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Abstract

Retailers often conduct non-overlapping sequential online auctions as a revenue generation
and inventory clearing tool. We build a stochastic dynamic programming model for the
seller’s lot-size decision problem in these auctions. The model incorporates a random number
of participating bidders in each auction, allows for any bid distribution, and is not restricted
to any specific price-determination mechanism. Using stochastic monotonicity/stochastic
concavity and supermodularity arguments, we present a complete structural characterization
of optimal lot-sizing policies under a second order condition on the single-auction expected
revenue function. We show that a monotone staircase with unit jumps policy is optimal
and provide a simple inequality to determine the locations of these staircase jumps. Our
analytical examples demonstrate that the second order condition is met in common online
auction mechanisms. We also present numerical experiments and sensitivity analyses using
real online auction data.

Keywords: Auctions/bidding, dynamic programming, e-commerce

1. Introduction

Online auctions of retail goods have become a significant component of modern inter-
net commerce. Several large retailers such as Dell (www.dellauction.com) and Sam’s Club
(auctions.samsclub.com) increasingly use online auctions as a revenue generation mechanism
[Bapna et al. 2008; Pinker et al. 2010]. In combination with scrapping excess inventories to
firms like Overstock (www.overstock.com), large retailers also use online auctions as an in-
ventory clearing tool. The auction giant eBay (www.ebay.com) and other similar firms such
as Ubid (www.ubid.com) provide auction hosting services to retailers like IBM, Sharp and
Fujitsu, and also to individual sellers. Companies like Truition (www.truition.com) and
ChannelAdvisor (www.channeladvisor.com) specialize in helping businesses conduct online
auctions [Odegaard and Puterman 2006]. Based on empirical data available in Vakrat and
Seidmann [2000], Pinker et al. [2010] have noted that most retail auction websites conduct a
sequence of multi-unit auctions of identical items. These auctions were also observed to be
the operational norm by Bapna et al. [2008], Pinker et al. [2003], and Tripathi et al. [2009].
Pinker et al. [2003] have summarized various research issues in such auctions.

Lot-sizes, that is, the number of units to be auctioned in each auction, are one of the key
decision variables in sequential auctions [Pinker et al. 2003, 2010; Segev et al. 2001; Tripathi
et al. 2009; Vakrat and Seidmann 2000]. A small lot-size induces bidder competition thus
increasing the clearing-price. The total revenue may still be lower than one would hope
because the number of units sold is small. Uncertainty in the number of participating
bidders (demand) in each auction and that in their bids increases decision complexity. For
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instance, an auction with too large a lot-size may fail due to insufficient demand. Inventory
holding costs and the possibility of scrapping inventory to save and recover some of these
costs introduce additional economic tradeoffs.

Two papers have investigated inventory scrapping and/or lot-sizing decisions in sequential
online retail auctions [Pinker et al. 2010; Tripathi et al. 2009].

Pinker et al. [2010] studied these problems under the following restrictions: a fixed num-
ber of participating bidders in each auction, uniform bid distributions with support [0, 1], and
a truth revealing multi-unit Vickrey mechanism. These assumptions enabled them to formu-
late a deterministic dynamic program, wherein a closed-form lot-sizing policy was derived
by equating derivatives of value functions to zero within a backward induction procedure.
The optimal lot-size decreased at a constant rate from one auction to the next. This rate
increased with inventory holding costs and decreased with the number of bidders per auction.
In their model, it was optimal to scrap inventory only one time before beginning the entire
sequence of auctions.

Tripathi et al. [2009] also assumed a fixed number of participating bidders in each auction,
and employed a multi-unit Dutch mechanism. Using uniform bid distributions, they first
optimized the lot-size over a sequence of auctions assuming that the lot-size did not change
over time. This led to a simple closed-form lot-size expression that resembled the well-
known Economic Order Quantity (EOQ) formula in inventory management [Heyman and
Sobel 2003]. They also devised a goal programming method to estimate bid distributions
from online bid data.

Segev et al. [2001] focused on predicting auction clearing-prices using an orbit queue
Markov chain model, and compared these predictions with data obtained from Onsale
(www.onsale.com), a Sillicon Valley start-up company. They proposed a deterministic dy-
namic programming model for lot-size optimization under the restrictive assumption that all
items on sale will be sold owing to a sufficiently large number of participating bidders but
did not attempt to solve it.

Odegaard and Puterman [2006] considered an auctioneer with two identical items on
hand, and determined an optimal time-point at which the second item should be “released”
for an auction. They derived conditions to ensure an optimal control-limit release-time
policy. This control-limit was decreasing in holding cost.

Vulcano et al. [2002] studied a problem motivated by airline ticket selling websites like
Priceline (www.priceline.com). The seller first observed bids from potential travelers, and
then chose how many and which bids to accept, as opposed to publicly pre-committing
lot-sizes at the beginning of each auction before receiving bids as practiced in retail auc-
tions [Odegaard and Puterman 2006; Pinker et al. 2010; Segev et al. 2001; Tripathi et al.
2009]. Consequently, they solved a variable supply allocation problem rather than a lot-
size optimization problem to obtain a structural result similar to ours but utilized different
mathematical analysis and sufficient conditions as developed by Myerson [1981] and Maskin
and Riley [2000]. This work was later extended to an infinite-horizon joint auctioning and
pricing problem under holding and ordering costs [van Ryzin and Vulcano 2004].

The basic setting in our paper is similar to Pinker et al. [2010] and Tripathi et al. [2009]
in that we consider a seller who conducts a sequence of non-overlapping online auctions of
retail goods. However, in contrast to their work, we incorporate uncertainty in the number of
participating bidders (stochastic demand) in each auction; do not restrict our formulation to
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any specific clearing-price determination rule; and allow for any bid distribution (see Section
2 for details). To the best of our knowledge, this is the first paper that successfully overcomes
all mathematical difficulties introduced by this generalization in the retail pre-committing
setting to provide a complete structural characterization of optimal inventory scrapping and
lot-sizing policies as in Theorem 2.1.

More specifically, under the second order condition (7) on the single-auction expected
revenue function, we show that a threshold inventory-scrapping policy, and a monotone
staircase with unit jumps lot-sizing policy are optimal. This condition roughly requires that
the marginal single-auction expected revenue, normalized by the probability of sufficient
number of bidders participating, be decreasing in lot-size. It is then optimal to scrap all
inventory above a time-dependent threshold inventory level, and not to scrap any inventory
below the threshold. This threshold equals the inventory level at which the scrap-value of a
unit exceeds its marginal value over all remaining auctions. Moreover, if lot-size x is optimal
in post-scrapping inventory i, then either lot-size x or lot-size x + 1 is optimal in post-
scrapping inventory i + 1. This unit jump in optimal lot-size occurs when the normalized
marginal single-auction expected revenue exceeds the discounted marginal value of saving
the additional unit for future auctions. See Theorem 2.1 and its proof in Section 3 for precise
detailed versions of these statements. Section 3.1 includes several examples where our second
order condition is met. Limitations and potential extensions of our model are discussed in
Section 5.

2. Problem description and mathematical formulation

Consider a seller with some initial inventory of identical units on hand. We assume that
the seller conducts a sequence of 1 ≤ T < ∞ auctions indexed by t = 1, 2, . . . , T . The
seller uses a fixed auction mechanism in all auctions and this mechanism is disclosed to the
bidders. Examples of auction mechanisms include multi-unit Vickrey as on eBay, multi-unit
Dutch as on Sam’s Club, and Yankee as on Ubid.

Under stochastic demand, one-shot scrapping as in Pinker et al. [2010] may not be opti-
mal; in fact, it may lead to negative marginal values. It is essential to dynamically exploit
the flexibility to scrap inventory even if the scrap-value is zero. Thus, at the beginning of
auction t, the seller makes two decisions after observing inventory i on hand: (i) the number
of units y to be scrapped for a value of s ≥ 0 per unit, and (ii) of the i− y remaining units,
the lot-size x to be put up for the tth auction. This lot-size is disclosed to the potential
bidders at the start of the tth auction.

