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Abstract

Spatiotemporally integrated fractionation involves finding a fluence-map and a number of
treatment sessions that maximize tumor-kill subject to dose-limits on organs-at-risk (OAR).
This problem was recently formulated using the linear-quadratic dose-response model. Owing
to the uncertainty in dose-response parameters, however, a solution presumed optimal might be
infeasible in practice. We address this via a robust counterpart and its convex reformulation
wherein the price of robustness is small and robust solutions are less infeasible than nominal
even outside our uncertainty sets.

1 Introduction

The goal in external beam radiotherapy is to maximize damage to the tumor while limiting toxic
effects of radiation on nearby organs-at-risk (OAR). This is achieved via spatial localization and
temporal dispersion (called fractionation) of radiation dose.

On the spatial side, a high dose is prescribed to the tumor region and upper limits are put on
the OAR dose. A radiation intensity profile (fluence-map) that conforms to this protocol as closely
as possible is then found by solving an optimization problem. Intensity Modulated Radiation
Therapy (IMRT) and well-established optimization models and efficient solution algorithms can
now be employed to attain highly conformal dose profiles [7, 21].

Radiation is typically delivered over multiple sessions. One motivation for such fractionation
is that healthy cells often have better damage-repair capabilities than tumor cells. Thus, breaking
the prescribed dose into well-separated sessions allows the healthy cells to recover between sessions.
A large number of fractions with a small dose per fraction thus may allow more dose and hence
cause more damage to the tumor as compared to administering a small number of fractions with a
large dose per fraction. On the flip side, tumors can proliferate over the treatment course, and thus
a shorter course might be better as it kills the tumor before any significant proliferation. These
trade-offs are often referred to as the fractionation problem, which involves finding the optimal
number of sessions and the corresponding doses in these sessions.

Most mathematical formulations of the fractionation problem rely on the well-known linear-
quadratic (LQ) model of dose-response for tumor and OAR. The prevalent theme in the existing
literature on these formulations is to separate the spatial and temporal components. That is, a
fluence-map is assumed to be known a priori from a spatial treatment planning system for IMRT.
The number of treatment sessions and corresponding doses are then optimized (by appropriately
scaling the pre-determined fluence-map) using a biological objective function and biological con-
straints that explicitly incorporate the dose-response behavior of tumor and OAR via the LQ model.
We refer the reader, for example, to [2, 5, 6, 8, 9, 10, 12, 13, 15, 17, 19, 20, 22] for discussions,
analyses, and solutions of such spatiotemporally separated formulations.
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The theme in these separated formulations is to maximize the biological effect (BE) of radiation
dose on tumor subject to upper bounds on the biologically effective dose (BED) to OAR. This leads
to a nonconvex quadratically constrained quadratic programming (QCQP) model. Most of these
QCQP formulations incorporate only a single OAR and then provide a closed-form solution for the
optimal number of sessions and the corresponding tumor-dose per session. Two recent formulations
considered two OAR; the first one [22] employed the simulated annealing heuristic for optimization,
and the second [5] provided Karush-Kuhn-Tucker conditions for optimality. Saberian et al. [17]
were the first to even partly analyze the case of multiple OAR. They derived closed-form solutions
when the so-called α and β parameters of the LQ dose-response models for the tumor and OAR
were ordered in a certain way. Saberian et al. [19] later established the surprising result that the
nonconvex QCQP can be equivalently reformulated as a two-variable linear program (LP). This
provided the first provably optimal complete solution of the fractionation problem.

Most recently, Saberian et al. [18] proposed a spatiotemporally integrated formulation of the
fractionation problem, where the number of sessions and the fluence-map were both optimization
variables within a single model. The objective was again to maximize the tumor-BE subject to
upper bounds on the BED for various OAR. Unlike the separated case, this problem cannot be
equivalently reformulated as a two-variable LP. They therefore devised an approximate solution
algorithm based on convex programming and demonstrated, via extensive numerical experiments,
that such integrated optimization improves the tumor-BE compared to the separated model.

