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Abstract

Directed acyclic graphs (DAGs) are commonly used to represent causal relationships among random variables in
graphical models. Applications of these models arise in thestudy of physical, as well as biological systems, where di-
rected edges between nodes represent the influence of components of the system on each other. The general problem
of estimatingDAGs from observed data is computationally NP-hard, Moreover two directed graphs may be observa-
tionally equivalent. When the nodes exhibit a natural ordering, the problem of estimating directed graphs reduces to
the problem of estimating the structure of the network. In this paper, we propose a penalized likelihood approach
that directly estimates the adjacency matrix ofDAGs. Both lasso and adaptive lasso penalties are considered and an
efficient algorithm is proposed for estimation of high dimensional DAGs. We study variable selection consistency
of the two penalties when the number of variables grows to infinity with the sample size. We show that although
lasso can only consistently estimate the true network understringent assumptions, adaptive lasso achieves this task
under mild regularity conditions. The performance of the proposed methods are compared to alternative methods in
simulated, as well as real, data examples.

1 Introduction

Graphical models provide efficient tools for the study of statistical models through a compact representation of the joint
probability distribution of the underlying random variables. The nodes of the graph represent the random variables,
while the edges capture the relationships among them. Both directed and undirected edges are used to represent
interactions among random variables. However, there is a conceptual difference between these two types of edges:
while undirected edges are used to represent similarity or correlation, directed edges are usually interpreted as causal
relationships. The study of directed edges is therefore directly related to the theory of causality, and of main interest
in many applications. A special class of directed graphicalmodels (also known as Bayesian Networks) are based on
directed acyclic graphs (DAGs), where all the edges of the graph are directed and there areno directed cycles present in
the graph.DAGs are used in graphical models and belief networks and have been the focus of research in the computer
science literature (seePearl (2000)). Important applications involvingDAGs also arise in the study of biological
systems, as many cellular mechanisms are known to include causal relationships. Cell signalling pathways and gene
regulatory networks are two examples, where causal relationships play an important role (Markowetz and Spang,
2007).

The problem of estimatingDAGs is an NP-hard problem, and estimation of direction of edgesmay not be possible
due to observational equivalence (see section2). Most of the earlier methods for estimatingDAGs correspond to greedy
search algorithms that search through the space of possibleDAGs. A number of methods are available for estimating the
structure ofDAGs for small to moderate number of nodes. The max-min hill climbing algorithm (Tsamardinos et al.,
2006), and the PC-Algorithm (Spirtes et al., 2000) are two such examples. However, the space of possibleDAGs grows
super-exponentially with the number of variables (nodes),and estimation ofDAGs using these methods, especially in a
smalln, largep setting, becomes impractical. Bayesian methods of estimating DAGs (e.gHeckerman et al., 1995) are
also computationally very intensive and therefore not particularly appropriate for large graphs.Kalisch and Bühlmann
(2007) recently proposed an implementation of the PC-Algorithm with polynomial complexity that can be used for
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estimation of high dimensional sparseDAGs. However, when the variables inherit anatural ordering, estimation
of a DAG is reduced to estimating its structure or skeleton. Applications with natural ordering of variables include
estimation of causal relationships from temporal observations, or settings where additional experimental data can
determine the ordering of variables, and estimation of transcriptional regulatory networks from gene expression data.
Examples of these applications are presented in section6.

The structure of the graph can be determined from conditional independence relations among random variables.
For undirected graphs, this is equivalent to learning the structure of the conditional independence graph (CIG), which
in the case of Gaussian random variables, is determined by zeros in the inverse covariance matrix (also known as
precision or concentration matrix). Different penalization methods, have been recently proposed to obtain sparse
estimates of the concentration matrix.Meinshausen and Bühlmann(2006) considered an approximation to the problem
of sparse inverse covariance estimation using the lasso penalty. They showed under a set of assumptions, that their
proposed method correctly determines the neighborhood of each node. Banerjee et al.(2008) and Friedman et al.
(2008b) explored different aspects of the problem of estimating the concentration matrix using the lasso penalty, while
Yuan and Lin(2007) andFan et al.(2007) considered other choices for the penalty.Rothman et al.(2008) proved
consistency in Frobenius norm, as well as in matrix norm, of theℓ1-regularized estimate of the concentration matrix
whenp ≫ n, while Lam and Fan(2008) extended their result and considered estimation of matrices related to the
precision matrix, including the Cholesky factor of the inverse covariance matrix, using general penalties. Penalization
of the Cholesky factor of the inverse covariance matrix has been also considered byHuang et al.(2006), where they
used the lasso penalty in order to obtain a sparse estimate ofthe inverse covariance matrix. This method is based on
the regression interpretation of the Cholesky factorization model and therefore requires the variables to be ordereda
priori .

In this paper, we consider the problem of estimating the skeleton ofDAGs, where the variables exhibit a natural
ordering. We use graph theoretic properties ofDAGs and reformulate the likelihood as a function of the adjacency
matrix of the graph. We then exploit the ordering of variables to propose an efficient algorithm for estimation of
structure ofDAGs, which offers considerable improvement in terms of computational complexity. Both lasso and
adaptive lasso penalties are considered and variable selection consistency of estimators is established in thep ≫ n
setting. In particular, we show that although lasso is only variable selection consistent under stringent conditions,
adaptive lasso can consistently estimate the trueDAG under the usual regularity assumptions. We also present a data
dependent choice of the tuning parameter that controls the probability of errors. Theoretical as well as empirical
evidence shows that when the underlying causal mechanism inthe network is linear, the proposed method can also be
applied to non-Gaussian observations. Finally, additional simulations indicate that although the proposed method is
derived based on the ordering of variables, the method is notsensitive to random permutations of the order of variables
in high dimensional sparse settings.

2 Representation of Directed Acyclic Graphs

Consider a graphG = (V, E), whereV corresponds to the set of nodes withp elements andE ⊂ V × V to the
edge set. The nodes of the graph represent random variablesX1, . . . , Xp and the edges capture associations amongst
them. An edge is called directed if(i, j) ∈ E ⇒ (j, i) /∈ E and undirected if(i, j) ∈ E ⇒ (j, i) ∈ E. The main
focus of this paper is a special class of graphs whereE consists of only directed edges, and does not include directed
cycles. We denote bypai the set of parents of nodei and forj ∈ pai, we denotej → i. Theskeletonof a DAG is
the undirected graph that is obtained by replacing directededges inE with undirected ones. Finally, throughout this
paper, we representE using the adjacency matrixA of the graph; i.e. ap × p matrix whose(j, i)th entry indicates
whether there is an edge (and possibly its weight) between nodesj andi.

The estimation ofDAGs is a challenging problem due to the so-calledobservational equivalenceof DAGs with
respect to the same probability distribution. More specifically, regardless of the sample size, it may not be possible to
infer the direction of causation among random variables from observational data. As an illustration of the observational
equivalence, consider the simpleDAG in the right panel of Figure1. Reversing the direction of all edges of the graph
results in a newDAG, which is the same as the original graph, except for changes in the node labels and is therefore
polymorphicto the original one. It is therefore natural to estimate theequivalence classof DAGs corresponding to
the same probability distributionP starting with the skeleton of the network. The second challenge in estimating
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Figure 1: Left: A simpleDAG, Right: Illustration of observational equivalence inDAGs

DAGs is that conditional independence among random variables may not reveal the skeleton. The notion of conditional
independence inDAGs is either represented using the concept ofd-separation(Pearl, 2000) or themoral graphof
a DAG (Lauritzen, 1996). The moral graph is obtained by removing the directions of the graph and “marrying” the
parents of each node. Therefore estimation of the conditional independence structure reveals the structure of the moral
graph of theDAG, which includes additional edges between parents of each node. This can also be illustrated using the
simple graph in the left panel of Figure1. SupposeXi, i = 1, . . . , 4 are normally distributed with covariance matrix
Σ. The only zero elements of the inverse covariance matrix areΣ−1

14 = Σ−1
41 , asX2 andX3 are connected in the moral

graph ofG.