A random number N of bidders who wish to buy one unit each then place their bids. The
probability mass function (pmf) of N is denoted g(·), its support is denoted N ⊆ N+, and its
distribution function is denoted G(·). Consistent with the existing literature, we assume that
bidders are independent across auctions, and identical both within an auction and across
auctions. A detailed discussion of practical limitations introduced by this assumption is
included, for instance, in Section 4 of Pinker et al. [2010], and we do not repeat it here (also
see Section 5). More specifically, the final bids in all auctions are independent and identical
(iid) random variables B with distribution F (·), finite expectation, and support B ⊆ R+

whose smallest element is denoted L. The existence of a probability density function for
B is not assumed, and in particular, B may be discrete. We remark that our setting is
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flexible and general enough to allow bid distributions that are statistically estimated using
online data, those derived from game theoretic analyses of how bidders might behave in
sequential online multi-unit auctions, and the ones obtained through a combination of these
two approaches (see Bapna et al. [2002, 2003, 2008]; Fatima [2008]; Jiang and Leyton-Brown
[2007]; Pinker et al. [2010]; Tripathi et al. [2009] for examples of such techniques).

If the actual number of bidders n in an auction is more than the lot-size x, the seller
generates revenue through bidder competition by selling all x units. We denote this revenue
by π(x;n), and it is derived from the expected value of a mechanism-specific order-statistic
of F (·). See the beginning of Section 3.1, and in particular, Equations (17)-(19), for specific
examples of π(x;n). If n ≤ x, the auction fails due to a lack of bidder competition. Note that
this scenario does not arise in Pinker et al. [2010] and Tripathi et al. [2009] owing to their
assumption of deterministic demand. When an auction fails, the seller sells one unit to each
of the n bidders for amount L [Pinker et al. 2003]. Equivalently, in the language of Pinker
et al. [2003], the “minimum bid” of the auction is set to L. This is better than selling for any
price less than L. The seller may however benefit from using a minimum bid requirement
of some Λ > L, and then selling each unit in a failed auction for Λ. This introduces
challenging tradeoffs, which require dynamic optimization of Λ and are not the focus of this
paper (also see Section 5). Another entirely different possibility for the seller is to cancel a
failed auction, returning the x units originally intended for sale back to the inventory held.
Canceling auctions disappoints bidders who did participate, leading to negative feedback
from these unsatisfied bidders. This hurts the seller’s reputation that is critical for success
in e-commerce [Ba and Pavlou 2002; Resnick et al. 2006]. We therefore do not follow this
alternative approach.

The holding cost of carrying each unit in inventory during auction t is denoted h ≥ 0,
and it is assumed to be incurred for the i − y units remaining after scrapping y units from
inventory i at the beginning of auction t. As in classic dynamic lot-sizing models [Denardo
2003], we assume that inventory remaining after the T th auction has no value; our results
generalize in a straightforward manner to the case where terminal inventory fetches concave
value.

The seller’s goal is to maximize total discounted expected profit obtained through the T
auctions where the discount factor equals 0 < α < 1. A dynamic programming model for
the seller’s problem is developed in the next section.

2.1. Dynamic programming model

First, a note on terminology. Since most quantities of interest such as inventory i and
lot-size x in this paper are integer valued, we use i ≥ 0 to imply i = 0, 1, 2, . . .. The symbol
, is reserved for defining some of the mathematical notation. We recall relevant terminology
for functions ϕ(·) of non-negative integers. Function ϕ(·) is said to be increasing at x, if
ϕ(x+ 1) ≥ ϕ(x), that is, when the first difference ∆ϕ(x) , ϕ(x+ 1)− ϕ(x) ≥ 0. Similarly
for decreasing. We also define the second difference ∆2ϕ(x) , ∆(∆ϕ(x)) = [ϕ(x + 2) −
ϕ(x+ 1)]− [ϕ(x+ 1)− ϕ(x)]. We say that ϕ(·) is concave1 over the set J = {0, 1, 2, . . . , j}

1See condition S2-15 in Denardo [2003], and also Lemma 6 therein for an equivalence between concavity
of functions over non-negative integers and that of their extensions to R+ using linear interpolation.
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for some integer j ≥ 2 if ∆2ϕ(x) ≤ 0 for each x ∈ {0, 1, . . . , j − 2}. We say that a function
is concave if its second difference is non-positive at every non-negative integer. Similarly for
increasing and decreasing.

Let φ(·) denote the expected revenue from one auction as a function of the lot-size. Based
on the above problem description, we have,

φ(x) ,
x∑

n=0

nLg(n)

︸ ︷︷ ︸

failed auction

+

∞∑

n=x+1

g(n)π(x;n)

︸ ︷︷ ︸

successful auction

, for x ≥ 02. (1)

It often helps to imagine the extension

π̄(x;n) ,

{

π(x;n) for n > x

nL for n ≤ x,
(2)

which leads to the compact formula φ(x) = E[π̄(x;N)] =
∞∑

n=0

g(n)π̄(x;n).

The following structural observations about φ(·) hint at the nature of mathematical
difficulties introduced by stochastic demand. Even when π(·;n) is concave in lot-size for a
fixed value of n, the function π̄(·;n) is not concave because it is flat (independent of x) for
x ≥ n. A possible overall effect is that when the expectation over the pmf of the number of
participating bidders is taken, the standard approach of “expectation of a concave function
is concave” cannot be used to establish concavity of φ(·) in lot-size (recall that concavity of
revenue functions often facilitates analytical results [Talluri and van Ryzin 2005]). Indeed,
in a multi-unit Dutch auction with a discrete-uniform number of participating bidders and
uniformly distributed bids, the expected revenue is not concave in lot-size. Moreover, in
our experience with several examples, it is impossible to derive a closed-form formula for a
maximizer of the single-auction expected revenue function owing to algebraic difficulties even
if we were to make the approximating assumption that non-integer lot-sizes are feasible. As
a result, even in a single auction, deciding an optimal lot-size is non-trivial and must be done
numerically. This is in contrast with Pinker et al. [2010] and Tripathi et al. [2009], where
closed-form optimal lot-sizes are readily obtained by equating first derivatives to zero under
their approximating assumption that non-integer lot-sizes were feasible. Fortunately, we are
able to overcome all such hurdles to derive the structure of optimal policies.

We define the random variable ζx = min{x,N}. It represents the drop in inventory
after one auction — x when the auction is successful, that is, when N > x; and N when
the auction fails, that is, when N ≤ x. For i ≥ 0, and 1 ≤ t ≤ T , let Vt(i) denote the
maximum total expected profit generated in auctions t through T when the inventory on
hand beginning auction t is i. That is, Vt(·) are the optimal value functions. Bellman’s
equations for the seller’s problem are given by

Vt(i) = max
0≤y≤i

0≤x≤i−y

[

sy − h(i− y) + φ(x) + αE
[
Vt+1(i− y − ζx)

]]

, for i ≥ 0, 1 ≤ t ≤ T, (3)

2When N is finite, the domain of φ(·) can and will be restricted without loss of optimality to 0 ≤ x ≤ M ,
where M is the largest element of N .
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with the boundary condition VT+1(i) = 0 for i ≥ 0. Note also that Vt(0) = 0 for all 1 ≤ t ≤ T .
It is convenient to work with (3) rewritten in the following nested form:

Vt(i) = max
0≤y≤i

[

sy + Ut(i− y)
]

, i ≥ 1, 1 ≤ t ≤ T, where, (4)

Ut(j) = max
0≤x≤j

[

− hj + φ(x) + αE
[
Vt+1(j − ζx)

]]

, j ≥ 1, 1 ≤ t ≤ T. (5)

Note that Ut(0) = 0 for 1 ≤ t ≤ T .
For lot-size x, let

∂Φ(x) ,
∆φ(x)
∞∑

n=x+1

g(n)
=

∆φ(x)

1−G(x)
. (6)

This is the marginal single-auction expected revenue normalized by the probability that
the auction is successful owing to a sufficient number of bidders participating. Also let
∂2Φ(x) , ∂Φ(x + 1)− ∂Φ(x). In the next section, we prove the following key result:

Theorem 2.1. Let x̂ denote the smallest maximizer of φ(·). Suppose

∂2Φ(x) ≤ 0, for x ∈ {0, 1, . . . , x̂− 2}. (7)

Then

1. A threshold policy is optimal for scrapping inventory — suppose 0 ≤ i∗t is the smallest
inventory i for which s > Ut(i+ 1)− Ut(i); then in any inventory i ≥ 1, it is optimal
to scrap (i − i∗t )

+ , max{0, i − i∗t} units. That is, we do not scrap any units when
inventory on hand is i∗t or less; we scrap all units over and above i∗t when inventory on
hand is more than i∗t .