A key limitation of the above research on the fractionation problem is that it ignores the
uncertainty in the values of the α and β parameters of the LQ dose-response model. Recent studies
about the spatiotemporally separated formulations of the fractionation problem have addressed
this concern. Both Badri et al. [3] and Ajdari and Ghate [1] (unpublished), independently of each
other, investigated a robust counterpart of the separated formulation from Saberian et al. [19].
In the robust optimization parlance, they assumed that the so-called α/β ratios of parameters of
the LQ dose-response model for OAR belongs to an interval uncertainty set. For instance, Ajdari
and Ghate showed that an optimal solution to the nonconvex robust problem can be recovered by
instead solving a small group of two-variable LPs. Each of these LPs is similar to the two-variable
LP originally proposed by Saberian et al. [19] for solving the nonconvex QCQP formulation of
the nominal problem. Badri et al. also developed a chance constrained approach to accommodate
uncertainty in the α/β ratios in the separated model.

We introduce a robust counterpart of the spatiotemporally integrated fractionation problem. We
assume that the unknown parameters of the LQ dose-response model belong to known intervals.
The goal in the robust problem is then to ensure that its solution remains feasible for all values
of the dose-response parameters from these intervals. We demonstrate that the resulting robust
optimization problem can be equivalently reformulated as a group of linear programs with convex
quadratic constraints. It is thus efficiently solvable. We remark as an aside that this reformulation
method is more general than and hence applicable to our aforementioned unpublished work on the
robust spatiotemporally separated formulation [1]. We numerically quantify the price of robustness
for a representative test case for head-and-neck cancer from [18], and also compare the frequency
and amount of infeasibility suffered by the nominal and the robust solutions. Our results suggest
that the price of robustness is small and the robust solution remains statistically more feasible than
the nominal solution even when dose-response parameters vary outside the presumed intervals of
uncertainty. Since the uncertainty in dose-response parameters has been one of the hurdles in
widespread use of nominal optimization formulations based on the LQ model, these numerical
observations bode well for the potential clinical utility of their robust counterparts.
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2 Nominal and robust formulations

We first briefly recall the nominal spatiotemporally integrated formulation from [18]. The objective
in this formulation is to choose the number of sessions and the fluence-map in each session to
maximize tumor-BE subject to maximum dose and mean dose constraints on various OAR1. The
formulation also includes smoothness constraints on the fluence-map to ensure that it is deliverable
in practice using IMRT. Here, we only discuss minimal, crucial ingredients of this formulation; the
reader is referred to [18] for an extensive discussion of its derivation, advantages, and limitations.

2.1 Review of the nominal formulation from [18]

Let n denote the number of tumor voxels. The radiation field is discretized into small segments
called beamlets. Let k denote the number of beamlets. Let u ∈ <k+ denote the k-dimensional
fluence-map employed in each session. The number of treatment sessions is denoted by N , with
Nmax being the maximum number of sessions allowed in the protocol. Let A denote the n × k
nonnegative tumor dose-deposition matrix; Ai denotes its ith row, which corresponds to the ith
tumor voxel. According to the linear dose-deposition model, Aiu is the dose delivered to the ith

tumor voxel in each session. Moreover, let Āu ,
n∑
i=1

Aiu/n be the average dose over all tumor

voxels in each session. Let S denote the matrix employed in writing smoothness constraints on u.
Let α0 and β0 denote the tumor-response parameters. A tumor proliferation term is also

included in our model; it is defined by τ(N) , ([(N−1)−Tlag]+ln2)/Tdouble, where [(N−1)−Tlag]+ =
max((N − 1) − Tlag, 0). In this formula, Tlag represents the time (in days) after which the tumor
starts proliferating following the start of treatment and Tdouble is the tumor doubling time (in days).

The set of OAR is denoted byM ,M1∪M2; here,M1 andM2 are mutually exclusive sets of
OAR with maximum dose and mean dose constraints, respectively. We use the index m to denote
quantities related to OAR m ∈M. The set of voxels in OAR m is denoted by Nm , {1, 2, . . . , nm}.
Let ρm , βm/αm denote the inverse alpha-over-beta ratio of the α and β parameters of the LQ
dose-response model for OAR m. Suppose for OAR m ∈M1 that a total dose Dm

max is known to be
tolerated by each voxel if administered in Nm

conv equal-dose fractions. Similarly, suppose for OAR
m ∈ M2 that total mean dose Dm

mean is known to be tolerated if administered in Nm
conv equal-dose

fractions. Let BEDm
� = Dm

� + ρm(Dm
� )2/Nm

conv be the BED of total dose Dm
� if administered in

Nm
conv equal-dose fractions, where � represents either max or mean.