2.1 The Latent Variable Model

The causal effect of random variables in a directed acyclic graph can be explained usingstructural equation models,
where each variable is modeled as a (nonlinear) function of its parents. The general form of these models is given by
(Pearl, 2000):

Xi = fi(pai, Zi), i = 1, . . . , p (2.1)

The random variablesZi are the latent variables representing the unexplained variation in each node. To model the
association among nodes of aDAG, we consider a simplification of (2.1) with fi being linear. More specifically, letρij

represent theeffectof nodej on i for j ∈ pai, then

Xi =
∑

j∈pai

ρijXj + Zi, i = 1, . . . , p (2.2)

In the special case where the random variables are Gaussian,equations (2.1) and (2.2) are equivalent in the sense
thatρij are coefficients of the linear regression model ofXi’s on Xj , j ∈ pai. It is known in the normal case that
ρij = 0, j /∈ pai.

Consider the simpleDAG in the left panel of Figure1; denoting theinfluence matrixof the graph byΛ, (2.2) can
be written in compact form asX = ΛZ, where for the simple example above, we have

Λ =





1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1





Let the latent variablesZi be independent with meanµi and varianceσ2
i . ThenE(X) = Λµ andΣ = var(X) =

ΛDΛT, whereD = diag (σ2
i ) andΛT denotes the transpose of the matrixΛ.

The following result fromShojaie and Michailidis(2009a) establishes relationships between the influence matrix
Λ, and the adjacency matrix of the graph,A. The second part of the lemma establishes a compact relationship between
Λ andA in the case ofDAGs, which is explored in section3 to directly formulate the problem of estimating the skeleton
of a DAG.

Lemma 2.1. For any graphG = (V, A),

(i) Λ = A0 + A1 + A2 + · · · =
∑∞

r=0 Ar, whereA0 ≡ I.

(ii) If G is a DAG, Λ has full rank andΛ = (I − A)−1.
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Remark2.2. Part (ii) of Lemma2.1 and the fact thatΣ = ΛDΛT imply that for anyDAG, if Dii > 0 for all i,
thenΣ is full rank. More specifically, letφj(M) denote thejth eigenvalue of matrixM . Then,φmin(Σ) > 0 (or
φmax(Σ

−1) < ∞). Similarly, sinceΣ−1 = Λ−T
D−1Λ−1, full rankness ofΛ implies thatφmin(Σ−1) > 0 (or

equivalentlyφmax(Σ) < ∞). This result also applies to all subnetworks of aDAG.

The properties of the proposed latent variable model established in Lemma2.1 are independent of the choice of
probability distributionP . In fact, since the latent variablesZi in (2.2) are assumed independent, given the entries
of the adjacency matrix, the distribution of each random variableXi in the graph only depends on the values ofpai.
Therefore, regardless of the choice of the probability distribution, the joint distribution of the random variables is
compatible withG (see for examplePearl(2000) p. 16). In section5, we illustrate this result using data generated
according to non-Gaussian distributions.

3 Penalized Estimation ofDAGs

3.1 Problem Formulation

Consider the latent variable model of section2.1 and denote byX then × p data matrix. We assume, without loss
of generality, that theXi’s are centered and scaled, so thatµi = 0 andσ2

i = 1, i = 1, . . . , p. Note that the results in
section2.1were established independent of the choice of the probability distribution. As mentioned before, under the
normality assumption, the latent variable model is equivalent to the general structural equation model. Although we
focus on Gaussian random variables in the remainder of this paper, the estimation procedure proposed in this section
can be applied to a variety of other distributions, if one is willing to assume the linear structure in (2.2).

Denote byΩ ≡ Σ−1 the precision matrix of ap-vector of Gaussian random variables and consider a general
penalty function byJ(Ω). The penalized likelihood function is then given by

Ω̂ = argmin
Ω≻0

{− logdet (Ω) + tr (ΩS) + λJ(Ω)} (3.1)

whereS = n−1X TX denotes the empirical covariance matrix andλ is the tuning parameter controlling the size of the
penalty. Applications in biological and social networks often involve sparse networks. It is therefore desirable to find a
sparse solution for (3.1). This becomes more important in the smalln, largep setting, where the unpenalized solution
includes many additional edges. The lasso penalty ofTibshirani(1996) and the adaptive lasso penalty proposed byZou
(2006) are singular at zero and therefore result in sparse solutions. We consider these two penalties in order to find a
sparse estimate of the adjacency matrix. Other choices of the penalty function are briefly discussed in the conclusions
section.

Using the latent variable model of section2.1, and the relationship between the covariance matrix and theadjacency
matrix of DAGs established in Lemma2.1, the problem of estimating the adjacency matrix of the graphcan be directly
formulated as an optimization problem based onA. As noted in Lemma2.1, if the underlying graph is aDAG and the
ordering of the variables is known, thenA is a lower triangular matrix with zeros on the diagonal. LetA = {A : Aij =
0, j ≥ i}. Then using the facts thatdet(A) = 1 andσ2

i = 1, A can be estimated as the solution of the following
optimization problem

Â = argmin
A∈A

{

tr
[

(I − A)
T
(I − A)S

]

+ λJ(A)
}

(3.2)

In this paper, we consider the general weighted lasso problem, where

J(A) = λ
∑

i,j=1:p,j<i

wij |Aij | (3.3)

Lasso and adaptive lasso problems are special cases of this general penalty. In the case of lasso,wij = 1. The original
weights in adaptive lasso, proposed byZou (2006) are obtained by settingwij = |Ãij |−γ , for some initial estimate of
the adjacency matrix̃A and some powerγ. To facilitate the study of asymptotic properties of adaptive lasso estimates
we consider the following modification of the original weights

wij = 1 ∨ |Ãij |
−γ (3.4)
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where the original estimates̃A are obtained from the regular lasso estimates.
The objective function for both lasso and adaptive lasso problems is convex. However, since theℓ1 penalty is

non-differentiable, these problems can be reformulated using matricesA+ = max(A, 0) andA− = −min(A, 0). To
that end, letW be thep×p matrix of weights for adaptive lasso, or the matrix of ones for the lasso estimation problem.
Problem (3.2) can then be formulated as:

min
A+,A

−
�0

tr
{

S(I − A+ + A−)
T
(I − A+ + A−) + λ(A+ + A−)W + ∆(A+ + A−)1l+

}

(3.5)

where� 0 is interpreted componentwise,∆ is a large positive number and1l+ is the indicator matrix for lower
triangular elements of ap × p matrix, including the diagonal elements. The last term of the objective function
(tr[∆(A+ + A−)1l+ ]) prevents the upper triangular elements of the matricesA+ andA− to be nonzero.

Problem (3.5) is a quadratic optimization problem with non-negativity constraints and can be solved using stan-
dard interior point algorithms. However, such algorithms do not scale well with dimension and are only applicable
if p ranges in the hundreds. In section3.2, we present an alternative formulation of the problem, which leads to
considerably more efficient algorithms.