2. A monotone “staircase with unit jumps” policy is optimal for lot-sizing — suppose x
is the smallest lot-size optimal in inventory j; then either x or x + 1 is the smallest
lot-size optimal in inventory j + 1. In particular, the smallest optimal lot-size jumps
from x to x+ 1 at the smallest inventory level k ≥ j + 1 for which

∂Φ(x) > α(Vt+1(k − x)− Vt+1(k − x− 1)). (8)

The discussion below provides insight into inequality (7).

Lemma 2.2. Condition (7) implies that φ(·) is concave over {0, 1, 2, . . . , x̂}.

Proof. Since x̂ is the smallest maximizer of φ(·), φ(x̂) > φ(x̂− 1). In addition, because both
∞∑

n=x+1

g(n) and
∞∑

n=x+2

g(n) are positive, condition (7) implies that ∆φ(x) ≥ 0 for 0 ≤ x ≤ x̂−1.

Since
∞∑

n=x+1

g(n) ≥
∞∑

n=x+2

g(n), this implies that φ(·) is concave over {0, 1, 2, . . . , x̂}.

Remark 2.3. Inequality (7) does not imply concavity at x when ∆φ(x) and ∆φ(x+ 1) are
negative; indeed, for some of our examples in Section 3.1, condition (7) is met over the
entire domain of φ(·), and yet, φ(·) is not concave over this domain but is concave over
{0, 1, 2, . . . , x̂}.
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Lemma 2.4. If inequality (7) holds over the entire domain of φ(·), then φ(·) is unimodal,
that is, increasing up to x̂− 1 and then decreasing.

Proof. Because x̂ is a maximizer of φ(·), φ(x̂) ≥ φ(x̂+1), that is, 0 ≥ ∆φ(x̂). Inequality (7)
then implies that 0 ≥ ∆φ(x) for all x ≥ x̂. Moreover, as shown in Lemma 2.2, ∆φ(x) ≥ 0
for 0 ≤ x ≤ x̂− 1. Hence φ(·) is unimodal.

3. Structural analysis of optimal policies

We first prove a few preliminary results that are later used in establishing Theorem 2.1.
The following Lemma shows that the seller can exploit the opportunity to scrap inventory at
the beginning of each auction to ensure that the marginal value of each unit is non-negative.

Lemma 3.1. For every auction t, Vt(i + 1) − Vt(i) ≥ s, and hence Vt(·) is increasing in
inventory.

Proof. Consider any auction 1 ≤ t ≤ T , and any inventory i ≥ 0. Suppose it is optimal to
scrap y units if the inventory on hand beginning auction t equals i. Then it is feasible to
scrap y + 1 units when the inventory on hand beginning auction t is i+ 1. Therefore,

Vt(i+ 1) ≥ s(y + 1) + Ut(i+ 1− (y + 1)) = sy + s+ Ut(i− y) = s+ Vt(i).

That is, Vt(i+ 1)− Vt(i) ≥ s as required.

Stochastic monotonicity and stochastic concavity properties [Shaked and Shanthikumar
1994] of the random variable ζx are used in our structural analysis. We now precisely define
and establish these. Let Gx(·) denote the distribution function of ζx. That is,

Gx(w) , P (ζx ≤ w) =







0 for w < 0

P (N ≤ bwc) for 0 ≤ w < x

1 for w ≥ x.

(9)

Also, Ḡx(w) , 1 − Gx(w) defines P (ζx > w). Recall that ζx is said to be stochastically
increasing (in x) if for any x1 and x2 with x1 ≥ x2, Ḡx1

(w) ≥ Ḡx2
(w) for every fixed real

number w (Definition B.1 page 640 of Talluri and van Ryzin [2005]). Also, ζx is stochastically
increasing in x if and only if for any real valued, increasing function f(·), E[f(ζx)] is increasing
in x (Proposition B.2 page 640 of Talluri and van Ryzin [2005]). Moreover, ζx is said to be
stochastically concave if for any real valued, concave function f(·), E[f(ζx)] is concave in
x (Definition B.2 page 640 of Talluri and van Ryzin [2005]). In addition, ζx is said to be
strongly stochastically concave if ζx = Ω(x, Z) where Z is a random variable independent
of x and Ω is concave in x for every value of Z (Definition B.3 page 640 of Talluri and van
Ryzin [2005]). A strongly stochastically concave random variable is stochastically concave
(Proposition B.3 page 641 of Talluri and van Ryzin [2005]).

Lemma 3.2. The random variable ζx is stochastically increasing and stochastically concave
in x.

Proof. Provided in Appendix Appendix A.1.
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For brevity, let Qt(j, x) , −hj + φ(x) + αE [Vt+1(j − ζx)] , for j ≥ 0, 0 ≤ x ≤ j, 1 ≤
t ≤ T . Recall that x̂ denotes the smallest maximizer of the single auction expected revenue
function φ(·). Lemma 3.3 below shows that we can restrict attention to lot-sizes less than or
equal to x̂ without loss of optimality in problem (5). This conclusion is important because it
allows us to focus on lot-sizes over which φ(·) is concave under inequality (7). This proves
critical in establishing that Bellman’s dynamic programming operation in (3) preserves op-
timal value function concavity — a crucial intermediate step in proving Theorem 2.1. Our
proof of Lemma 3.3 uses monotonicity of optimal value functions established in Lemma 3.1
and stochastic monotonicity of ζx from Lemma 3.2.

Lemma 3.3. For every auction t, and any inventory j ≥ 1, there exists a lot-size x∗t (j)
optimal in inventory j in problem (5) such that x∗t (j) ≤ x̂. In particular, the smallest
lot-size optimal in j ≥ 1 is not more than x̂.

Proof. Suppose lot-size x̂+ k for some integer k ≥ 1 is feasible in inventory j. We have

Qt(j,m)−Qt(j, x̂+ k) = φ(x̂)− φ(x̂+ k) + αE
[
Vt+1(j − ζx̂)

]
− αE

[
Vt+1(j − ζx̂+k)

]
≥ 0

because (i) φ(x̂) ≥ φ(x̂+k) as x̂ is a maximizer of φ(·), and (ii) E
[
Vt+1(j−ζx̂)

]
≥ E

[
Vt+1(j−

ζx̂+k)
]
as Vt+1(·) is increasing by Lemma 3.1 and ζx is stochastically increasing by Lemma

3.2. Thus, auctioning more than x̂ does not fetch any additional benefit as compared to
auctioning x̂. Consequently, there exists a lot-size x∗t (j) ≤ x̂ that solves problem (5) for
inventory j.

Since VT+1(i) = 0 for all i ≥ 0, VT+1(·) is trivially concave. Theorem 2.1 then follows by
induction from the sequence of results established below.