The nominal spatiotemporally integrated formulation is written in [18] as

(P ) F ∗ = max
N,u

Nα0(Āu) +Nβ0(Āu)2 − τ(N), (1)

N(Amj u) +Nρm(Amj u)2 ≤ BEDm
max, ∀j ∈ Nm, m ∈M1, (2)

N

nm∑
j=1

(Amj u) +Nρm

nm∑
j=1

(Amj u)2 ≤ nmBEDm
mean, m ∈M2, (3)

Su ≤ 0, (4)

u ≥ 0, 1 ≤ N ≤ Nmax, integer. (5)

The objective in (1) is to maximize the BE of average tumor dose. Constraints (2) enforce that the
BED to each OAR voxel is no more than the conventional BED; these are called the maximum dose
constraints. Constraints (3) imply that the average BED of doses administered to different voxels

1Dose-volume constraints can also be handled using the approach described in [18]; we omit those here for brevity.
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is bounded above by the conventional BED; these are the mean dose constraints. Constraint (4)
ensures, via an appropriately constructed smoothness matrix S, that the relative absolute difference
between geometrically adjacent components of u is within a range that IMRT can attain.

2.2 Robust counterpart of the nominal model

Let ρ̃m represent the “true” unknown value of ρm for each OAR m ∈ M. We assume that ρ̃m
belongs to the uncertainty interval [ρmmin, ρ

m
max], where 0 ≤ ρmmin ≤ ρmmax. Thus, by replacing ρm

with ρ̃m and expanding BEDm
� in the nominal formulation, the robust counterpart of (P ) is

(RP ) max
N,u

Nα0(Āu) +Nβ0(Āu)2 − τ(N), (6)

N(Amj u) + ρ̃m

(
N(Amj u)2 − (Dm

max)2

Nm
conv

)
≤ Dm

max, ∀j ∈ Nm, m ∈M1, ρ
m
min ≤ ρ̃m ≤ ρmmax, (7)

N

nm∑
j=1

(Amj u) + ρ̃m

N nm∑
j=1

(Amj u)2 − nm(Dm
mean)2

Nm
conv

 ≤ nmDm
mean, m ∈M2, ρ

m
min ≤ ρ̃m ≤ ρmmax,

(8)

(4)− (5). (9)

Here, inequalities (7)-(8) ensure that the maximum dose and the mean dose constraints are re-
spected for every possible realization of ρ̃m in the interval [ρmmin, ρ

m
max]. Consequently, they include

an uncountably infinite number of constraints, and thus this robust problem appears intractable at
first glance. Fortunately, it can be equivalently rewritten in a simple form by applying the general
method proposed in Section 2.2 of [4] for robust optimization under polyhedral uncertainty. Below
we convey the main idea in this reformulation using the mean dose constraints (8).

For any fixed u and N , the mean dose constraint holds for every realization of ρ̃m if and only
if the maximum of the left hand side in inequality (8) over all ρ̃m ∈ [ρmmin, ρ

m
max] is no more than

the right hand side nmD
m
mean. For any fixed u and N , the problem of maximizing this left hand

side is an LP in variables ρ̃m with only two constraints: ρ̃m ≤ ρmmax and ρ̃m ≥ ρmmin. By attaching
variables qm and pm, respectively, with these two constraints, we can write the dual of this LP. This
dual is a minimization problem, and by strong duality its optimal cost equals the maximum value
in the primal LP. In other words, For any fixed u and N , the mean dose constraint holds for every
realization of ρ̃m if and only if the optimal cost in the dual LP is no more than nmD

m
mean. This

allows us to replace the robust mean dose constraints with another equivalent group of constraints.
This idea can be expressed mathematically as follows:

max
ρmmin≤ρ̃m≤ρmmax

N
nm∑
j=1

(Amj u) + ρ̃m

N nm∑
j=1

(Amj u)2 − nm
(Dm

mean)2

Nm
conv

 ≤ nm Dm
mean

⇔


min
qm,pm

N
nm∑
j=1

(Amj u) + ρmmax qm + ρmmin pm,

qm + pm ≥ N
nm∑
j=1

(Amj u)2 − nm (Dm
mean)2

Nm
conv

,

qm ≥ 0, pm ≤ 0.

 ≤ nm Dm
mean.

