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Abstract

Minimum cost flow problems on infinite networks arise, for example, in infinite-horizon se-
quential decision problems such as production planning. Strong duality for these problems was
recently established for linear costs using an infinite-dimensional Simplex algorithm. Here, we
use a different approach to derive duality results for convex costs. We formulate the primal
and dual problems in appropriately paired sequence spaces such that weak duality and comple-
mentary slackness can be established using finite-dimensional proof techniques. We then prove,
using a planning horizon proof technique, that the absence of a duality gap between carefully
constructed finite-dimensional truncations of the primal problem and their duals is preserved
in the limit. We then establish that strong duality holds when optimal solutions to the finite-
dimensional duals are bounded. These theoretical results are illustrated via an infinite-horizon
shortest path problem. We also extend our results to infinite hypernetworks and apply this
generalization to an infinite-horizon stochastic shortest path problem.

1 Introduction

We study a class of convex minimum cost flow problems in networks with a countably infinite num-
ber of nodes and a countably infinite number of arcs. Prototypical applications of such minimum
cost flow problems arise in infinite-horizon sequential decision-making [13, 32, 36, 37]. When flow
costs are linear, these mathematical programs become a special case of countably infinite linear
programs (CILPs). CILP theory from [33, 34] was thus applied to establish weak duality and com-
plementary slackness, and a Simplex algorithm was developed and employed to establish strong
duality for these linear problems under integer data by Sharkey and Romeijn [36]. Similar duality
results are not available for the more general case of convex costs. We next outline the difficulties
in obtaining duality results for minimum cost flow problems on countably infinite networks and
then summarize how we circumvent these hurdles in this paper.

First recall that one standard approach for establishing strong duality in minimum cost flow
problems in finite networks with linear costs is to show that the network Simplex method produces
a pair of feasible complementary (and hence optimal) solutions with identical objective function
values in the primal and the dual problems (see Proposition 5.8 in [5]). Extension of this Simplex
algorithm to countably infinite networks with linear costs is far from straightforward. This was
recently achieved by Sharkey and Romeijn [36]. This Simplex method uses a basic feasible solution
characterization of extreme points, which relies on the assumption that the problem data are
integer. It is known that if the data are not integer then there may exist extreme points that
are not basic feasible solutions [12, 32]. Consequently, there is currently no Simplex method and
hence no known strong duality results for countably infinite minimum cost network flow problems
with linear costs and noninteger data. Sharkey and Romeijn also discussed the difficulties they
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encountered in applying transversality conditions that were known, at the time, to be sufficient for
strong duality for more general CILPs [33, 34].

The Simplex-based strong duality proof for finite networks with linear costs does not generalize
to finite networks with convex costs (see Section 9.3 in [5]). In fact, strong duality does not
hold, in general, in finite networks with convex costs (see the counterexample in Figure 9.4 in [5]).
Fortunately, there is a remarkable and celebrated result, which establishes the absence of a duality
gap in these problems (see Proposition 9.4 in [5]). Briefly, this result states that if either the primal
or the dual problem is feasible, then there is no duality gap. This result needs a sophisticated proof
that was developed by Minty [26] and Rockafellar [29, 30, 31]. For instance, Rockafellar’s proof
is based on a conceptual algorithm that he called the fortified descent algorithm. An extension of
this algorithm and hence the corresponding proof to countably infinite networks seems difficult if
not impossible. For finite networks, there is a weaker result, which states that if the arc flows are
bounded then there is no duality gap (See Exercise 9.1 in [5]). The proof of this result is perhaps
simpler, but relies on the feasible differential theorem from Minty [26]. Again, an extension of this
theorem to countably infinite networks is not available.