The proof of the first conclusion in Proposition 3.4 below uses stochastic monotonicity of
ζx from Lemma 3.2, whereas the second conclusion relies on stochastic concavity of ζx from
Lemma 3.2 and concavity of φ(·) over {0, 1, 2, . . . , x̂} implied by condition (7).

Proposition 3.4. Suppose that Vt+1(·) is concave. Suppose lot-size x1 is feasible in inventory
j in problem (5) for auction t, that is, x1 ≤ j, and let lot-size x2 be such that x2 < x1. Then

Qt(j + 1, x2)−Qt(j, x2) ≤ Qt(j + 1, x1)−Qt(j, x1), (10)

that is, Qt(·, ·) has increasing differences. Moreover, for every inventory j ≥ 0,

Qt(j, x+ 1) +Qt(j, x+ 1) ≥ Qt(j, x+ 2) +Qt(j, x), (11)

that is, Qt(j, ·) is concave over {0, 1, 2, . . . ,min{j, x̂}}.

Proof. Consider the function f(z) , Vt+1(j+1−z)−Vt+1(j−z). This function is increasing
over z ∈ {0, 1, . . . , j − 1} because Vt+1(·) is concave. Hence, because ζx is stochastically
increasing by Lemma 3.2, E[f(ζx2

)] ≤ E[f(ζx1
)] as x2 < x1. Therefore,

Qt(j + 1, x2)−Qt(j, x2)

= −hj − h+ φ(x2) + αE[Vt+1(j + 1− ζx2
)] + hj − φ(x2)− αE[Vt+1(j − ζx2

)]

= −h+ αE[f(ζx2
)] ≤ −h + αE[f(ζx1

)]

= −h+ αE[Vt+1(j + 1− ζx1
)]− αE[Vt+1(j − ζx1

)]

= −hj − h+ φ(x1) + αE[Vt+1(j + 1− ζx1
)] + hj − φ(x1)− αE[Vt+1(j − ζx1

)]

= Qt(j + 1, x1)−Qt(j, x1).
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This establishes (10).
Fix any inventory j ≥ 0. Consider the function Vt+1(j − z) and note that it is concave

over z ∈ {0, 1, . . . , j}. Thus E[Vt+1(j − ζx)] is concave over x ∈ {0, 1, . . . , j} because ζx
is stochastically concave by Lemma 3.2. Thus, because φ(·) is concave over {0, 1, 2, . . . , x̂},
Qt(j, x) = −hj+φ(x)+αE[Vt+1(j−ζx)] is also concave in x over {0, 1, 2, . . . ,min{j, x̂}}.

The next corollary establishes monotonicity of optimal lot-sizes in inventory on hand
using the increasing differences property of Qt(·, ·) from Proposition 3.4.

Corollary 3.5. Suppose that Vt+1(·) is concave. Suppose x1 is the smallest lot-size optimal
in inventory j, and x2 is the smallest lot-size optimal in inventory j + 1 in problem (5) for
auction t. Then x2 ≥ x1.

Proof. Suppose not, that is, x2 < x1. Then Qt(j, x1) > Qt(j, x2) (the inequality is strict
because x1 is the smallest lot-size optimal in j), and Qt(j + 1, x2) ≥ Qt(j + 1, x1) (the
inequality is not strict because both x1 and x2 could be optimal in j + 1). Adding the two
inequalities and rearranging terms, we get Qt(j+1, x2)−Qt(j, x2) > Qt(j+1, x1)−Qt(j, x1),
which contradicts inequality (10) established in Proposition 3.4.

Proposition 3.6 below further strengthens monotonicity of optimal lot-sizes from Corol-
lary 3.5 — when the optimal lot-size increases, it increases by one. The proof uses Corollary
3.5, concavity of Qt(j, ·) established in Proposition 3.4, and condition (7). In addition to
being an interesting structural result in itself, this Proposition later plays a critical role in the
proof of Proposition 3.9 where we show that optimal value function concavity is preserved
by Bellman’s dynamic programming operator in problem (5).

Proposition 3.6. Suppose that Vt+1(·) is concave and x is the smallest lot-size optimal in
inventory j in problem (5) for auction t. Then either x or x + 1 is the smallest lot-size
optimal in inventory j + 1 in problem (5) for auction t.

Proof. If x = j, then by Corollary 3.5, either x or x+1 must be the smallest lot-size optimal
in j + 1. So we focus on the more challenging case where x < j and thus x+ 1 is feasible in
j and x + 2 is feasible in j + 1. We first show that Qt(j + 1, x + 1) ≥ Qt(j + 1, x + k) for
all k ≥ 2 such that x+ k ≤ min{x̂, j + 1} (recall from Lemma 3.3 that in our search for the
smallest lot-size optimal in j + 1, we do not need to look beyond x̂). Toward that end, we
first demonstrate that Qt(j + 1, x+ 1) ≥ Qt(j + 1, x+ 2). For if not, then

∂Φ(x + 1) > α [Vt+1(j − x)− Vt+1(j − x− 1)] . (12)

But note that Qt(j, x) ≥ Qt(j, x + 1) as x is optimal in j and x + 1 is feasible in j and
therefore

α [Vt+1(j − x)− Vt+1(j − x− 1)] ≥ ∂Φ(x). (13)

Inequalities (12) and (13) imply that ∂Φ(x + 1) > ∂Φ(x), contradicting (7). Moreover,
Qt(j + 1, x + 1) ≥ Qt(j + 1, x + 2) and concavity of Qt(j + 1, ·) in its second argument as
in (11) from Proposition 3.4 imply that Qt(j + 1, x + 1) ≥ Qt(j + 1, x + k) for all k ≥ 2
such that x+k ≤ min{m, j+1} as required. The above discussion, in view of Corollary 3.5,
implies that either x or x+ 1 is the smallest lot-size optimal in j + 1.
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The above proposition affirms that when the optimal lot-size increases, it increases by
one; it does not however provide the location, that is, the inventory level at which this unit
jump in the optimal lot-size occurs. Inequality (14) in Corollary 3.7 below ties this loose
end.

Corollary 3.7. Suppose that Vt+1(·) is concave and x is the smallest lot-size optimal in
inventory j in problem (5) for auction t. Then the smallest optimal lot-size jumps to x+ 1
at the smallest inventory level k ≥ j + 1 for which

∂Φ(x) > α(Vt+1(k − x)− Vt+1(k − x− 1)). (14)

Proof. Proposition 3.6 implies that x remains the smallest lot-size optimal in j+1 if and only
if Qt(j+1, x) ≥ Qt(j+1, x+1), that is, if and only if ∂Φ(x) ≤ α(Vt+1(j+1−x)−Vt+1(j−x)).
If x does remain the smallest lot-size optimal in j+1, then it is the smallest lot-size optimal
in j+2 if and only if ∂Φ(x) ≤ α(Vt+1(j+2−x)−Vt+1(j+1−x)). Continuing this argument,
we see that the smallest optimal lot-size will jump to x + 1 at the smallest inventory level
k ≥ j + 1 for which the strict inequality (14) is satisfied (the left hand side in (14) does not
depend on the inventory, whereas, by concavity of Vt+1(·), the right hand side decreases as
k increases).

The next important step in the proof is to show that concavity of the optimal value
function Vt+1(·) is carried over to Ut(·) by Bellman’s dynamic programming operation in
problem (5). A simple algebraic proof does not appear possible. We therefore define a new
random variable γj = ζx+j − j = min{x+ j, N} − j for a fixed x (our notation γj suppresses
dependence of γj on x for brevity), and exploit its stochastic monotonicity and stochastic
concavity properties that we first establish in Lemma 3.8.

Lemma 3.8. The random variable γj is stochastically decreasing and stochastically concave
in j.

Proof. Provided in Appendix Appendix A.2.

The proof of the proposition below uses Lemma 3.3, Corollary 3.5, Proposition 3.6, and
concavity of φ(·) over {0, 1, 2, . . . , x̂} implied by condition (7).