Applying this to maximum dose constraints as well, the robust optimization problem becomes

(RP ) F ∗ = max
N,u,q,p

Nα0(Āu) +Nβ0(Āu)2 − τ(N), (10)
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s.t. N(Amj u) + ρmmax q
j
m + ρmmin p

j
m ≤ Dm

max, ∀j ∈ Nm, m ∈M1, (11)

N(Amj u)2 − qjm − pjm ≤
(Dm

max)2

Nm
conv

, ∀j ∈ Nm, m ∈M1, (12)

N

nm∑
j=1

(Amj u) + ρmmax qm + ρmmin pm ≤ nm Dm
mean, ∀m ∈M2, (13)

N

nm∑
j=1

(Amj u)2 − qm − pm ≤ nm
(Dm

mean)2

Nm
conv

, ∀m ∈M2, (14)

p ≤ 0, q ≥ 0, (4)− (5). (15)

Here, q and p are the vectors of all dual variables.
For each fixed N , (RP ) maximizes a convex function of u. This difficulty can be addressed

by further simplifying (RP ) as in the nominal formulation from [18]. First, we propose to solve
the robust problem for each fixed integer value of N in the range 1 ≤ N ≤ Nmax. We call these
problems (RP (N)) and denote their optimal values by F ∗(N). The optimal value and solution for
(RP ) can then be found simply by choosing the best among all (RP (N)). Furthermore, for each
fixed N , the objective in (RP (N)) is increasing in Āu. Thus, maximizing this objective is equivalent
to maximizing Āu. We utilize this in solving (RP (N)). Consequently, we note that each (RP (N))
includes an objective that is linear in u and that does not include variables p, q. Finally, constraints
in each (RP (N)) are convex quadratic in u and linear in p, q. As such, problems (RP (N)) can be
solved efficiently in practice using off-the-shelf software.

3 Results

3.1 Description of a head-and-neck cancer case

We demonstrate our numerical results on a representative head-and-neck cancer case from [18].
The case included four OAR: spinal cord, brainstem, left and right parotids. The nominal values
of ρ for all OAR were fixed at ρ = 1/3 Gy−1 based on [8, 22]. We followed a treatment protocol
similar to QUANTEC [14]. Specifically, the conventional number of sessions Nconv was fixed at
35. Maximum dose constraints of 45 Gy and 50 Gy were included for spinal cord and brainstem,
respectively. Mean dose constraints with a tolerance dose of 28 Gy were included for left and right
parotids. Nmax was set to 100 days. We are aware that this value is somewhat unrealistically
high; we nevertheless used it to bring forth the full range of sensitivity behaviors in our problem.
Tumor-response parameters were fixed at α0 = 0.35 Gy−1 and β0 = 0.035 Gy−2 based on [8, 9].
A maximum dose of 90 Gy was enforced on all tumor voxels to encourage dose-uniformity. The
fluence-map u consisted of 3,910 beamlets and the total number of constraints in the nominal
formulation was 27,450. All computer simulations were performed on a 3.1 GHz iMac desktop with
16 GB RAM using the convex optimization toolbox CVX [11] in MATLAB.

3.2 Price of robustness

Price of robustness is defined as the relative decrease in the optimal tumor BE in the robust
formulation compared to the nominal formulation. In our numerical experiments, uncertainty
intervals were parameterized as [(1−δ)(1/3), (1+δ)(1/3)], with δ ∈ {0, 0.1, . . . , 1}, where (1/3) Gy−1

is the nominal value of ρ for all OAR. Here, δ = 0 corresponds to the nominal case, δ = 1 represents
100% uncertainty. This allowed us to quantify the price of robustness as a function of the single
uncertainty parameter δ.
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Tables 1 and 2 summarize the results of 200 experiments for different values of Tlag, Tdouble,
and δ. In these experiments, Tlag values were set to 7, 14, 21, 28 days based on [9] and Tdouble values
were set to 2, 10, 20, 40, 50 days based on [8, 9, 16, 22].

Table 1 shows, as expected, that the price of robustness increases with increasing δ for each
Tlag, Tdouble combination. Overall, the price of robustness was small with an average of 1.29%, with
first, second, and third quartiles of 0.48%, 0.98%, and 1.66%, respectively.