3.2 Optimization Algorithm

Consider again the problem of estimating the adjacency matrix of DAGs with either lasso or adaptive lasso penalties.
Denoting theith row of matrixA asAi we can write (3.2) as:

Â = argmin
A∈A

{

p
∑

i=1

Ai
TSAi − 2AiSi

T + λWi
T|Ai|

}

(3.6)

It can be seen that the objective function in (3.6) is separable and therefore it suffices to solve the optimization problem
over each row of matrixA. Denote byl the set of indices up tol, i.e. l = j : 1 ≤ j ≤ l.

Then, taking advantage of the lower triangular structure ofA, solving (3.6) is equivalent to solving the following
p − 1 optimization problems (A11 = 0)

Âi,i−1 = argmin
θ∈Ri−1







θTSi−1,i−1θ − 2Si,i−1θ + λ

i−1
∑

j=1

|θj |wij







, i = 2, . . . , p (3.7)

Using the facts thatSi−1,i−1 = n−1(Xn,i−1)
TXn,i−1 andSi,i−1 = n−1(Xn,i)

TXn,i−1, the problem in (3.7) can be
reformulated as followingℓ1-regularized least squares problems

Âi,i−1 = argmin
θ∈Ri−1







n−1‖Xn,i−1θ −Xn,i‖
2
2 + λi

i−1
∑

j=1

|θj |wij







, i = 2, . . . , p (3.8)

The formulation in (3.8) indicates that theith row of matrixA includes the coefficient of projectingXi on Xj, j =
1, . . . , i− 1, which is in agreement with the discussion in section2.1. It also reveals a connection between covariance
selection methods and the neighborhood selection approachof Meinshausen and Bühlmann(2006); namely, when the
underlying graph is aDAG, the approximate solution of the neighborhood selection problem is exact, if the regression
model is fitted on the set of parents of each node instead of allother nodes in the graph.

Using (3.8), the problem of estimatingDAGs can be solved very efficiently. In fact, it suffices to solvep − 1
lasso problems for estimation of least squares coefficients, with dimensions ranging from1 to p − 1. To solve these
problems, we use the efficient pathwise coordinate optimization algorithm ofFriedman et al.(2008a), implemented in
the R-packageglmnet. The proposed algorithm is summarized in Algorithm1.

3.3 Analysis of Computational Complexity

In this section, we provide a comparison of the computational complexity of the algorithm proposed in section3.2
and the PC-Algorithm. As mentioned in the introduction, thespace of all possibleDAGs is super-exponential in the
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Figure 2: CPU time for analysis of simulatedDAGs with different number of nodes and sample size. The resultsare
average times of10 repetitions on an Intel2 · 0GH processor with2 · 0GB of RAM.

number of nodes and hence it is not surprising that the PC-Algorithm, without any restriction on the space ofDAGs
has exponential complexity.Kalisch and Bühlmann(2007) propose an efficient implementation of the PC-Algorithm
for sparseDAGs; its complexity where the maximal neighborhood sizeq is small, is bounded with high probability by
O(pq). Although this is a considerable improvement over other methods of estimatingDAGs, in many applications it
can become fairly expensive. For example, gene regulatory networks and signaling pathways exhibit a “hub” structure,
which leads to large values forq. The graphical lasso algorithm, proposed byFriedman et al.(2008b), uses an iterative
algorithm for estimation of the inverse covariance matrix and has computational complexityO(p3).

The reformulation of theDAG estimation problem in (3.8) requires solvingp−1 lasso regression problems. The cost
of solving a lasso problem comprised ofk covariates andn observations using the pathwise coordinate optimization
(shooting) algorithm ofFriedman et al.(2008a) is O(nk); hence, the total cost of estimating the adjacency matrix of
the graph isO(np2), which is the same to the cost of calculating the (full) empirical covariance matrixSn. Moreover,
the formulation in (3.8) includes a set of non-overlapping sub-problems. Therefore, for problems with very large
number of nodes and/or observations, the performance of thealgorithm can be further improved by parallelizing the
estimation of these sub-problems. The adaptive lasso version of the problem is similarly solved using the modification
of the regular lasso problem proposed inZou(2006), which results in the same computational cost as the regular lasso
problem.

Figure2, compares the CPU time required for estimation of DAGs usingboth the PC-Algorithm, as well as our
proposed algorithm for a range of values ofp andn. To control the complexity of the PC algorithm, the average
neighborhood size is set to 5 and the significance level for the PC-Algorithm, as well as the tuning parameter for lasso
and adaptive lasso penalties are set according to the optimal values discussed in Section5. The time reported for the
PC-Algorithm is the CPU time required for estimation of the skeleton of the graph. The plot demonstrates the higher
order of complexity of the PC-Algorithm, as well as the dependency of the algorithm on the sample size.

Algorithm 1 Penalized Likelihood Estimation ofDAGs

1. Given the orderingO, order the columns of observation matrixX in increasing order
2. Fori = 2, 3, . . . , p

2.1. Lety = Xn,i, X = Xn,i−1 andw = Wi,i−1

2.2. Given the weight matrixW , solveÂi,i−1 = argmin
{

n−1‖Xθ − y‖2
2 + λi

∑i−1
j=1 |θj |wj

}
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4 Asymptotic Properties

4.1 Preliminaries

We next establish theoretical properties for both lasso, aswell as adaptive lasso estimators of the adjacency matrix
of DAGs. Asymptotic properties of lasso-type estimates with fixeddesign matrices have been studied by a number
of researchers (see e.g.Knight and Fu, 2000; Zou, 2006; Huang et al., 2008). Lasso estimates with random design
matrices have been also considered byMeinshausen and Bühlmann(2006). On the other hand,Rothman et al.(2008)
andLam and Fan(2008) among others have studied asymptotic properties of estimates of covariance and precision
matrices.

As discussed in section3.1, the problem of estimating the adjacency matrix of aDAG is equivalent to solvingp−1
non-overlapping penalized least square problems described in (3.7). In order to study the asymptotic properties of the
proposed estimators, we focus on the asymptotic consistency of network estimation, i.e. the probability of correctly
estimating the network structure, in terms of type I and typeII errors. We allow the total number of nodes in the graph
to grow as an arbitrary polynomial function of the sample size, while assuming that the true underlying network is
sparse. The assumptions required for establishing asymptotic properties of lasso and adaptive lasso estimates ofDAGs
are presented in section4.2. We then study variable selection consistency of both lassoand adaptive lasso estimates in
section4.3. The choice of penalty parameter is studied in section4.4. Technical proofs are given in the Appendix.

4.2 Assumptions

Let X = (X1, . . . , Xp) be a collection ofp zero-mean Gaussian random variables with covariance matrix Σ. Denote
byX then × p matrix of observations, and byS the empirical covariance matrix. To simplify the notation,denote by
θi = Ai,i−1 the entries of theith row ofA to the left of the diagonal. Further, letθi,I be the estimate for theith row,
with values outside the set of indicesI set to zero; i.e.,θi,I ≡ Ai,i−1 andAi,j = 0, j /∈ I. Consider the following
assumptions:

(A-0) For somea > 0, p = p(n) = O(na) asn → ∞, and there exists a0 ≤ b < 1 such thatmaxi∈V card (pai) =
O(nb) asn → ∞.

(A-1) There existsν > 0 such that for alln ∈ N and alli ∈ V , var
(

Xi | Xi−1

)

≥ ν.