One may be tempted to apply interior point conditions that are known to be sufficient for a zero
duality gap in infinite-dimensional convex programs formulated in abstract vector spaces (see, for
example, Theorem 3.11.2 in [28]). However, Martin et al. [25] have recently noted a fundamental
hurdle in concretely applying such conditions. They formalized this using the concept of a core
point, which is an algebraic counterpart of the topological notion of an interior point. They called
this hurdle the Slater conundrum and summarized it informally as “on the one hand, existence of
a core point ensures a zero duality gap (a desirable property), but on the other hand, existence of
a core point implies the existence of singular dual functionals (an undesirable property).” Singular
dual functionals are difficult to characterize and interpret, and in particular, preclude a price inter-
pretation of dual variables that has been central to the importance of duality theory in Operations
Research and Economics. For instance, in the case of CILPs, the Slater conundrum means that the
dual problem cannot, in general, be written using the transpose of the primal constraint matrix if
one intends to use an interior point sufficient condition (see Example 1.2 in [25]).

An approach to circumvent the Slater conundrum in CILPs was recently proposed in [10]. The
idea is to first embed the primal and dual variables in appropriately paired sequence spaces, in the
spirit of Anderson and Nash [2], so that weak duality and complementary slackness are immediate;
and then to revert to the so-called planning horizon method, as in [15, 17, 18, 19, 33, 34], to
establish strong duality. The planning horizon method attempts to show that finite-dimensional
strong duality is inherited in the limit by the infinite-dimensional problems; importantly, it avoids
any reference to interior or core point conditions. This limiting argument derives a convergent
subsequence of pairs of infinite-dimensional solutions to the primal and the dual problems from a
sequence of pairs of optimal solutions to finite-dimensional primal-dual truncations of the original
problems. It then shows that the limit of this subsequence is feasible and complementary in the
original problems to conclude strong duality. A similar hybrid approach is currently not available
for countably infinite convex programs or even for countably infinite separable convex programs.
Consequently, duality results for convex minimum cost flow problems on countably infinite networks
cannot be recovered as a special case of these problems. We therefore develop such results here by
exploiting special structure as described next.

1.1 Our contributions and paper organization

We formally introduce our network flow problem and embed the dual prices in an appropriate
sequence space in Section 2 (see our hypotheses H1, H2, and H3 there). We then define the
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Lagrangian function. Specifically, our formulation ensures that three key properties hold: (i) the
primal objective function is well-defined, finite, and continuous (see our proof of Lemma 2.1); (ii) the
Lagrangian function is well-defined, finite, and continuous in flow for each fixed price (Lemmas 2.3
and 2.4); and (iii) the Lagrangian function can be equivalently rewritten in a form that is additively
separable over arcs (Lemmas 2.3, 3.3, and 3.4). The dual problem is then formulated at the end of
that section. In Section 3, we use the above properties of the Lagrangian function and hence of the
dual problem to establish weak duality (Proposition 3.1) and complementary slackness (Proposition
3.9). As a direct consequence of our choice of hypotheses H1, H2, and H3 and of the properties of the
Lagrangian function, we are able to replicate proofs of weak duality and complementary slackness
from the theory of finite networks. In Section 4, we develop our planning horizon approach to prove
a zero duality gap result. We begin that section by recalling a simple construction from [36] that
allows us to view the countably infinite network as organized into layers indexed by positive integers
n. We then introduce an n-layer truncation of our original network flow problem; this truncation
includes a new, artificial node that absorbs any excess flow from or pumps any flow deficit into
the truncated network. This artificial node enables us to prove that a truncation of any feasible
solution to the original problem is feasible to the truncated problem. Ultimately, this helps in our
proof of value convergence (Proposition 4.3): optimal values of the n-layer truncations converge to
the optimal value of the original problem as n→∞. We then write the Lagrangian function for the
n-layer network flow problem and prove that it is possible to set the dual price of the artificial node
to zero without affecting the Lagrangian value. This allows us to rewrite this Lagrangian function
in a manner such that the optimal value of the finite-dimensional dual problem is a lower bound on
the optimal value of the original problem. This provides a crucial link between finite-dimensional
zero duality gaps, value convergence, and infinite-dimensional weak duality that is needed in our
proof that the absence of a duality gap is preserved in the limit (Theorem 4.6). As a corollary
of our primal value convergence and zero duality gap results, we establish dual value convergence
as well (Corollary 4.7). We then turn to strong duality in Section 5. We prove that when dual
variables in the finite-dimensional truncations are bounded independently of the truncation’s size,
strong duality in the finite-dimensional problems is preserved in the limit. As in existing work on
CILPs, our proof derives a convergent subsequence of optimal solutions to the finite-dimensional
primal-dual pairs, and shows that the limit of these pairs is feasible and complementary in the
original, infinite-dimensional problems. We illustrate our theoretical results on an infinite-horizon
shortest path problem in Section 6. We extend these results to countably infinite hypernetworks
in Section 7. To achieve this, we make two observations: a countably infinite hypernetwork can
also be arranged in layers (Section 7.3), and a finite-layer truncation of the flow problem can be
seen as a finite-dimensional monotropic program. Our zero duality gap (Theorem 7.7) and strong
duality (Theorem 7.8) results establish that duality properties from finite-dimensional monotropic
programs are inherited in the limit. We apply this theory to an infinite-horizon stochastic shortest
path problem.