For each Tlag, δ combination in Table 1, the price of robustness first decreases with increasing
Tdouble, reaches the smallest value when Tdouble = 40 days and then increases. This trend is
consistent with the corresponding trend in the difference between Nm

conv = 35 and the optimal
number of fractions (N∗) that can be inferred from Table 2. Specifically, the magnitude of Nm

conv−
N∗ decreases with increasing Tdouble, reaches about a day or two when Tdouble = 40, and then
increases.
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Figure 1: Tumor BE as a function of N for Tlag = 7 days and (a) Tdouble = 2, (b) Tdouble = 5, (c) Tdouble = 10, and (d)
Tdouble = 15 days. The uppermost line in each set of graphs represents the nominal case (� = 0) and the other lines correspond
to � = {0.1, 0.2, . . . , 1}, respectively, from top to bottom.
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Figure 1: Tumor BE versus N for
Tlag = 7 days and Tdouble = 10
days. The uppermost line repre-
sents the nominal case (δ = 0) and
the other lines correspond to δ =
{0.1, 0.2, . . . , 1} from top to bottom.

Figure 1 shows the evolution of tumor BE with N for Tlag = 7
days and Tdouble = 10 days as an example. The price of robustness
(the vertical distance between lines) is not monotone with increas-
ing N . It is increasing at first, reaches its maximum, decreases af-
terwards until it reaches zero when N = Nm

conv = 35 and increases
thereafter. The price of robustness equals zero at 35 because when
N = Nm

conv, ρm is eliminated from the BED constraints thus reduc-
ing them to total dose constraints. In other words, the nominal and
the robust problems become identical.

For any combination of δ and Tdouble in Table 1, the price of
robustness decreases as Tlag increases. Again, this is also consistent
with the corresponding trend in the magnitude of Nm

conv −N∗.
A closer look at Table 2 reveals that the evolution of N∗ with

δ does not exhibit a universal trend. For instance, N∗ increases
with increasing δ when Tdouble = 2 and 10 days and decreases as δ
increases when Tdouble = 20, 40 and 50 days.

Our robust solutions continue to exhibit qualitative trends that
are well-established in the nominal case. For instance, N∗ increases
with increasing Tdouble for any fixed δ, Tlag combination. Similarly,

N∗ also increases as Tlag increases for any fixed δ, Tdouble combination.

3.3 Infeasibility tests

The nominal solution is guaranteed to remain feasible only when the realized value of the ρ pa-
rameters equal their nominal values. To quantify the frequency and the amount of infeasibility of
the nominal solutions when this is not the case, we computed the fluence-map and the number of
sessions that would be optimal if the dose-response parameters equaled their nominal values, and
tested whether or not such a nominal solution would remain feasible if the true dose-parameters
took some other values from the uncertainty interval. For each uncertainty level δ and for each con-
straint m, five different grid-points were selected to calculate the realized values of dose-parameters.
The five values were ρ̃mi = ρmmin + 2iρmi δ/5, where i = 1, 2, . . . , 5, and ρmi denotes the nominal value
(1/3 Gy−1) of the dose-parameter for constraint m. We performed this experiment for all com-
binations of Tlag, Tdouble, and δ. The nominal solution was infeasible in over 91% of the cases.
The amount of maximum infeasibility itself was as large as 70% in some cases, with an average
of 10.11% and first, second, third quartiles of 3.20%, 7.12%, and 15.56%. In all cases, the robust
solutions of course remained feasible.
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The fundamental assumption in developing our robust formulation was that the true values of
the dose-parameters, although uncertain, belonged to some presumed uncertainty set. This as-
sumption however might not hold. Therefore, to quantify the frequency and amount of infeasibility
for robust and nominal solutions when dose-response parameters varied outside the uncertainty
intervals, we repeated the above experiments by changing parameter values as follows: for each
uncertainty level δ and constraint m, five grid-points were chosen at ρ̃m = (1 + δ + γ)ρm and five
grid-points at ρ̃m = (1− δ − γ)ρm, where γ ∈ {0.1, 0.2, . . . , 0.5} and ρm denotes the nominal value
of 1/3 Gy−1. We performed numerical experiments for all combinations of Tlag, Tdouble, and δ. The
nominal solution was infeasible in over 76% of the cases, while the robust solution was infeasible
in 58% of the cases. Furthermore, the average amount of maximum infeasibility was less for the
robust solution than for the nominal (6.84% versus 12.19%). A pairwise t-test revealed that this
difference was significant at the 95% level. This suggests that the robust solution is statistically
less infeasible than the nominal.