(A-2) There existsδ > 0 and someξ > b (with b defined above) such that for alli ∈ V and for everyj ∈ pai,
|πij | ≥ δn−(1−ξ)/2, whereπij is the partial correlation betweenXi andXj after removing the effect of the
remaining variables.

(A-3) There existsΨ < ∞ such that for alln ∈ N and everyi ∈ V and for everyj ∈ pai, ‖θj,pai‖ ≤ Ψ.

(A-4) There existsκ < 1 such that for alli ∈ V and for everyj /∈ pai,
∣

∣

∣

∑

k∈pai
sign(θi,pai

k )θj,pai

k

∣

∣

∣ < κ.

Assumption (A-3) limits the magnitude of the effects that each node in the network receives from its parents. This
is less restrictive than the neighborhood selection criterion, where the effects over all neighboring nodes are assumed
to be bounded. In fact, empirical data indicate that the average number of upstream-regulators per gene in regulatory
networks is less than 2 (Leclerc, 2008). Thus, the size of parents of each node is small, but each hubnode can affect
many downstream nodes.

Assumption (A-4) is referred to asneighborhood stabilityand is equivalent to theirrepresentabilityassumption
proposed byHuang et al.(2008). It has been shown that the lasso estimates are not in general variable selection
consistent if this assumption is violated.Huang et al.(2008) considered adaptive lasso estimates with general initial
weights and showed their variable selection consistency under a weaker form of irrepresentability assumption, referred
to asadaptive irrespresentability. We will show that when the initial weights for adaptive lasso are derived from the
regular lasso estimates (as in (3.4)), the assumption of neighborhood stability, as well as theless stringent assumption
(A-3) are not required for establishing variable selectionconsistency of adaptive lasso. This relaxation in assumptions
required for variable selection consistency, is a result ofthe consistency of regular lasso estimates, as well as the special
structure ofDAGs. However, the results of this section can be extended to adaptive lasso estimates of the precision
matrix, as well as regression models with fixed and random design matrices, under additional mild assumptions.
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4.3 Asymptotic Consistency ofDAG Estimation

Our first result studies the variable selection consistencyof the lasso penalty.

Theorem 4.1(Variable Selection Consistency of Lasso). Suppose that (A-1)-(A-4) hold andλ ≍ dn−(1−ζ)/2 for some
b < ζ < ξ andd > 0. Then there exist constantsc(i), . . . , c(iv) > 0 for the lasso estimation problem, such that for all
i ∈ V , asn → ∞

1. (i)] Estimation of the direction of influence:

pr
{

sign (θ̂i,pai

j ) = sign (θi,pai

j )for allj ∈ pai

}

= 1 − O
{

exp (−c(i)n
ζ)

}

(ii) Control of type I error:pr (p̂ai ⊆ pai) = 1 − O
{

exp (−c(ii)n
ζ)

}

.

(iii) Control of type II error: pr (pai ⊆ p̂ai) = 1 − O
{

exp (−c(iii)n
ζ)

}

.

(iv) Let Ê be the lasso estimate for the set of edges in the network. Then

pr(Ê = E) = 1 − O
{

exp (−c(iv)n
ζ)

}

.

Proof. The proof of this theorem follows from arguments similar to those presented inMeinshausen and Bühlmann
(2006), with minor modifications and replacing conditional independence in undirected graphs with d-separation in
DAGs.

The next result establishes similar properties for adaptive lasso estimates, without the assumptions of neighborhood
stability. The proof of Theorem4.3 makes use of consistency of a class of sparse estimates of theCholesky factors
of covariance matrices, established in Theorem 9 ofLam and Fan(2008). For completeness, we restate a simplified
version of the theorem for our lasso problem, for whichσi = 1, i = 1, . . . p and the eigenvalues of the covariance

matrix are bounded (see Remark2.2). Throughout this section, we denote bys the total number of nonzero element
of the true adjacency matrix,A of theDAG.

Theorem 4.2(Lam and Fan(2008)). If n−1(s + 1) log p = o(1) andλ = O
{

(log p/n)
1/2

}

, then‖Â − A‖F =

Op

{

(n−1s log p)
1/2

}

.

It can be seen from Theorem4.2 that lasso estimates are consistent as long asn−1(s + 1) log p = o(1). To take
advantage of this result, we replace (A-0) with the following assumption

1. (A-0′)] For somea > 0, p = p(n) = O(na) asn → ∞. Also,maxi∈V card (pai) = O(nb) asn → ∞, where
sn2b−1 log n = o(1) asn → ∞.

Assumption (A-0′) further restricts the number of parents of each node and also enforces a restriction on the total
number of nonzero elements of the adjacency matrix. Conditionsn2b−1 log n = o(1), implies thatb < 1/2. Therefore,
although the consistency of adaptive lasso in Theorem4.3 is established without making any further assumptions on
the structure of the network (compared to Theorem4.1), it is achieved at the price of requiring higher degree of sparsity
in the network. We now state the main result regarding variable selection consistency of adaptive lasso. Note that the
theorem only requires assumptions (A-0′), (A-1) and (A-2), and assumptions (A-3) and (A-4) are no longer required.

Theorem 4.3(Variable Selection Consistency of Adaptive Lasso). Consider the adaptive lasso estimation problem,
where the initial weights are calculated using regular lasso estimates of the adjacency matrix of the graph in (3.7).
Suppose (A-0′) and (A-1)-(A-2) hold andλ ≍ dn−(1−ζ)/2 for someb < ζ < ξ andd > 0. Also suppose that the

initial lasso estimates are found using a penalty parameterλ0 that satisfiesλ0 = O
{

(log p/n)
1/2

}

. Then there exist

constantsc(i), . . . , c(iv) > 0 such that for alli ∈ V , asn → ∞ (i)-(iv) in Theorem4.1hold.

Proof. A proof is given in the Appendix.
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4.4 Choice of the Tuning Parameter

Both lasso, as well as adaptive lasso estimates of the adjacency matrix, depend on the choice of the tuning parameter
λ. Different methods have been proposed for selecting the value of tuning parameter, including cross validation
(Rothman et al., 2008; Fan et al., 2007) and Bayesian Information Criteria (BIC) (Yuan and Lin, 2007). In both of
these methods, the value ofλ is chosen to minimize the (penalized) likelihood function.However, choices ofλ that
result in the optimal classification error do not guarantee asmall error for the network reconstruction. We propose next
a choice ofλ for DAGs. Consider the following choice of the tuning parameter forthe general weighted lasso problem
with weightswij . Let Z∗

q denote the(1 − q)th quantile of standard normal distribution, and define

λi(α) = 2n−1/2Z∗
α

2p(i−1)
(4.1)

The following theorem, states that such a choice controls the probability of falsely joining two distinct ancestral sets,
defined next.

Definition 4.4. For every nodei ∈ V , the ancestral set of nodei, ANi consists of all nodesj such thatj is an ancestor
of i or i is an ancestor ofj or i andj have a common ancestork.

Theorem 4.5(Choice of the Tuning Parameter). Under the assumptions of Theorems4.1and4.3above (for lasso and
adaptive lasso, respectively), for alln ∈ N the solution of the general weighted lasso estimation problem with tuning
parameter determined in (4.1) satisfies

pr(∃i ∈ V : ÂN i * ANi) ≤ α

Proof. A proof is given in the Appendix.

