “true groups” involve clustering

X1β1, . . . ,Xpβp. Therefore, the clusters estimated by CGL are not the optimal clusters for
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ρ Method ||Xβ −Xβ̂||2 Correct Sparsity Num. Non-Zeros RI

0.0

Lasso 163.142(1.827) 0.869(0.009) 155.8(9.084) 0.907(0)
Ridge 182.167(0.869) 0.05(0) 1000(0) 0.904(0.003)
EN 162.428(1.875) 0.824(0.013) 204.5(13.951) 0.908(0)
CEN 163.351(1.862) 0.807(0.026) 222.233(26.953) 0.908(0)

CEN Known Groups 159.508(1.65) 0.815(0.01) 215.9(11.004) 1(0)
Cluster Group Lasso 184.08(0.81) 0.05(0) 1000(0) 0.366(0)

Group Lasso Known Groups 58.315(1.191) 0.05(0) 1000(0) 1(0)

0.1

Lasso 98.067(2.694) 0.914(0.005) 134.567(5.256) 0.953(0.003)
Ridge 200.597(1.38) 0.05(0) 1000(0) 0.948(0.002)
EN 97.396(2.472) 0.91(0.005) 138.9(5.478) 0.955(0.003)
CEN 97.918(2.46) 0.868(0.029) 181.4(29.42) 0.954(0.003)

CEN Known Groups 95.571(2.192) 0.877(0.012) 172.1(11.941) 1(0)
Cluster Group Lasso 165.216(3.115) 0.131(0.03) 919(30.146) 0.397(0.005)

Group Lasso Known Groups 41.672(0.844) 0.303(0.078) 746.667(78.012) 1(0)

0.2

Lasso 80.939(1.821) 0.938(0.004) 111.533(3.986) 0.979(0.002)
Ridge 186.734(1.485) 0.05(0) 1000(0) 0.937(0.002)
EN 80.194(1.766) 0.932(0.004) 117.867(4.159) 0.981(0.002)
CEN 73.571(1.28) 0.716(0.025) 334.067(25.199) 0.984(0.001)

CEN Known Groups 75.091(1.266) 0.804(0.016) 246.433(16.382) 1(0)
Cluster Group Lasso 76.642(3.976) 0.08(0.03) 970.067(29.933) 0.84(0.023)

Group Lasso Known Groups 37.685(0.805) 0.62(0.086) 430(86.423) 1(0)

0.5

Lasso 66.674(1.405) 0.955(0.003) 94.4(2.909) 0.982(0.001)
Ridge 150.026(1.266) 0.05(0) 1000(0) 0.91(0.001)
EN 65.067(1.304) 0.945(0.003) 104.267(2.843) 0.984(0.001)
CEN 62.292(1.342) 0.814(0.038) 236.433(38.022) 0.988(0.001)

CEN Known Groups 52.011(0.81) 0.773(0.027) 277.433(26.694) 1(0)
Cluster Group Lasso 59.171(0.835) 0.08(0.03) 970(30) 0.906(0)

Group Lasso Known Groups 30.612(0.711) 0.842(0.066) 208.333(65.744) 1(0)

0.8

Lasso 60.436(1.217) 0.955(0.003) 88.733(3.04) 0.964(0.002)
Ridge 115.42(1.124) 0.05(0) 1000(0) 0.906(0)
EN 53.421(0.818) 0.937(0.004) 112.467(3.632) 0.969(0.002)
CEN 43.519(0.763) 0.75(0.047) 299.267(46.673) 0.991(0.001)

CEN Known Groups 32.152(0.841) 0.78(0.046) 270.167(45.527) 1(0)
Cluster Group Lasso 48.707(0.516) 0.23(0.067) 820(66.85) 0.906(0)

Group Lasso Known Groups 21.592(0.603) 0.842(0.066) 208.333(65.744) 1(0)

Table 1: Simulation results. Means (and standard errors) over 30 iterations are reported. All
models were fit on a training set using the set of tuning parameters that led to the smallest
value of ||y − Xβ̂||2 on a validation set; in the third column, results on a separate test set
are reported. The fourth column is the fraction of features correctly determined to be zero
or non-zero, as defined in the beginning of Section 6.2. The sixth column is the Rand Index,
which quantifies agreement between true and estimated clusters.

estimating the sparsity structure. For this reason, CGL performs far worse than group lasso

with known groups, across all values of ρ.