3.4 Uncertainty in tumor parameters α0 and β0

We assumed for simplicity that there is no uncertainty in the tumor-response parameters α0 and
β0. It is easy to relax this assumption while writing the robust counterpart of (P ). This is because,
under interval uncertainty for parameters α0 and β0, the worst-case objective value is obtained
simply by inserting the worst values of these parameters. Specifically, we now assume that true
values α̃0 and β̃0 of these parameters belong to known intervals [αmin

0 , αmax
0 ] and [βmin

0 , βmax
0 ],

respectively. Then, the objective function of the robust problem is given by replacing α̃0 with
αmin

0 and β̃0 with βmin
0 . Recall that the treatment protocol described in Section 3.1 also included

maximum dose constraints on tumor voxels. The robust counterpart of these constraints under
interval uncertainty was derived in our numerical experiments below by applying the procedure
described in Section 2.2 for maximum dose constraints on OAR.

We characterized the interval uncertainty in tumor-response parameters via a single parameter
by setting αmin

0 = (1 − θ)0.35 Gy−1; αmax
0 = (1 + θ)0.35 Gy−1; βmin

0 = (1 − θ)0.035 Gy−2; and
βmax

0 = (1 + θ)0.035 Gy−2, for θ ∈ {0.1, 0.2, . . . , 0.9}. Table 3 shows the results for Tlag = 7 days
and Tdouble = 21 days as a representative example. For each fixed θ, the qualitative trend in the
evolution of N∗ was similar to the previous section. By dividing the objective function in the robust
problem by (1− θ), we see that (1− θ) scales Tdouble in the denominator of the proliferation term
τ(N). Consequently, a larger θ has the same effect on BE as a faster growing tumor (that is, a
smaller Tdouble). Thus, a larger θ should lead to a shorter treatment course. This trend can be
observed in each row of Table 3. Finally, the price of robustness (not listed in the table for brevity)
was insensitive to θ, and remained small with an average of 0.87% over all δ, θ combinations.

4 Conclusion

There is a large body of literature on robust spatial optimization in radiotherapy, where the goal
is to compensate for intra-fraction and inter-fraction errors made in dose-delivery due to patient
movement and patient setup. Here, we applied robust optimization to a different problem —
that of incorporating uncertainty in dose-response parameters in deciding fractionation schedules.
Although the robust counterpart of this fractionation problem first appeared intractable, we were
able to equivalently reformulate it as a simple convex problem that can be solved efficiently. Our
numerical experiments on a representative head-and-neck test case suggest that the resulting price
of robustness is small and that the robust solutions are statistically less infeasible than nominal.
This bodes well for potential clinical implementation of our robust optimization methodology.
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Tlag = 7 Tdouble Tlag = 14 Tdouble
δ 2 10 20 40 50 δ 2 10 20 40 50

0.1 1.47 0.17 0.1 0.51 0.61 0.1 0.61 0.27 0.1 0.5 0.61
0.2 2.8 0.26 0.16 0.92 1.15 0.2 1.15 0.43 0.16 0.92 1.14
0.3 4.01 0.3 0.21 1.17 1.54 0.3 1.54 0.52 0.21 1.16 1.54
0.4 5.11 0.33 0.27 1.24 1.66 0.4 1.66 0.56 0.26 1.23 1.66
0.5 6.12 0.37 0.32 1.31 1.73 0.5 1.73 0.6 0.32 1.3 1.73
0.6 7.01 0.4 0.39 1.39 1.81 0.6 1.81 0.63 0.39 1.38 1.81
0.7 7.81 0.43 0.45 1.46 1.9 0.7 1.9 0.66 0.45 1.46 1.89
0.8 8.54 0.46 0.48 1.54 1.97 0.8 1.97 0.69 0.48 1.53 1.97
0.9 9.19 0.49 0.51 1.63 2.06 0.9 2.06 0.72 0.51 1.62 2.06
1 9.8 0.51 0.54 1.71 2.17 1 2.17 0.75 0.53 1.71 2.16

Tlag = 21 Tdouble Tlag = 28 Tdouble
δ 2 10 20 40 50 δ 2 10 20 40 50

0.1 0.47 0.27 0.1 0.5 0.61 0.1 0.21 0.21 0.1 0.5 0.6
0.2 0.89 0.43 0.16 0.92 1.14 0.2 0.41 0.37 0.16 0.91 1.14
0.3 1.29 0.51 0.21 1.16 1.53 0.3 0.59 0.45 0.21 1.15 1.53
0.4 1.65 0.55 0.26 1.23 1.65 0.4 0.75 0.49 0.26 1.22 1.65
0.5 1.99 0.59 0.32 1.3 1.72 0.5 0.91 0.53 0.32 1.29 1.72
0.6 2.31 0.62 0.38 1.38 1.8 0.6 1.05 0.56 0.38 1.37 1.8
0.7 2.6 0.65 0.44 1.45 1.89 0.7 1.19 0.59 0.44 1.44 1.88
0.8 2.88 0.68 0.48 1.53 1.96 0.8 1.32 0.62 0.47 1.52 1.96
0.9 3.13 0.71 0.5 1.62 2.05 0.9 1.44 0.65 0.5 1.61 2.04
1 3.38 0.74 0.53 1.7 2.15 1 1.55 0.67 0.52 1.69 2.14

Table 1: Price of robustness (%) for different Tlag (days), Tdouble (days), and uncertainty levels δ.