Note that as inMeinshausen and Bühlmann(2006), Theorem4.5 is true for all values ofp andn. However, the
theorem does not provide any guarantee on false positive or false negative probabilities for individual edges in the
graph. We also need to determine the optimal choice of penalty parameterλ0 for the first phase of the adaptive lasso,
where the weights are estimated using lasso. Since the goal of the first phase is to achieve prediction consistency,
cross validation can be used to determine the optimal choiceof λ0. On the other hand, it is easy to see that the
error-based proposal in (4.1) satisfies the requirement of Theorem4.2 and can therefore be used to defineλ0. It is
however recommended to use a higher value of significance level in estimating the initial weights, in order to prevent
an over-sparse solution.

5 Performance Analysis

5.1 Preliminaries

In this section, we consider examples of estimatingDAGs of varying number of edges from randomly generated data.
To randomly generate data fromDAGs, one needs to generate lower-triangular adjacency matrices with sparse nonzero
elements,ρij . We use the randomDAG generator in the R-packagepcalg (Kalisch and Bühlmann(2007)) which also
controls the neighborhood size. The sparsity levels inDAGs with different sizes are set according to the theoretical
bounds in section4, as well as the recommendations of (Kalisch and Bühlmann, 2007), for neighborhood size. More
specifically, in simulations throughout this section, we use a maximum neighborhood size of 5, while limiting the total
number of true edges to be equal to the sample sizen.

Different measures of structural difference can be used to evaluate the performance of estimators. The Structural
Hamming Distance (SHD) between the structures of the estimated and trueDAGs, represents the number of edges
that are not in common between the two graphs and is equal to the sum of false positive and false negative edges in
the estimated graph. The main drawback of this measure is itsdependency on the number of nodes, as well as the
sparsity of the network. The second measure of goodness of estimation considered here is the Matthews Correlation
Coefficient (MCC). MCC is commonly used to assess the performance of binary classification methods and is defined
as

MCC =
(TP× TN) − (FP× FN)

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
1/2

(5.1)
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whereTP, TN, FP and FN correspond to true positive, true negative, false positiveand false negative, respectively.
The value ofMCC ranges from−1 to 1 with larger values corresponding to better fits (−1 and1 represent worst and
best fits, respectively). Finally, in order to compare the performance of different estimation methods with theoretical
bounds established in section4.3, we also report the values of false positive rates.

The performance of both the PC-Algorithm as well as our proposed estimators based on the choice of tuning
parameter in (4.1) vary with different values of significance levelα. In the following experiments, we first investigate
the appropriate choice ofα for each estimator. We then compare the performance of the estimators with an optimal
choice of lambda using both numerical measures of performance, as well as gray-scale images of the estimatedDAGs
with the true structure. Gray-scale images are obtained by calculating the proportion of times that a specific edge is
present in the simulations (i.e.̂Aij 6= 0). To offset the effect of numerical instability, we consider an edge present, if
|Âij | > 10−4.

5.2 Estimation of DAGs from Normally Distributed Observations

We begin with an example that illustrates the differences between estimation ofDAGs and the conditional independence
networks (CIG). The first two images in Figure3 represent a randomly generatedDAG of size 50 along with the gray-
scale image of the average precision matrix estimated basedon 100 observations using the graphical lasso algorithm
(implemented in the R packageglasso). To control the probability of falsely connecting two components of the
graph, the value of the tuning parameter forglasso is defined based on the error-based proposal ofBanerjee et al.
(2008) (Theorem 2). It can be seen that theCIG has many more edges (8% false positives compared to1% for lasso and
adaptive lasso), and does not reveal the true structure of the underlyingDAG. It can be seen that although methods of
estimatingCIGs are computationally efficient, they should not be used in applications like estimation of gene regulatory
networks, where the underlying graph is directed. In simulations throughout this section, the sample size is fixed at

Figure 3: TrueDAG along with estimates from Gaussian observations usingglasso, pcalg, lasso andAlasso.
Gray scale represents the percentage of inclusion of edges.

n = 100, and estimators are evaluated for an increasing number of nodes (p = 50, 100, 200). Figure4 shows the
mean and standard deviation of Hamming distances for estimates based on the PC-Algorithm (pcalg), as well as
the proposed lasso (lasso) and adaptive lasso (Alasso) methods for different values of the tuning parameterα and
different network sizes. For all values ofp andα, the adaptive lasso estimate gives the best results, and theproposed
penalized likelihood methods outperform the PC-Algorithm. This difference becomes more significant as the size of
the network increases.

As mentioned in section2, it is not always possible to estimate the direction of the edges of aDAG and therefore,
the estimate from the PC-Algorithm may include undirected edges. Since our penalized likelihood methods assume
knowledge of the ordering of variables and estimate the structure of the network, in the simulations considered here,
we only estimate the skeleton (structure) of the network using the PC-Algorithm. We then then use the ordering of
the variables to determine the direction of the edges. The performance of the the PC-Algorithm for estimation of the
partially completedDAG (PCDAG) may therefore be worse than the results reported here.

In the simulation results reported here, observations are generated according to the linear structural equation model
(2.2) with standard normal latent variables andρij = ρ = 0 · 8. Additional simulation studies with different values
of σ andρ indicate that changes inσ do not have a considerable affect on the performance of the proposed models.
On the other hand, as the magnitude ofρ decreases, the performance of the proposed methods (as wellas thepcalg)
algorithm deteriorates, but the findings of the above comparison remain unchanged.
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Figure 4: Hamming Distance for estimation ofDAG usingpcalg, lasso andAlasso from normal observations.

Figure 5:MCC, FP andTP for estimation ofDAG usingpcalg, lasso andAlasso from normal observations.

The above simulation results suggest that the optimal performance of the PC-Algorithm is achieved whenα =
0.01. The performance of lasso and adaptive lasso methods is lesssensitive to the choice ofα; however,α = 0.10
seems to deliver more reliable estimates. Similar results were also observed in simulations with other choices ofσ
andρ. In addition, our extended simulations indicate that the performance of adaptive lasso does not vary significantly
with the choice of power (γ), and therefore we only present the results forγ = 1. Figure3 represents images of
estimated and trueDAGs created based on the above considerations for tuning parameters forp = 50. Similar results
are observed forp = 100, p = 200, and are excluded to conserve space. Plots in figure5 compare the performance of
the three methods with the optimal settings of tuning parameters, over a range of values ofp. It can be seen that the
values ofMCC confirm the above findings based onSHD. However, false positive and true positive rates only focuson
one aspect of estimation at a time and do not provide a clear distinction between the methods. These plots also suggest
that estimates from thepcalg may vary significantly. This variation is represented more significantly in terms of
false positive rates, where standard deviations for estimates based are up to 10 times larger than those oflasso and
Alasso estimates (∼ 40% for pcalg compared to< 4% for lasso andAlasso).

As mentioned in section2, the representation of conditional independence inDAGs adapted in our proposed algo-
rithm, is not restricted to normally distributed random variables. Moreover, if the underlying structural equations are
linear, the method proposed in this paper can correctly estimate the underlyingDAG. In order to assess the sensitivity
of the estimates to the underlying distribution, we performed two simulation studies with non-Normal observations. In
both simulations, observations were generated according to a linear structural model. However, in the first simulation,
each latent variable was generated from a mixture of a standard normal and a t-distribution with 3 degrees of freedom,
while in the second simulation, a t-distribution with 4 degrees of freedom was used. The performance of the proposed
algorithm for non-normal observations was similar to the case of Gaussian observations, withAlasso providing the
best estimates, and the performance of penalized methods improving as the dimension and sparsity increase.