Proposition 3.9. Suppose that Vt+1(·) is concave. Then Ut(·) is concave.

Proof. We want to show that

Ut(j + 1) + Ut(j + 1) ≥ Ut(j + 2) + Ut(j).

Suppose x is the smallest lot-size optimal in inventory j and y is the smallest lot-size optimal
in inventory j + 2 in problem (5) for auction t. Then by Lemma 3.3, y ≤ x̂. By Corollary
3.5, x ≤ y. By Proposition 3.6, y ≤ x+ 2. We consider three cases:

10



Case 1: j + 2 > y = x.

Ut(j + 1) + Ut(j + 1)

= Qt(j + 1, x) +Qt(j + 1, x)

= −hj − h + φ(x) + αE[Vt+1(j + 1− ζx)]− hj − h+ φ(x) + αE[Vt+1(j + 1− ζx)]

≥ −hj − 2h+ φ(x) + αE[Vt+1(j + 2− ζx)]− hj + φ(x) + αE[Vt+1(j − ζx)]

= −hj − 2h+ φ(y) + αE[Vt+1(j + 2− ζy)]− hj + φ(y) + αE[Vt+1(j − ζy)]

= Qt(j + 2, y) +Qt(j, y) = Ut(j + 2) + Ut(j),

where the inequality follows from concavity of Vt+1(·).
Case 2: j + 2 > y = x+ 1.
First note that Vt+1(j + 1 − z) − Vt+1(j − z) is increasing in z because Vt+1(·) is concave.
Therefore, E[Vt+1(j + 1 − γk)] − E[Vt+1(j − γk)] is decreasing in k as γk is stochastically
decreasing. In particular, E[Vt+1(j + 1 − (γ1))] − E[Vt+1(j − (γ1))] is bounded above by
E[Vt+1(j + 1− (γ0))]− E[Vt+1(j − (γ0))]. That is,

E[Vt+1(j + 2− ζx+1)]−E[Vt+1(j + 1− ζx+1)] ≤ E[Vt+1(j + 1− ζx)]−E[Vt+1(j − ζx)]. (15)

Then we have

Ut(j + 1) + Ut(j + 1)

≥ Qt(j + 1, x+ 1) +Qt(j + 1, x)

= −hj − h + φ(x+ 1) + αE[Vt+1(j + 1− ζx+1)]− hj − h+ φ(x) + αE[Vt+1(j + 1− ζx)].

Inequality (15) implies that this expression is bounded below by

≥ −hj + φ(x) + αE[Vt+1(j − ζx)]− hj − 2h+ φ(x+ 1) + αE[Vt+1(j + 2− ζx+1)]

= Qt(j, x) +Qt(j + 2, x+ 1) = Ut(j) + Ut(j + 2).

Case 3: j + 2 ≥ y = x+ 2.
This implies that x + 1 is optimal in j + 1. The function Vt+1(j − z) is concave in z. This
implies that E[Vt+1(j − γk)] is concave in k because γk is stochastically concave in k. In
particular,

E[Vt+1(j−(ζx+1−1))]+E[Vt+1(j−(ζx+1−1))] ≥ E[Vt+1(j−(ζx+2−2))]+E[Vt+1(j−ζx)]. (16)

Therefore, Ut(j + 1) + Ut(j + 1) can be bounded below as follows.

Ut(j + 1) + Ut(j + 1) = Qt(j + 1, x+ 1) +Qt(j + 1, x+ 1)

= −hj − h+ φ(x+ 1) + αE[Vt+1(j + 1− ζx+1)]− hj − h + φ(x+ 1) + αE[Vt+1(j + 1− ζx+1)]

≥ −hj + φ(x) + αE[Vt+1(j + 1− ζx+1)]− hj − 2h+ φ(x+ 2) + αE[Vt+1(j + 1− ζx+1)]

≥ −hj + φ(x) + αE[Vt+1(j − ζx)]− hj − 2h+ φ(x+ 2) + αE[Vt+1(j + 2− ζx+2)]

= Qt(j, x) +Qt(j + 2, x+ 2) = Ut(j) + Ut(j + 2),

where the first inequality follows from concavity of φ(·) over {0, 1, 2, . . . , x̂}, and the second
inequality from (16). This completes the proof.
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The focus thus far was on problem (5). Now we consider problem (4). We define the
function Ψt(·, ·) for convenience as follows:

Ψt(i, y) , sy + Ut(i− y), for i ≥ 0, 0 ≤ y ≤ i, and 1 ≤ t ≤ T.

The next Lemma is an intermediate step in proving Proposition 3.11.

Lemma 3.10. The optimal inventory scrapping policy in problem (4) for auction t has the
following structural properties:

1. Suppose it is optimal to scrap y units in inventory i. Then in inventory i+ 1, it is at
least as profitable to scrap y + 1 units as it is to scrap 1 ≤ z ≤ i+ 1 units.

2. Suppose Ut(·) is concave for auction t. Suppose that in some inventory i ≥ 1, scrapping
y > 0 units is at least as profitable as not scrapping any units. Then the same is true
for all inventories i′ ≥ i.

Proof. Provided in Appendix Appendix A.3.

Proposition 3.11. Suppose that Ut(·) is concave for auction t. Suppose i∗t ≥ 0 is the
smallest inventory i for which s > Ut(i + 1) − Ut(i). Then in any inventory i ≥ 1, it is
optimal to scrap (i− i∗t )

+ , max{0, i− i∗t} units. Moreover, Vt(·) is concave for auction t.

Proof. Because of the first claim in Lemma 3.10, y = 0 is optimal in all inventories i′ ≤ i∗t ,
and y = 1 is optimal in inventory i∗t + 1. Repeated application of the two claims in Lemma
3.10 then ensures that y = 2 is optimal in i∗t + 2, y = 3 is optimal in i∗t + 3, and so on, thus
proving the first claim in the proposition.

To establish concavity of Vt(·), we need to prove that Vt(i+2)− Vt(i+1) ≤ Vt(i+1)− Vt(i)
for all i ≥ 0. Consider any i ≥ 0 and the following two possibilities: (i) y = 0 is optimal in
i, and (ii) y > 0 is optimal in i. In view of the first claim in this proposition, we consider
three sub-cases under the first possibility: the first, where y = 0 is optimal in both i+1 and
i+2; the second, where y = 0 is optimal in i+1 but y = 1 is optimal in i+2; and the third,
where y = 1 is optimal in i+ 1 and y = 2 is optimal in i+ 2. In the first sub-case,

Vt(i+ 2)− Vt(i+ 1) = Ut(i+ 2)− Ut(i+ 1) ≤ Ut(i+ 1)− Ut(i) = Vt(i+ 1)− Vt(i).

In the second sub-case,

Vt(i+ 2)− Vt(i+ 1) = s+ Ut(i+ 1)− Ut(i+ 1) = s ≤ Ut(i+ 1)− Ut(i) = Vt(i+ 1)− Vt(i),

where the inequality follows because y = 0 is optimal in i+ 1. In the third sub-case,

Vt(i+ 2)− Vt(i+ 1) = 2s+ Ut(i)− [s+ Ut(i)] = s = s+ Ut(i)− Ut(i) = Vt(i+ 1)− Vt(i).

Under the second possibility, there is only one sub-case, wherein y + 1 is optimal in i + 1
and y + 2 is optimal in i+ 2. Therefore,

Vt(i+ 2)− Vt(i+ 1) = Ψt(i+ 2, y + 2)−Ψt(i+ 1, y + 1)

= 2s+ sy + Ut(i− y)− [s+ sy + Ut(i− y)] = s,
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which in fact equals Vt(i+ 1)− Vt(i) because

Vt(i+ 1)− Vt(i) = Ψt(i+ 1, y + 1)−Ψt(i, y)

= s+ sy + Ut(i− y)− [sy + Ut(i− y)] = s.