Tdouble
δ 2 10 20 40 50
0 (6.03,8) (2.46,28) (1.68,44) (1.12,71) (0.98,82)

0.1 (5.97,8) (2.35,29) (1.85,39) (1.25,62) (1.09,73)
0.2 (5.91,8) (2.17,32) (1.85,39) (1.43,53) (1.26,61)
0.3 (5.86,8) (2.07,34) (1.89,38) (1.78,41) (1.58,47)
0.4 (5.81,8) (2.02,35) (1.89,38) (1.85,39) (1.85,39)
0.5 (5.76,8) (2.02,35) (1.89,38) (1.85,39) (1.85,39)
0.6 (5.30,9) (2.02,35) (1.89,38) (1.85,39) (1.85,39)
0.7 (5.27,9) (2.02,35) (1.98,36) (1.89,38) (1.89,38)
0.8 (4.89,10) (2.02,35) (2.02,35) (1.89,38) (1.89,38)
0.9 (4.86,10) (2.02,35) (2.02,35) (1.89,38) (1.89,38)
1 (4.84,10) (2.02,35) (2.02,35) (2.02,35) (1.88,38)

Table 2: Optimal average dose per session (Gy) and the optimal number of sessions (N∗) for Tlag = 7 days.

References

[1] A Ajdari and A Ghate. Robust fractionation in radiotherapy. unpublished manuscript, May
2015.

8



Tumor uncertainty level (θ)
δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 (1.78,41) (1.94,37) (2.07,34) (2.29,30) (2.57,26) (3.02,21) (3.54,17) (4.85,11) (6.03, 8)

0.1 (1.85,39) (1.89,38) (2.03,35) (2.12,33) (2.35,29) (2.72,24) (3.25,19) (4.27,13) (5.97, 8)
0.2 (1.89,38) (1.89,38) (2.02,35) (2.02,35) (2.17,32) (2.55,26) (3.00,21) (4.03,14) (5.91, 8)
0.3 (1.89,38) (1.93,37) (2.02,35) (2.02,35) (2.07,34) (2.34,29) (2.89,22) (3.81,15) (5.86, 8)
0.4 (1.89,38) (1.98,36) (2.02,35) (2.02,35) (2.02,35) (2.22,31) (2.70,24) (3.62,16) (5.81, 8)
0.5 (1.89,38) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.17,32) (2.61,25) (3.46,17) (5.76, 8)
0.6 (1.98,36) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.07,34) (2.46,27) (3.31,18) (5.30, 9)
0.7 (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.39,28) (3.17,19) (5.27, 9)
0.8 (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.33,29) (3.05,20) (4.89,10)
0.9 (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.27,30) (2.94,21) (4.86,10)
1 (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.02,35) (2.21,31) (2.84,22) (4.84,10)

Table 3: Optimal average dose (Gy) per session and optimal number of sessions (N∗) for various tumor uncertainty levels (θ)
and OAR uncertainty levels (δ) for Tlag = 7 days and Tdouble = 21 days.

[2] C I Armpilia, R G Dale, and B Jones. Determination of the optimum dose per fraction in frac-
tionated radiotherapy when there is delayed onset of tumour repopulation during treatment.
The British Journal of Radiology, 77(921):765–767, 2004.

[3] H Badri, Y Watanabe, and K Leder. Robust and probabilistic optimization of dose schedules
in radiotherapy. available online at arxiv.org/pdf/1503.00399v2.pdf, June 2015.

[4] D Bertsimas, D B Brown, and C Caramanis. Theory and applications of robust optimization.
SIAM Review, 53(3):464–501, 2011.

[5] A Bertuzzi, C Bruni F Papa, and C Sinisgalli. Optimal solution for a cancer radiotherapy
problem. Journal of Mathematical Biology, 66(1-2):311–349, 2013.