5.3 Sensitivity to Perturbations in the Ordering of the Variables

Algorithm 3.2assumes a known ordering of the variables. The superior performance of the proposed penalized likeli-
hood methods in comparison to the PC-Algorithm may be explained by the fact that additional information about the
order of the variables significantly simplifies the problem of estimatingDAGs. Therefore, when such additional infor-
mation is available, estimates using the PC-Algorithm suffer from a natural disadvantage. However, as the underlying
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network becomes more sparse, the network includes fewer complex structures and it is expected that the ordering of
variables should play a less significant role.

Next, we study the performance of the proposed penalized likelihood methods as well as the PC-Algorithm in
problems where the ordering of variables is unknown. To thisend, we generate normally distributed observations
from the latent variable model of section2.1. We then randomly permute the order of variables in the observation
matrix and use the permuted matrix to estimate the originalDAG. Figure6 illustrates the performance of the three
methods for choices ofα described in section5.2. It can be seen that for small, dense networks, the PC-Algorithm
outperforms the proposed methods. This is expected since the change in the order of variables causes the algorithm
to include unnecessary moral edges, while failing to recognize some of the existing associations. On the other hand,
as the size of the network and correspondingly the degree of sparsity in the network increase, the local structures
become simpler and therefore the ordering of the variables becomes less crucial. Thus, the performance of penalized
likelihood algorithms is improved compared to that of the PC-Algorithm. For the high dimensional sparse case,
where the computational cost of the PC-Algorithm becomes more significant, both lasso and adaptive lasso methods
outperform the PC-Algorithm.

Figure 6:MCC, FP andTP for estimation ofDAG usingpcalg, lasso andAlasso with random ordering.

6 Real Data Application

6.1 Analysis of Cell Signalling Pathway Data

Sachs et al.(2003) carried out a set of flow cytometry experiments on signalingnetworks of human immune system
cells. The ordering of the connections between pathway components were established based on perturbations in cells
using molecular interventions and we consider the orderingto be known a priori. The data set includesp = 11 proteins
andn = 7466 samples.

Friedman et al.(2008b) analyzed this data set using theglasso algorithm. They estimated the graph for a range
of values of theℓ1 penalty and reported moderate agreement (around50% false positive and false negative rates)
between one of the estimates and the findings ofSachs et al.(2003). True and estimated signaling networks using
the PC-Algorithm, as well as both lasso and adaptive lasso algorithms, along with performance measures are given in
Figure7. The estimated network using thepcalg includes a number of undirected edges. As in the simulation studies,
we only estimate the structure of the network using thepcalg and determine the direction of edges by enforcing the
ordering of nodes in theDAG. It can be seen that the adaptive lasso and lasso provides estimates that are closest to the
true structure.

6.2 Transcription Regulatory Network of E-coli

Transcriptional regulatory networks play an important role in controlling the gene expression in cells and incorpo-
rating the underlying regulatory network results in more efficient estimation and inference (Shojaie and Michailidis,
2009a,b). Kao et al.(2004) proposed to use Network Component Analysis to infer transcriptional regulatory net-
work of Escherichia coli(E-coli). They also provide whole genome expression data over time (n = 24), as well as
information about the known regulatory network of E-coli.
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Figure 7: Known and estimated networks for human cell signalling data. True edges (True Positives in estimated
networks) are marked with solid blue arrows, while False Positives are indicated by dashed red arrows.

Figure 8: Known and estimated transcription regulatory network of E-coli. Large nodes indicate the transcription fac-
tors (TFs) and smaller nodes refer to their regulated genes (ORFs). True edges (True Positives in estimated networks)
are marked with solid blue arrows, while False Positives areindicated by dashed red arrows.

In this application, the set of transcription factors (TFs)are knowna priori and the goal is to find connections
among transcription factors and regulated genes through analysis of whole genome transcriptomic data. Therefore,
the algorithm proposed in this paper can be used by exploiting the natural hierarchy of TFs and genes.Kao et al.
(2004) provide gene expression data for 7 transcription factors and 40 genes regulated by these TFs. Figure8 presents
the known regulatory network of E-coli along with the networks estimated using three different methods as well as
different measures of performance. The relatively poor performance of the algorithms in this example can be partially
attributed to the small sample size. However, it is also known that no single source of transcriptomic data is expected
to successfully reveal the regulatory networks and methodsthat combine different sources of data are considered to
be more efficient. It can be seen that the PC-Algorithm can only detect one of the true regulatory connections, while
the proposed algorithm, with both lasso, as well as adaptivelasso penalties, offers significant improvements over the
results of the PC-Algorithm, mostly due to the significant drop in proportion of false negatives (from97% for the
PC-Algorithm to63% for adaptive lasso). Although the estimates based on lasso and adaptive lasso penalties are very
similar, the choice of the best estimate depends on the performance evaluation metric.

7 Conclusion

We proposed efficient penalized likelihood methods for estimation of the structure ofDAGs when variables inherit
a natural ordering. Both lasso and adaptive lasso penaltieswere considered in this paper. However, the proposed
algorithm can also be used for estimation of adjacency matrix of DAGs under other choices of penalty, as long as the
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penalty function is applied to individual elements of the adjacency matrix.
There are a number of biological applications where the ordering of the variables is knowna priori. Estimation of

transcriptional regulatory networks from gene expressiondata and reconstruction of causal networks from temporal
observations, based on the concept of Granger causality (Granger, 1969) are areas of potential application for the
proposed algorithm. Our simulation studies also indicate that the correct ordering of variables is less crucial for
estimation high dimensional sparseDAGs. Thus, even in high dimensional sparse applications wherethe ordering
among variables is not known, the methods proposed in this paper may be an efficient alternative for search based
methods of estimatingDAGs.

Appendix: Technical Proofs

Recall from section4.2 thatθi = Ai,i−1 denotes the entries of theith row of the adjacency matrix to the left of the
diagonal. Also, denote byθi,I the estimate for theith row with values outside the set of indicesI set to zero and let
θi,I

j be thej component ofθi,I .
The following lemma is a consequence of the KarushKuhnTucker conditions for the general weighted lasso prob-

lem and is used in the proof of Theorems4.3and4.5.

Lemma 7.1. Let θ̂i,I be the general weighted lasso estimate ofθi,I , i.e.

θ̂i,I = argmin
θ:θk=0∀k/∈I

{

n−1‖Xi −X θ‖2
2 + λ

p
∑

k=1

|θk|wik

}

(7.1)

Let
Gj(θ) = −2n−1X T

j (Xi −X θ)

andwi be the vector of initial weights in adaptive lasso estimation problem. Then a vector̂θ with θ̂k = 0, ∀k /∈ I is
a solution of (7.1) iff ∀j ∈ I, Gj(θ) = − sign (θ̂j)wijλ if θ̂j 6= 0 and |Gj(θ)| ≤ wijλ if θ̂j = 0. Moreover, if the
solution is not unique and|Gj(θ)| < wijλ for some solution̂θ, thenθ̂j = 0 for all solutions of (7.1).