2 Problem formulation

We use the symbol , to define new mathematical expressions and notations. The symbol # will
denote set cardinalities. Let N denote the countable set of nodes. An arc from node i ∈ N to
node j ∈ N is denoted by the ordered tuple (i, j); let A denote the countable set of all such arcs.
We assume the standard regularity condition that each node has finite in- and out-degree (see
[32, 36]). The resulting infinite directed network is denoted by G , (N ,A). A real number bi,
called source, is assigned to each node i ∈ N . If bi > 0, node i is called a supply node and a

3



net flow of bi needs to be pushed out from this node; if bi = 0, node i is called a transshipment
node; finally, if bi < 0, node i is called a demand node and a net flow of −bi needs to be delivered
to this node. The largest amount of flow that can be carried through arc (i, j) ∈ A is denoted
by 0 ≤ uij < ∞; these are called flow capacities. We will use u , {uij}(i,j)∈A to denote the

sequence of capacities uij and U ,
∏

(i,j)∈A
[0, uij ] to denote the Cartesian product of the intervals

[0, uij ] over arcs in A. The assumption of finite flow capacities is standard in the literature on
minimum cost flow problems in countably infinite networks (see [32, 36]). More generally, a primal
variable-boundedness assumption is either implicitly or explicitly made in essentially all existing
results on countably infinite mathematical programs [10, 11, 14, 33, 34]. This assumption can often
be shown to hold either without loss of feasibility as in our shortest path problem in Section 6 or
without loss of optimality. Arc flows are denoted by xij , for (i, j) ∈ A. For each arc (i, j) ∈ A, let
cij : [0, uij ] → < be a real-valued, continuous, and convex function. The cost of carrying a flow of
xij through arc (i, j) ∈ A equals cij(xij). We make the natural assumptions that cij(0) = 0 and
flow costs are nondecreasing over [0, uij ]. The former ensures that a zero flow costs nothing and
the latter means that larger flows are at least as expensive as smaller ones.

We will use <#A to denote the set of all sequences x , {xij}(i,j)∈A of real numbers indexed by
the arcs in A. We assume that

H1. the series
∑

(i,j)∈A
cij(uij) of nonnegative terms is finite.

Hypothesis H1 was inspired by a similar assumption in recent work on duality in CILPs [10]. This
type of hypotheses are standard in the literature on countably infinite mathematical programs as
they ensure that the objective function in the primal problem is well-defined and finite ([11, 35,
36]). The goal is to find a flow x ∈ <#A that satisfies the supply, demand, and transshipment
requirements at all nodes; abides by the arc flow capacities; and achieves this at minimum total
cost. This minimum cost network flow problem can be formulated as

(P ) V , inf C(x) ,
∑

(i,j)∈A

cij(xij) (1)

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = bi, ∀i ∈ N , (2)

xij ≤ uij , ∀(i, j) ∈ A, (3)

xij ≥ 0, ∀(i, j) ∈ A, (4)

x ∈ <#A. (5)

In this paper, we use the product topology of componentwise convergence on <#A. Thus, a
sequence xn ∈ <#A converges to a limit x̄ ∈ <#A if every component xnij of this sequence converges,
as a sequence of real numbers, to the corresponding component x̄ij of x̄. This topology, being a
countable product of metric spaces <, is metrizable (see Theorem 3.36 on page 89 of [1]). Thus,
the notions of compactness and sequential compactness coincide (see Theorem 3.28 on page 86 of
[1]). We use F ⊂ <#A to denote the (possibly empty) feasible region of (P ).