This completes the proof as all possible cases have now been covered.

The string of results above affirms by induction that Theorem 2.1 holds.

3.1. Examples

We now analyze the three most common mechanisms studied in the literature and used
in practice: multi-unit Vickrey auctions (MVA), multi-unit Dutch auctions (MDA), and
Yankee auctions. In the sequel, ψ(k;n) denotes the expected value of the kth largest of n
iid bid random variables B with distribution F (·) for k = 1, 2, . . . , n.

In an MVA, when the number of participating bidders n is more than the lot-size x, the
x bidders with the top x bids win one item each, and the clearing-price equals the highest
losing bid. Therefore, the expected revenue is given by

π(x;n) = xψ(x+ 1;n), for n > x. (17)

In an MDA, when the number of participating bidders n is strictly more than the lot-size
x, the x bidders with the top x bids win one item each, and the clearing-price equals the
lowest winning bid. Therefore, the expected revenue is given by

π(x;n) = xψ(x;n), for n > x. (18)

In a Yankee auction, when the number of participating bidders n is strictly more than
the lot-size x, the x bidders with the top x bids win one item each by paying their own bids.
Therefore, the expected revenue is defined as

π(x;n) =

x∑

k=1

ψ(k;n), for n > x. (19)

Analytical literature in auctions uses uniform bid distributions (see Pinker et al. [2010]
for instance), and we follow this trend in our examples. Specifically, we use B ∼ U[L,H ] for
some H > L. Discrete-uniform (denoted N ∼ DU[0,M ] for a positive integer x̂) and Poisson
(denoted N ∼ Poisson(λ) for some λ > 0) distributions are employed to model stochastic
demand.

Proposition 3.12. The second order condition (7) in Theorem 2.1 holds in MVA, MDA,
and Yankee auctions with B ∼ U[L,H ] and N ∼ DU[0,M ] or N ∼ Poisson(λ).

Proof. Included in Appendix Appendix A.4.

Remark 3.13. In Proposition 3.12, we by no means intend to claim that N and B are the
same irrespective of the mechanism. Indeed, the families and/or parameters of the distribu-
tions of these random variables will likely be sensitive to the auction mechanism employed.
The proposition simply lists some example combinations of mechanisms, stochastic demand
distributions, and bid distributions for which condition (7) holds.
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4. Numerical experiments using real data

We collected data for 126 online auctions of a phone. It contained a total of 1158 bids
ranging from $1 to $416. The number of bidders in one auction varied between 4 and 19.
Such data typically contain some “non-serious” bids [Bapna et al. 2004; Goes et al. 2010].
We considered bids lower than 5% of the maximum to be non-serious. After removing these
bids and the corresponding bidders from the data, we obtained the histograms shown in
Figure 1. We fitted a Weibull distribution to the bids and a Poisson distribution3 to the
number of bidders using MATLABr, which implements the maximum likelihood method
for parameter estimation. Weibull was selected for its versatility in modeling uncertain
quantities with non-negative values without a known a priori upper bound [Rinne 2008],
and based on the shape of our bid histogram. It also provides the added benefit that an
explicit formula for its expected order statistic is available. The use of Poisson random
variables for modeling bidder demand is common in the empirical literature on auctions
[Pinker et al. 2003; Vakrat and Seidmann 2000].
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Figure 1: Histograms and fitted distributions for online auction data. (a) Bids, and (b) Number of partici-
pating bidders.

Our auction data were collected from a web site that often implements MDA and hence
the computations below were performed using this mechanism. We obtained the expected
revenue π(·; ·) through formula (18). In (18), the expected value ψ(x;n) of the xth largest
of n iid bids from the Weibull distribution was obtained using formula 3.2.5 from Harter
and Balakrishnan [1996] (also see Lieblein [1955]). This π(·; ·) was in turn employed to
compute the single-auction expected revenue function φ(·) using (1), with L = 0 as the bid
distribution is assumed to be Weibull. The resulting expected revenue function is shown in
Figure 2. We reiterate that, as hinted in Section 2, this function is not concave. We confirmed
numerically that this function however did satisfy our second order sufficient condition (7).

3In our actual calculations below, we truncated this Poisson distribution at 150% of the largest number
of participating bidders observed empirically. Such truncation is common in dynamic programming [Patrick
et al. 2008] as it reduces calculations to finite sums while ignoring a negligible probability mass.
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Consequently, Theorem 2.1 holds. This structural result offers significant computational
savings4 while conducting numerical experiments for sequential auctions as, for example,
it assures that it suffices to compare the economic values of at most two lot-sizes for each
inventory level in each auction in Bellman’s backward recursion.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Lot size x

S
in

gl
e−

au
ct

io
n 

ex
pe

ct
ed

 r
ev

en
ue

 

 

Figure 2: Single-auction expected revenue function φ(·) obtained from our online auction data set.

We include here numerical results and sensitivity analyses for sequential auctions using
the data above. We set initial inventory I = 50, discount factor α = 0.99, and the number of
auctions T = 10; and as the base case, unit inventory holding cost h = 5, and salvage value
s = 20. Figure 3 illustrates the corresponding optimal lot-size policy, the optimal scrapping
policy, and the optimal value function, all consistent in structure with the analytical results
in Section 3.
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Figure 3: The optimal lot-sizing and scrapping policies and the optimal value function obtained from our
online auction data; I = 50, α = 0.99, T = 10, h = 5, and s = 20. (a) Optimal lot-size policy, (b) Optimal
scrapping policy, and (c) Optimal value function.

For our sensitivity analyses, we experimented with different values of h and s. When
we varied one parameter, the other parameter was set to its base case value given above.
Figure 4 shows the optimal lot-sizes for different holding costs h. For smaller values of h, the

4For comparison, we also computed an optimal policy without exploiting our structural result, and indeed
confirmed that the two policies matched.
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seller holds the inventory for a longer time, i.e., auctions less in earlier auctions. Figure 5
shows the optimal lot-sizes for different salvage values s. As s increases, the optimal lot-sizes
become smaller because the seller scraps more items.
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Figure 4: Optimal lot-sizing policy for different values of unit inventory holding cost h. (a) h = 1, (b) h = 5,
and (c) h = 10.
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Figure 5: Optimal lot-sizing policy for different unit salvage values s. (a) s = 10, (b) s = 20, and (c) s = 50.

5. Discussion of assumptions, limitations, and extensions

We presented a dynamic programming model and characterized the structure of inventory
scrapping and lot-sizing policies for sequential online auctions of retail goods. This model
incorporates stochastic demand unlike the two existing papers in this area. This is relevant
in practice because the number of participating bidders is not known a priori in online
auctions, and the seller must plan for this uncertainty [Pinker et al. 2003]. In addition,
our model allows for any auction mechanism and any bid distribution. This is helpful as
the online setting offers tremendous flexibility in conducting and participating in auctions
[Bapna et al. 2002, 2008; Pinker et al. 2003; Vakrat and Seidmann 2000], and our work
provides a unified framework for investigating tradeoffs associated with lot-size decisions in
the resulting diverse market scenarios. Some limitations and potential extensions of our
model are discussed below.

A limitation of our model, as in other analytical works on online auctions [Pinker et al.
2010; Tripathi et al. 2009; van Ryzin and Vulcano 2004; Vulcano et al. 2002], is the assump-
tion that bidders across auctions are independent. This excludes repeat bidders. Papers
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reviewed in the extensive survey of Pinker et al. [2003] also make the independence assump-
tion. Pinker et al. [2003] comment that the data they gathered in Vakrat and Seidmann
[2000] for hundreds of online auctions did support this assumption. Pinker et al. [2003],
Pinker et al. [2010], Vulcano et al. [2002], and van Ryzin and Vulcano [2004] suggest, us-
ing slightly different arguments, that this assumption is reasonable if bidders do not “wait
around” to bid in future auctions and if unsuccessful bidders are impatient and simply leave
to buy elsewhere rather than participating in later auctions. One way to include repeat
bidders is to assume that each bidder who loses in one auction comes back for the next
auction with a certain probability, or more generally, the number of bidders across auctions
evolves according to a Markov chain. Unfortunately, behavior of repeat bidders in later
auctions, and in particular, the evolution of the corresponding bid distributions is not yet
well-understood [Goes et al. 2010; Pinker et al. 2010]. This makes the corresponding lot-size
decision problem difficult to model and solve, and we did not purse it here.