Proof. The proof of the lemma is identical to the proof of Lemma (A.1)in Meinshausen and Bühlmann(2006) (except
for inclusion of general weightswij ) and is therefore omitted.

of Theorem4.3. To prove (i), note that by Bonferroni’s inequality, and the fact thatcard (pai) = o(n) asn → ∞, it
suffices to show that there exists somec(i) > 0 such that for alli ∈ V and for everyj ∈ pai,

pr
{

sign (θ̂i,pai

j ) = sign (θi,pai

j )
}

= 1 − O
{

exp (−c(i)n
ζ)

}

asn → ∞

Let θ̂i,pai (β) be the estimate ofθi,pai in (7.1), with thejth component fixed at a constant valueβ,

θ̂i,pai(β) = argmin
θ∈Θβ

{

n−1‖Xi −X θ‖2
2 + λ

p
∑

k=1

|θk|wk

}

(7.2)

whereΘβ ≡ {θ ∈ Rp : θj = β, θk = 0, ∀k /∈ pai}. Note that forβ = θ̂i,pai

j , θ̂i,pai(β) is identical toθ̂i,pai . Thus,

if sign (θ̂i,pai

j ) 6= sign (θi
j), there would exist someβ with sign (β) sign (θi

j) ≤ 0 such that̂θi,pai(β) is a solution to
(7.2). Sinceθi

j 6= 0, ∀j ∈ pai, it suffices to show that for allβ with sign (β) sign (θi
j) < 0, with high probability,

θ̂i,pai(β) can not be a solution to (7.2). Without loss of generality, we consider the case whereθi
j > 0 (θi

j < 0 can be

shown similarly). Then ifβ ≤ 0, from Lemma7.1, θ̂i,pai(β) can be a solution to (7.2) only if Gj(θ̂
i(β)) ≥ −λwij .

Hence, it suffices to show that for somec(i) > 0 and allj ∈ pai with θi
j > 0,

pr

[

sup
β≤0

{Gj

(

θ̂i(β)
)

< −λwij}

]

= 1 − O
{

exp (−c(i)n
ζ)

}

asn → ∞ (7.3)
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Define,
Ri(β) = Xi −X θ̂i(β) (7.4)

For everyj ∈ pai we can write,
Xj =

∑

k∈pai\{j}

θ
j,pai\{j}
k Xk + Zj (7.5)

whereZj is independent of{Xk; k ∈ pai\{j}}. Then by (7.5),

Gj

(

θ̂i(β)
)

= −2n−1ZT
jRi(β) −

∑

k∈pai\{j}

θj,pai\{j}2n−1Xk
TRi(β)

By Lemma7.1, it follows that for allk ∈ pai\{j}, |Gk

(

θ̂i(β)
)

| = |2n−1Xk
TRi(β)| ≤ λwik, thus,

Gj

(

θ̂i(β)
)

≤ −2n−1ZT
jRi(β) + λ

∑

k∈pai\{j}

|θj,pai\{j}|wik (7.6)

Using the fact that|θj,pai\{j}| ≤ 1, it suffices to show that

pr



sup
β≤0

{−2n−1ZT
jRi(β)} < −λ

∑

k∈pai

wik



 = 1 − O
{

exp (−c(i)n
ζ)

}

asn → ∞, (7.7)

or equivalently,

pr



 inf
β≤0

{2n−1ZT
jRi(β)} < λ

∑

k∈pai

wik



 = O
{

exp (−c(i)n
ζ)

}

asn → ∞. (7.8)

It is shown in Lemma A.2. ofMeinshausen and Bühlmann(2006) that for anyq > 0, there existsc(i) > 0 such that
for all j ∈ pai with θi

j > 0

pr

[

inf
β≤0

{2n−1ZT
jRi(β)} ≤ qλ

]

= O
{

exp (−c(i)n
ζ)

}

asn → ∞. (7.9)

However, by definitionwik ≤ 1 and therefore,
∑

k∈pai
wik ≤ card (pai) ≤ 1, which implies that (i) follows from7.9.

To prove (ii), note that the event̂pai * pai is equivalent to the event that there exists a nodej ∈ i − 1\pai such
that θ̂i

j 6= 0, i.e.

pr (p̂ai ⊆ pai) = 1 − pr
(

∃j ∈ i − 1\pai : θ̂i
j 6= 0

)

(7.10)

By Lemma7.1, and using the fact that by definitionwij ≥ 1

pr
(

∃j ∈ i − 1\pai : θ̂i
j 6= 0

)

= pr
(

∃j ∈ i − 1\pai : |Gj(θ̂
i,pai)| ≥ wijλ

)

≤ pr
(

∃j ∈ i − 1\pai : |Gj(θ̂
i,pai)| ≥ qλ andwijλ ≤ qλ for someq ≥ 1

)

≤ pr (∃j ∈ i − 1\pai : wij ≤ q for someq ≥ 1)

Sincewij = 1 ∨ |θ̃i
j |
−γ , with θ̃i

j the lasso estimate of the adjacency matrix from (3.8), using Lemma7.1,

pr (∃j ∈ i − 1\pai : wij ≤ q for someq > 0) = pr
(

∃j ∈ i − 1\pai : |θ̃i
j | ≥ q−1/γ for someq ≥ 1

)

≤ pr
(

∃j ∈ i − 1\pai : |θ̃i
j | ≥ q′ for someq′ > 0

)

≤ pr
(

∃j ∈ i − 1\pai : θ̃i
j 6= 0

)

= pr
(

∃j ∈ i − 1\pai : |Gj(θ̃
i,pai)| ≥ λ0

)
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Sincecard (pai) = o(n), we can assume without loss of generality thatcard (pai) < n, which implies that̃θi,pai is
an almost sure unique solution to (7.1) with I = pai. Let

E =

{

max
j∈i−1\pai

|Gj(θ̃
i,pai)| < λ0

}

.

Then conditional on eventE , it follows from the first part of Lemma7.1thatθ̃i,pai is also a solution of the unrestricted
weighted lasso problem (7.1) with I = i − 1. Sinceθ̃i,pai

j = 0, ∀j ∈ i − 1\pai, it follows from the second part of

Lemma7.1that θ̃i
j = 0, ∀j ∈ i − 1\pai. Hence

pr
(

∃j ∈ i − 1\pai : θ̃i
j 6= 0

)

≤ 1 − pr(E) = pr

(

max
j∈i−1\pai

|Gj(θ̃
i,pai)| ≥ λ0

)

(7.11)

where,
Gj(θ̃

i,pai ) = −2n−1X T
j (Xi −X θ̃i,pai ) (7.12)

Sincecard (V ) = O(na) for somea > 0, Bonferroni’s inequality implies that to verify (7.10) it suffices to show that
there exists a constantc(ii) > 0 such that for allj ∈ i − 1\pai,

pr
(

|Gj(θ̃
i,pai)| ≥ λ0

)

= O
{

exp (−c(ii)n
ζ)

}

asn → ∞. (7.13)

whereRj ∼ N(0, σ2
j ), σ2

j ≤ 1 andRj is independent fromXl, l ∈ pai. Similarly, with Ri satisfying the same

requirements asRj , we getXi =
∑

k∈pai
θi,pai

k Xk + Ri.
Denote byXpai

the columns ofX corresponding topai and letθpai
the column vector of coefficients with dimen-

sioncard (pai) corresponding topai. Then,

pr
{

|Gj(θ̃
i,pai )| ≥ λ0

}

= pr
{

| − 2n−1X T
j (Xi −X θ̃i,pai)| ≥ λ0

}

= pr
[

| − 2n−1{Xpai
θj,pai

pai
+ Rj}

T
{Xpai

(θi,pai

pai
− θ̃i,pai

pai
) + Ri}| ≥ λ0

]

.