CGL performs far worse than CEN when ρ < 0.2 (in which case k-means clustering of the

features fails to identify the groups) and when ρ = 0.8 (in which case CEN more effectively
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exploits the correlation structure within each group). For intermediate values of ρ, CEN and

CGL perform comparably in terms of prediction error. CEN always outperforms CGL in

terms of identification of the true clusters, as quantified by the Rand index.

6.3 Misspecification of the Number of Clusters

In Section 6.2, we performed CEN using K = 3, which is the true number of clusters of Xjβj .

However, in a typical application we will not know the true value for K. Table 2 displays the

results obtained if CEN is performed using various values for K, under the simulation set-up

described in Section 6.1 with ρ = 0.5. We find that though the best results are obtained for

K = 3, competitive results are obtained for the other values of K considered. Given that

CEN with K = 1 is essentially equivalent to the elastic net, and CEN with K = p is simply

the lasso, it is not surprising that using an intermediate though incorrect value of K can yield

good results.

||Xβ −Xβ̂||2 Correct Sparsity Num. Non-Zeros RI
K=2 63.503(1.323) 0.931(0.008) 118.867(8.032) 0.948(0.002)
K=3 62.292(1.342) 0.814(0.038) 236.433(38.022) 0.988(0.001)
K=5 64.167(1.254) 0.853(0.024) 197.267(24.232) 0.988(0.001)
K=7 66.926(1.594) 0.899(0.02) 151.1(19.862) 0.985(0.002)

Table 2: The simulation set-up in Section 6.1 was performed with ρ = 0.5, and CEN models
were fit using various values of K, using a training/validation/test set approach as described
in Sections 6.1 and 6.2. Means (and standard errors) over 30 simulated data sets are reported.
Column labels are as in Table 1.

7 Application to HIV Drug Resistance Data

We now consider the task of predicting the susceptibility of HIV-1 isolates to nucleoside reverse

transcriptase inhibitor drugs (NRTIs) on the basis of the isolates’ amino acid sequences (Rhee

et al. 2006). A number of drugs are available for treating HIV-1 infection, and resistance to

these drugs occurs due to mutations in the HIV-1 sequence. Being able to accurately predict

susceptibility to a given drug based on the amino acid sequence of a given isolate would have

important clinical implications, since then an individual can be given an optimal course of

treatment based on the genotype of the HIV-1 isolates carried. A mutation in a particular
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amino acid may lead to decreased drug susceptibility due to a change in that drug’s binding

site. In this case, nearby mutations may also lead to a similar change in the binding site.

For each of n = 639 HIV-1 isolates, the amino acid sequence of the first p = 240 positions in

the reverse transcriptase gene is available from the Stanford HIV Drug Resistance Database, at

http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/ (Shafer 2006).

We coded each amino acid as a 0 in a given isolate if the wild-type amino acid is present, and

a 1 otherwise. This resulted in a 639 × 240 binary data matrix. We do not expect there to

be high correlations among the features in this data set, since the data are binary, and most

isolates have just a few mutations. However, we do expect that adjacent mutations should

have a similar association with the response, since mutations at two adjacent sites may have

a similar effect on a particular drug’s binding site.

In order to exploit our hypothesis that mutations at adjacent sites have similar associations

with the response, we created a pooled data set by summing the mutations in a sliding window

of five amino acids, resulting in a 639 × 236 data matrix. Adjacent features of this pooled

data set are highly correlated with each other; furthermore, we expect adjacent features to

have a similar association with the response. Features were scaled to have mean zero and

unit variance. When used to predict susceptibility to didanosine, CEN and elastic net yielded

similar test errors as evaluated using a training/validation/test set approach. However, for a

range of values of K, the CEN models were much more interpretable, as is shown in Figure 5.