[6] T Bortfeld, J Ramakrishnan, J N Tsitsiklis, and J Unkelbach. Optimization of radio-
therapy fractionation schedules in the presence of tumor repopluation. forthcoming in IN-
FORMS Journal on Computing, prepring available at http://pages.discovery.wisc.edu/

~jramakrishnan/BRT2015_repop.pdf, May 2015.

[7] M Ehrgott, C Guler, H W Hamacher, and L Shao. Mathematical optimization in intensity
modulated radiation therapy. 4OR, 6(3):199–262, 2008.

[8] J F Fowler. How worthwhile are short schedules in radiotherapy?: A series of exploratory
calculations. Radiotherapy and Oncology, 18(2):165–181, 1990.

[9] J F Fowler. Optimum overall times II: Extended modelling for head and neck radiotherapy.
Clinical Oncology, 20(2):113–126, 2008.

[10] J F Fowler and M A Ritter. A rationale for fractionation for slowly proliferating tumors such
as prostatic adenocarcinoma. International Journal of Radiation Oncology Biology Physics,
32(2):521–529, 1995.

[11] M Grant and S Boyd. CVX: MATLAB software for disciplined convex programming (web
page and software), 2009.

[12] B Jones, L T Tan, and R G Dale. Derivation of the optimum dose per fraction from the linear
quadratic model. The British Journal of Radiology, 68(812):894–902, 1995.

9

arxiv.org/pdf/1503.00399v2.pdf
http://pages.discovery.wisc.edu/~jramakrishnan/BRT2015_repop.pdf
http://pages.discovery.wisc.edu/~jramakrishnan/BRT2015_repop.pdf


[13] H Keller, G Meier, A Hope, and M Davison. Fractionation schedule optimization for lung
cancer treatments using radiobiological and dose distribution characteristics. Medical Physics,
39(6):3811–3811, 2012.

[14] L B Marks, E D Yorke, A Jackson, R K Ten Haken, L S Constine, A Eisbruch, S M Bentzen,
J Nam, and J O Deasy. Use of normal tissue complication probability models in the clinic.
International Journal of Radiation Oncology Biology Physics, 76(3):S10–S19, 2010.

[15] M Mizuta, S Takao, H Date, N Kishimoto, K L Sutherland, R Onimaru, and H Shirato. A
mathematical study to select fractionation regimen based on physical dose distribution and
the linear-quadratic model. International Journal of Radiation Oncology Biology Physics,
84(3):829 – 833, 2012.

[16] X S Qi, Q Yang, S P Lee, X A Li, and D Wang. An estimation of radiobiological parameters
for head-and-neck cancer cells and the clinical implications. Cancers, 4:566–580, 2012.

[17] F Saberian, A Ghate, and M Kim. Optimal fractionation in radiotherapy with multiple normal
tissues. forthcoming in Mathematical Medicine and Biology, online preprint available at doi:
10.1093/imammb/dqv015, May 2015.

[18] F Saberian, A Ghate, and M Kim. Spatiotemporally integrated fractionation in radiotherapy.
under review at INFORMS Journal on Computing, preprint available at http://faculty.

washington.edu/archis/upaper-apr-2015.pdf, April 2015.

[19] F Saberian, A Ghate, and M Kim. A two-variable linear program solves the standard linear–
quadratic formulation of the fractionation problem in cancer radiotherapy. Operations Research
Letters, 43(3):254 – 258, 2015.

[20] J Unkelbach, D Craft, E Saleri, J Ramakrishnan, and T Bortfeld. The dependence of opti-
mal fractionation schemes on the spatial dose distribution. Physics in Medicine and Biology,
58(1):159–167, 2013.

[21] S Webb. Contemporary IMRT: Developing Physics and Clinical Implementation. IOP Pub-
lishing, Bristol, UK, 2010.

[22] Y Yang and L Xing. Optimization of radiotherapy dose-time fractionation with consideration
of tumor specific biology. Medical Physics, 32(12):3666–3677, 2005.

10

http://faculty.washington.edu/archis/upaper-apr-2015.pdf
http://faculty.washington.edu/archis/upaper-apr-2015.pdf

	Introduction
	Nominal and robust formulations
	Review of the nominal formulation from upaper
	Robust counterpart of the nominal model

	Results
	Description of a head-and-neck cancer case
	Price of robustness
	Infeasibility tests
	Uncertainty in tumor parameters 0 and 0

	Conclusion
	Acknowledgment