The model and the structural results in this paper do in fact allow for bid distributions
F (·) that are parameterized by lot-size x, even though our notation suppresses this feature
for simplicity. This captures bidder sensitivity to disclosed lot-sizes, for instance, where
bidders shade their bids in response to higher lot-sizes [Goes et al. 2010]. In practice, it is
possible that the lot-size also affects the number of participating bidders. This would call
for a parameterization of the pmf g(·) of N by x. Our model can easily incorporate this
and optimal policies can then be numerically computed; however, the structural analysis in
Section 3 does not apply to this extension.

As stated in Section 2, the seller could require a minimum bid of Λ > L. This has a left-
truncating effect on the support B of the bid distribution F (·) hence bumping clearing prices
up, and also increases the revenue generated when an auction fails due to insufficient demand
because the seller then sells items for amount Λ. On the flip side however, such a minimum
bid requirement filters out some bidders thus reducing demand. This tradeoff indicates that
the seller may benefit from optimizing the minimum bid requirement Λ. Unfortunately,
simultaneous dynamic optimization of multiple design variables such as scrapped inventory,
lot-size, and minimum bid, and especially a structural analysis of the corresponding optimal
policies, will be difficult in a setting as general as that in Section 2. It may be viable under
more restrictive assumptions and should provide an interesting avenue for future research.

To simplify notation, in particular, to avoid having to put a subscript t on all our random
variables and other data parameters, we assumed in Section 2 that problem data do not
change over auctions. However, Theorem 2.1 naturally extends even when this assumption
is relaxed. In that non-stationary case, it suffices to simply require that condition (7) holds
for the data in each auction. This follows by taking a closer look at our proofs to note that
condition (7) only includes quantities that correspond to one auction and in particular that
do not “mix” functions from different auctions.

Following Pinker et al. [2010] and Tripathi et al. [2009], our model assumes that all
auctions are of equal duration. Again, in our model, this is purely for the sake of notational
simplicity. If durations differ across auctions, the pmf g(·) of the number of bidders and
perhaps the bid distribution F (·) will vary across indices t. Moreover, the cost of carrying one
unit of inventory over the tth auction will depend on the duration of that auction. In fact, this
variable-durations situation is one concrete example of how non-stationary data can arise,
and consequently our results continue to hold there as explained in the above paragraph.
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More generally, as Pinker et al. [2003] suggest, but do not themselves pursue, auction-
duration for each auction could be a dynamic decision variable while designing a sequence
of auctions. However, as stated earlier, a rigorous structural analysis of a model in which
multiple design variables (duration, lot-size, scrapping) are dynamically optimized appears
intractable in our general setting. In fact, this was not achieved even in the more restrictive,
and significantly simpler settings of Pinker et al. [2010] and Tripathi et al. [2009]; and to the
best of our knowledge, has never been successfully accomplished (see Etzion et al. [2006];
Odegaard and Puterman [2006]; Segev et al. [2001]; Vakrat and Seidmann [2000]; Vulcano
et al. [2002]; van Ryzin and Vulcano [2004]). Part of the difficulty in meaningfully optimizing
auction-durations is that, in sequential retail auctions, there is currently little empirical
evidence available on exactly how auction-duration affects the pmf of the number of bidders
participating in each auction and especially their bid distributions. Our model thus shares
the limitation with existing literature on sequential auctions in that it does not dynamically
optimize auction-durations. In the future, it may be possible, perhaps under more restrictive
assumptions, to extend our model and numerically optimize auction-durations in sequential
auctions dynamically together with the other decision variables considered in this paper.
The numerical results presented in Vakrat and Seidmann [2000] and Etzion et al. [2006] on
the duration of a single auction may provide a starting point for such an effort.

The seller can increase revenue by incorporating information acquired in early auctions
into lot-size decisions in later auctions through Bayesian updates [Pinker et al. 2010]. An ex-
tension of our model that implements such a learning framework to update bid distributions
as well as the pmf of stochastic demand may be possible.

Finally, the model in Section 2 assumes that the seller conducts a pre-determined, finite
number of sequential auctions. Its infinite-horizon counterpart circumvents the need to pre-
determine the number of auctions — the sequence of auctions terminates naturally when all
inventory is depleted. In this sense, the infinite-horizon model is essentially an indefinite-
horizon model. Bellman’s equations for this model are given by

V (i) = max
0≤y≤i

0≤x≤i−y

[

sy − h(i− y) + φ(x) + αE
[
V (i− y − ζx)

]]

, for i ≥ 1, (20)

where V (0) = 0. Now consider the following value iteration scheme that starts with an
initial guess V 0(i) for all i ≥ 1, for the value function, and in each iteration k ≥ 1, updates
the value function from V k−1(·) to V k(·):

V k(i) = max
0≤y≤i

0≤x≤i−y

[

sy − h(i− y) + φ(x) + αE
[
V k−1(i− y − ζx)

]]

, for i ≥ 1, (21)

with V k(0) = 0 for all k ≥ 0. It is well-known that such a value iteration scheme converges
pointwise to the optimal value function, that is, lim

k→∞
V k(i) = V (i) for all i ≥ 0 [Puterman

1994]. By using arguments identical to Section 3 we can show that if V k−1(·) is concave
then so is V k(·). Moreover, the pointwise limit preserves concavity. By choosing a concave
initial guess function V 0(·), these ideas can be used to prove that Theorem 2.1 extends to
this infinite-horizon case.
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Appendix A. Proofs of technical results

Proofs of technical results in the text are provided here.

Appendix A.1. Proof of Lemma 3.2
Let lot-sizes x1 and x2 be such that x1 ≥ x2.

Ḡx2
(w) = P (ζx2

> w) =







1 for w < 0

P (N > bwc) for 0 ≤ w < x2

0 for w ≥ x2,

and

Ḡx1
(w) = P (ζx1

> w) =







1 for w < 0

P (N > bwc) for 0 ≤ w < x2

P (N > bwc) for x2 ≤ w < x1

0 for w ≥ x1.

Thus,

Ḡx1
(w) =







Ḡx2
(w) for w < x2

P (N > bwc) ≥ 0 = Ḡx2
(w) for x2 ≤ w < x1

Ḡx2
(w) for w ≥ x1,

and hence Ḡx1
(w) ≥ Ḡx2

(w) for all real numbers w. Thus ζx is stochastically increasing.
Observe that min{x,N} is concave in x for every fixed N . Therefore, ζx is strongly

stochastically concave and hence stochastically concave.

Appendix A.2. Proof of Lemma 3.8
Fix lot size x and consider j1 and j2 such that j1 ≥ j2. Let Cj(w) , P (γj ≤ w) and

C̄j(w) , P (γj > w).

C̄j2(w) = P (γj2 > w) =







1 for w < 0

P (N > j2 + bwc) for 0 ≤ w < x

0 for w ≥ x,

and

C̄j1(w) = P (γj1 > w) =







1 for w < 0

P (N > j1 + bwc) for 0 ≤ w < x

0 for w ≥ x,

Thus,

C̄j1(w) =







C̄j2(w) for w < 0

P (N > j1 + bwc) ≤ P (N > j2 + bwc) = C̄j2(w) for 0 ≤ w < x

C̄j2(w) for w ≥ x,

and hence C̄j1(w) ≤ C̄j2(w) for all real numbers w. Thus γj is stochastically decreasing.
min{x + j, N} − j is concave in j for every fixed value of N . Therefore, γj is strongly

stochastically concave and hence stochastically concave.
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Appendix A.3. Proof of Lemma 3.10

A short proof is provided below for each claim.