CEN effectively assigns adjacent features to the same cluster, indicating that such features are

highly correlated and have a shared association with the response. Similar results to Figure 5

were obtained using sliding windows of different widths.

As pointed out by a referee, on this data set there is a linear ordering among the features,

and so the fused lasso (Tibshirani et al. 2005) is a natural alternative to CEN. In fact, applying

the fused lasso to this data yields qualitatively similar results to applying CEN (though of

course CEN does not set coefficient values to be exactly identical to each other). However,

CEN is intended for settings in which the variables are unordered, or at least have no known

ordering, so that fused lasso is not a possibility; we apply it to this data set with ordered

features only to illustrate that the technique yields scientifically plausible results. We also

note that in this application we could have analyzed the unpooled data; however, pooling

23



(a) (b) (c) (d)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●

●●

●●
●

●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10 Cor: 0.1

Cor: 0.86
Cor: 1
Cor: 0.81
Cor: 0.97
Cor: 1
Cor: 1
Cor: 0.85

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●

●●
●
●●●●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10 Cor: 0.1

Cor: 0.47
Cor: 1
Cor: 0.84
Cor: 1
Cor: 0.85

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10 Cor: 0.09

Cor: 0.35
Cor: 1
Cor: 0.98

●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●

●

●●

●●●

●●●●

●

●
●
●●
●
●●●●
●
●●●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●●●

●

●●●●

●

●●●●●●●●●●●
●
●●●●●●●

●

●

●

●

●

●●●●
●●
●

●

●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●
●
●●●●

●

●

●
●

●

●

●

●

●●●●●●●●
●
●●

●

●●●●
●
●●

●

●

●●
●●●●●

●

●●●●●●
●●

●
●●●

●

●

●●●●
●
●●

−0
.0

5
0.

00
0.

05
0.

10

Cor: 0.1

Figure 5: Coefficient estimates for prediction of susceptibility to the NRTI didanosine on
the basis of pooled mutation status. The coefficient estimates are displayed for CEN with
(a): K = 8, (b): K = 6, (c): K = 4, and (d): elastic net; recall that this is equivalent to
CEN with K = 1 on a rescaled version of the data. For CEN, the coefficient estimates are
colored by cluster label. The mean absolute pairwise correlation of the features within each
cluster is displayed in the legend. CEN was performed with λ = 20 and δ = 45 in each panel;
elastic net was performed with equal tuning parameters on the ridge and lasso components,
chosen to yield the average number of non-zero coefficients obtained in panels (a)-(c). Similar
results were obtained in the models for predicting the other NRTIs, and using different sizes
of sliding windows.

the features before performing the analysis leads to a nice interpretation of the non-zero

coefficients in the resulting model as potential drug binding sites.

8 Discussion

In this paper, we have proposed the cluster elastic net, a technique for high-dimensional regres-

sion in the presence of unknown groups among the covariates. An efficient coordinate descent

algorithm for solving the cluster elastic net optimization problem in the high-dimensional set-

ting has been presented. We have shown that this procedure outperforms existing techniques

under a range of simulated settings, and yields more interpretable results in an application to

HIV drug sensitivity data.

We have discussed the use of the cluster elastic net in the least squares regression context.

However, an extension to generalized linear models would be straightforward: it would simply

entail applying the cluster elastic net penalty to the appropriate log likelihood function.

As was pointed out by a reviewer, in this paper we have not discussed the issue of inference

for the coefficients in the cluster elastic net model. Indeed, inference in the high-dimensional

setting is a challenging problem, and is currently a very active area of research. Existing
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techniques may be applied or extended in order to address this problem (see e.g. Meinshausen

& Buhlmann 2010, Berk et al. 2013, Lockhart et al. 2013).
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