Therefore,

pr
{

|Gj(θ̃
i,pai )| ≥ λ0

}

≤ pr
{

| − 2n−1(θi,pai

pai
− θ̃i,pai

pai
)

T
X T

pai
Xpai

θj,pai

pai
| ≥ λ0/3

}

+ pr
{

| − 2n−1(θi,pai

pai
− θ̃i,pai

pai
)

T
X T

pai
Rj | ≥ λ0/3

}

+ pr
{

| − 2n−1(Xpai
θj,pai

pai
+ Rj)

T
Ri| ≥ λ0/3

}

≡ I + II + III

Let 1pai
denote a vector of 1’s of dimensioncard (pai). Then, using the fact that|θj,pai

l | ≤ 1, for all l ∈ pai, we can

write I ≤ pr
(

2‖θi,pai
pai

− θ̃i,pai
pai

‖∞n−1(Xpai
1pai

)TXpai
1pai

≥ λ0/3
)

. ThenX T
pai

Xpai
∼ Wcard (pai)(Σpai

, n) where

Wm(Σ, n) denotes a Wishart distribution with meannΣ. Hence, from properties of the Wishart distribution, we get
(Xpai

1pai
)TXpai

1pai
∼ W1(1

T
pai

Σpai
1pai

, n).
Sincepai also forms aDAG, the eigenvaluesΣpai

are bounded (see Remark2.2), and hence

1
T
pai

Σpai
1pai

≤ card (pai)φmax(Σpai
) (7.14)

Therefore, ifZ ∼ χ2
1, n−1(Xpai

1pai
)

TXpai
1pai

is stochastically smaller thancard (pai)φmax(Σpai
)Z. On the other

hand, by Theorem4.2,

‖A − Ã‖F = Op

{

(n−1s log p)
1/2

}

and hence
‖θi,pai

pai
− θ̃i,pai

pai
‖∞ = Op

{

(n−1s log p)
1/2

}

(7.15)

16



Noting thatcard (pai) = O(nb), b < 1/2 andp = O(na), a > 0, (7.14) and (7.15) imply that

‖θi,pai
pai

− θ̃i,pai
pai

‖∞ card (pai)φmax(Σpai
) = Op

{

(sn2b−1a log n)
1/2

}

By (A-0′), sn2b−1 log n = o(1) and hence by Slutsky’s Theorem and properties of theχ2-distribution, there exists
c(I) > 0 such that for allj ∈ i − 1\pai,

I = O
{

exp (−c(I)n
ζ)

}

asn → ∞

Using a similar argument, for II we can write,

II ≤ pr
(

2n−1‖θi,pai

pai
− θ̃i,pai

pai
‖∞|1pai

X T
pai

Rj | ≥ λ0/3
)

. (7.16)

Since columns ofXpai
correspond to samples from normal random variables with mean zero and are all independent

of Rj , it suffices to show that there existsc(II) > 0 such that for allj ∈ i − 1\pai and for allk ∈ pai,

pr
(

2n−1‖θi,pai

pai
− θ̃i,pai

pai
‖∞ card (pai)|Xk

TRj | ≥ λ0/3
)

= O
{

exp (−c(II)n
ζ)

}

asn → ∞ (7.17)

By (7.15) and (A-0′), the random variable on the left hand side of (7.17) is stochastically smaller than2n−1|XkRj |.
By independence ofXk andRj , E(XkRj) = 0. Also using Gaussianity of bothXk andRj , there existsg < ∞

such thatE{exp (|XkRj |)} ≤ g. Sinceλ0 = O{(log p/n)
1/2}, by Bernstein’s inequality (Van der Vaart and Wellner,

1996), pr(2n−1|XkRj | > λ0/3) ≤ exp(−c(II)n
ζ) for somec(II) > 0 and hence (7.17) is satisfied. Finally, for III we

have
pr

{

| − 2n−1(Xpai
θj,pai

pai
+ Ri)

T
Rj | ≥ λ0/3

}

= pr
{

| − 2n−1Xi
TRj | ≥ λ0/3

}

(7.18)

and using the Bernstein’s inequality we conclude that thereexistsc(III ) > 0 such that for allj ∈ i − 1\pai and for all
k ∈ pai, III = O

{

exp (−c(III )n
ζ)

}

asn → ∞. The proof of (ii) is then complete by takingc(ii) to be the minimum
of c(I), . . . , c(III ).

To prove (iii), note thatpr (pai ⊆ p̂ai) = 1−pr
(

∃j ∈ pai : θ̂i
j = 0

)

, and letE =
{

maxk∈i−1\pai
|Gj(θ̂

i,pai)| < λwij

}

.

It follows from an argument similar to the proof of (ii) that conditional onE , θ̂i,pai is an almost sure unique solution
of the unrestricted adaptive lasso problem (7.1) with I = i − 1. Therefore,

pr
(

∃j ∈ pai : θ̂i
j = 0

)

≤ pr
(

∃j ∈ pai : θ̂i
j = 0

)

+ pr (Ec) .

From (i), there exists ac1 > 0 such thatpr
(

∃j ∈ pai : θ̂i
j = 0

)

= O(exp (−c1n
ζ)) and it was shown in (ii) that

pr (Ec) = O{exp (−c2n
ζ)} for somec2 > 0. Thus (iii) follows from Bonferroni’s inequality.

Finally, it is easy to see that sincep = O(na), the claim in (iv) also follows from (ii) and (iii) and Bonferroni’s
inequality.

of Theorem4.5. We first show that ifANi ∩ ANj = ∅, theni andj are independent. SinceΣ = ΛΛT andΛ is lower
triangular,

Σij =

min (i,j)
∑

k=1

ΛikΛjk (7.19)

We assume without loss of generality thati < j. The argument for the casej > i is similar. Suppose for all
k = 1, . . . , i thatΛik = 0 or Λjk = 0, then by (7.19) i andj are independent. However, by Lemma2.1, Λjk is the
influence ofkth node onj, and this is zero only if there is no path fromk to j. Clearly, if i is an ancestor ofj, we
haveΣij 6= 0. On the other hand, if there is no nodek ∈ i − 1 such thatk influences bothi andj, (i.e.k is a common
ancestor ofi andj) then for allk = 1, . . . , i we haveΛikΛjk = 0 and the claim follows.
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Using Bonferroni’s inequality twice and Lemma7.1, we get

pr(∃i ∈ V : ÂN i * ANi) ≤ p max
i∈V

pr (∃j ∈ i − 1\ANi : j ∈ p̂ai)

≤ p(i − 1) max
i∈V,j∈i−1\ANi

pr (j ∈ p̂ai)

≤ p(i − 1) max
i∈V,j∈i−1\ANi

pr
{

|Gj(θ̂
i,ANi)| ≥ λwij

}

.

However, by definitionwij ≥ 1, and hence it suffices to show that,

(i − 1)p max
i∈V,j∈i−1\ANi

pr
{

|Gj(θ̂
i,ANi)| ≥ λ

}

≤ α. (7.20)

Note thatGj(θ̂
i,ANi) = −2n−1X T

j (Xi − X θ̂i,ANi) and Xj is independent ofXk for all k ∈ ANi. Therefore,

conditional onXANi
, Gj(θ̂

i,ANi) ∼ (0, 4R2/n), whereR2 = n−1‖Xi − X θ̂i,ANi‖2
2 ≤ n−1‖Xi‖2

2 = 1, by definition
of θ̂i,ANi and the fact that columns of the data matrix are scaled.

It follows that for all j ∈ i − 1\ANi, pr
{

|Gj(θ̂
i,ANi)| ≥ λ | XANi

}

≤ 2{1 − Φ(n1/2λ/2)}, whereΦ is the

cumulative distribution function for standard normal random variable. Using the choice ofλ proposed in (4.1), we get

pr
{

|Gj(θ̂
i,ANi)| ≥ λ | XANi

}

≤ α
(i−1)p , and the result follows.
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