1. Because y is optimal in inventory i, Ψt(i, y) ≥ Ψt(i, z) for all 0 ≤ z ≤ i. Therefore,
Ψt(i+ 1, y + 1) = s+ sy + U(i− y) = s+Ψt(i, y) ≥ s+Ψt(i, z) = Ψt(i+ 1, z + 1) for
all 0 ≤ z ≤ i. That is, Ψt(i+ 1, y + 1) ≥ Ψt(i+ 1, z) for all 1 ≤ z ≤ i+ 1.

2. Using sy + Ut(i− y) ≥ Ut(i) along with concavity of Ut(·) we have, for all i′ ≥ i,

Ψt(i
′, y) = sy + Ut(i

′ − y) ≥ Ut(i)− Ut(i− y) + Ut(i
′ − y) ≥ Ut(i

′) = Ψt(i
′, 0).

Appendix A.4. Proof of Proposition 3.12

To simplify notation, we set L = 0 and H = 1, and hence work with B ∼ U[0, 1]. The
algebra for other values of L and H is identical. The expected value of the kth largest of n
iid bids is then given by

ψ(k;n) =
(

1−
k

n+ 1

)

, for k = 1, 2, . . . , n. (A.1)

We include a complete proof for MVA. The proofs for MDA and Yankee are similar, and
hence are omitted.

For MVA, substituting formula (A.1) into Equation (17) we get

π(x;n) = x
(

1−
x+ 1

n+ 1

)

for n ≥ x+ 1. (A.2)

The single-auction expected revenue in (1) then simplifies to

φ(x) = x

∞∑

n=x+1

g(n)
(

1−
x+ 1

n+ 1

)

. (A.3)

Appendix A.4.1. N ∼ DU[0,M ]

In this case, g(n) = 1/(M + 1) for n = 0, 1, . . . ,M , and g(n) = 0 for n ≥ M . Equation
(A.3) then changes to

φ(x) =
x

M + 1

M∑

n=x+1

(

1−
x+ 1

n + 1

)

, for 0 ≤ x ≤M. (A.4)

Substituting (A.4) in definition (6), after some algebraic simplification, we get

∂Φ(x) = 1−
2(x+ 1)

M − x

M∑

n=x+1

1

n+ 1
, for 0 ≤ x ≤M − 1. (A.5)

Therefore,

∂2Φ(x) = ∂Φ(x+1)−∂Φ(x) =
2(x+ 1)

M − x

M∑

n=x+1

1

n+ 1
−

2(x+ 2)

M − x− 1

M∑

n=x+2

1

n+ 1
, for 0 ≤ x ≤ x̂−2.
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Let H(n) = 1 + 1/2 + . . .+ 1/n denote the nth harmonic number, with the convention that
H(0) = 0. Then, for 0 ≤ x ≤ x̂− 2,

∂2Φ(x) =
2(x+ 1)(H(M + 1)−H(x+ 1))

M − x
−

2(x+ 2)(H(M + 1)−H(x+ 2))

M − x− 1
. (A.6)

Thus, ∂2Φ(x) ≤ 0 if and only if (x+ 1)(M − x− 1)(H(M + 1)−H(x+ 1))− (x + 2)(M −
x)(H(M + 1)−H(x+ 2)) ≤ 0. After simplifying, the left hand side equals (M − x)− (M +
1)(H(M + 1)−H(x + 1)), which is at most zero because H(·) is a concave function whose
smallest marginal value over {0, 1, 2, . . . ,M} equals 1/(M + 1).

Appendix A.4.2. N ∼ Poisson(λ)

In this case, g(n) = e−λλn

n!
for n ≥ 0. Equation (A.3) then changes to

φ(x) = x

∞∑

n=x+1

e−λλn

n!

(

1−
x+ 1

n+ 1

)

, for x ≥ 0. (A.7)

This can be more compactly written as

φ(x) = x(1−G(x))−
x(x+ 1)(1−G(x+ 1))

λ
, for x ≥ 0, (A.8)

where G(·) denotes the distribution function of Poisson(λ). Then ∆φ(x) simplifies to

∆φ(x) =
2(x+ 1)g(x+ 1)

λ
+ (1−G(x))−

2(x+ 1)(1−G(x))

λ
, (A.9)

and hence

∂Φ(x) =
∆φ(x)

1−G(x)
=

2(x+ 1)g(x+ 1)

λ(1−G(x))
+ 1−

2(x+ 1)

λ
. (A.10)

Note that the pmf g(·) of a Poisson(λ) random variable satisfies g(x) = (x+1)g(x+1)
λ

. Therefore,

∂Φ(x) =
2g(x)

(1−G(x))
+ 1−

2

λ
−

2x

λ
,

and hence,

∂2Φ(x) = ∂Φ(x + 1)− ∂Φ(x) =
2g(x+ 1)

(1−G(x+ 1))
−

2g(x)

(1−G(x))
−

2

λ
. (A.11)

The ratio ρ(x) , g(x)/(1− G(x)) is in fact the (generalized) hazard rate of the Poisson(λ)

random variable N , and therefore, ∆ρ(x) , g(x+1)
(1−G(x+1))

− g(x)
(1−G(x))

is its first difference. We

claim that the first difference ∆ρ(x) of the (generalized) hazard rate ρ(x) of a Poisson(λ)
random variable is at most 1/λ for all x. To prove this, we need to show that

LHS ,
λg(x+ 1)

1−G(x+ 1)
−

λg(x)

1−G(x)
≤ 1. (A.12)
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We have,

LHS =
λ e−λλx+1

(x+1)!

e−λλx+2

(x+2)!
+ e−λλx+3

(x+3)!
+ . . .

−
λ e−λλx

(x)!

e−λλx+1

(x+1)!
+ e−λλx+2

(x+2)!
+ . . .

=
1

1
x+2

+ λ
(x+2)(x+3)

+ λ2

(x+2)(x+3)(x+4)
+ . . .

−
1

1
x+1

+ λ
(x+1)(x+2)

+ . . .

=
1

q(x+ 1)
−

1

q(x)
=
q(x)− q(x+ 1)

q(x)q(x+ 1)
, (A.13)

with q(x) , 1
x+1

+ λ
(x+1)(x+2)

+ λ2

(x+1)(x+2)(x+3)
+ . . .. The numerator in (A.13) is

LHSnum , q(x)− q(x+ 1)

=

(
1

x+ 1
−

1

x+ 2

)

+ λ

(
1

(x+ 1)(x+ 2)
−

1

(x+ 2)(x+ 3)

)

+ . . .

=
1

(x+ 1)(x+ 2)
+

2λ

(x+ 1)(x+ 2)(x+ 3)
+

3λ2

(x+ 1) . . . (x+ 4)
+ . . .

The denominator in (A.13) is

LHSden , q(x)q(x+ 1)

=
1

(x+ 1)(x+ 2)
+

λ

(x+ 1)(x+ 2)(x+ 3)
+

λ2

(x+ 1)(x+ 2)(x+ 3)(x+ 4)
+ . . .

+
λ

(x+ 1)(x+ 2)(x+ 2)
+

λ2

(x+ 1)(x+ 2)(x+ 2)(x+ 3)
+ . . .

+
λ2

(x+ 1)(x+ 2)(x+ 3)(x+ 2)
+ . . . ,

which is bounded below by 1
(x+1)(x+2)

+ 2λ
(x+1)(x+2)(x+3)

+ 3λ2

(x+1)(x+2)(x+3)(x+4)
+ . . . = LHSnum.

Therefore LHS = LHSnum/LHSden ≤ 1 as required in (A.12). In view of Equation (A.11),
this property implies that condition (7) holds.
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