Lemma 2.1. If (P ) has a feasible solution, then it has an optimal solution.

Proof. The feasible region F of (P ) is a closed subset (because the linear functions on the left
hand sides of the flow balance constraints (2) are continuous) of the product of intervals U . By
Tychonoff’s theorem (see Theorem 2.61 on page 52 of [1]), U is compact in the product topology on
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<#A. Therefore, the feasible region F is also compact. Moreover, the objective function C(x) in (P )
is continuous over U . To establish this, we prove that the series C(x) =

∑
(i,j)∈A

cij(xij) is uniformly

convergent over U and then apply Theorem 9.7 in [3] to conclude continuity. To establish uniform
convergence, we simply apply the Weierstrass test [3] to H1 after noting that cij are nonnegative
and nondecreasing. The result then follows by Corollary 2.35 in [1], which implies that a continuous
function attains its minimum over a nonempty compact set.

We now choose a linear subspace to embed dual variables. The idea is to associate a real-valued
dual (price) variable yi with the flow balance constraint (2) for node i ∈ N . To do this such that
the resulting pair of primal-dual problems behaves essentially exactly like its finite-dimensional
counterpart, we put some restrictions on the subspace of dual variables. We let <#N denote the
set of all sequences y , {yi}i∈N of real numbers indexed by the nodes in N . Moreover, let Y be
the subset of <#N that includes all such sequences y for which

H2. the series B(y) ,
∑
i∈N
|bi||yi| of nonnegative terms is finite; and

H3. the series
∑
i∈N
|yi|
( ∑
{j|(i,j)∈A}

|uij |+
∑

{j|(j,i)∈A}
|uji|

)
of nonnegative terms is also finite.

Again, hypotheses H2 and H3 were inspired by similar assumptions in recent work on duality in
CILPs [10]. Hypothesis H2 ensures that a particular infinite series in the Lagrangian function that
we later define to write our dual problem converges. Hypothesis H3 plays the role of a transversality
condition that Romeijn et al. [33, 34] employed in their work on duality in CILPs. Specifically,
H3 implies that a particular infinite series that appears in our Lagrangian function converges.
In addition, it allows us to interchange the order of summations in a particular iterated series,
which further enables us to equivalently write the Lagrangian function in a convenient form that
is additively separable over arcs. Please see Lemmas 2.4 and 3.3 below for further details.

Lemma 2.2. The subset Y is a linear subspace of <#N .

Proof. Let y1, y2 ∈ Y and let λ1, λ2 be any two real numbers. To show that Y is a linear subspace
of <#N , we need to prove that λ1y

1 + λ2y
2 is in Y (see Section 2.3 on page 14 of [23]). That is,

we need to show that λ1y
1 + λ2y

2 satisfies H2 and H3. To see that it satisfies H2, first note that∑
i∈N
|bi||y1

i | and
∑
i∈N
|bi||y2

i | are both finite. This implies that

∑
i∈N
|bi||λ1y

1
i +λ2y

2
i | ≤

∑
i∈N
|bi||λ1||y1

i |+
∑
i∈N
|bi||λ2||y2

i | ≤ |λ1|
∑
i∈N
|bi||y1

i |+ |λ2|
∑
i∈N
|bi||y2

i | <∞. (6)

To see that λ1y
1 + λ2y

2 satisfies H3, we proceed as follows. We have,∑
i∈N
|λ1y

1 + λ2y
2|
( ∑
{j|(i,j)∈A}

|uij |+
∑

{j|(j,i)∈A}

|uij |
)

(7)

≤
∑
i∈N

(|λ1||y1|+ |λ2||y2|)
( ∑
{j|(i,j)∈A}

|uij |+
∑

{j|(j,i)∈A}

|uij |
)

(8)

≤ |λ1|
∑
i∈N
|y1|
( ∑
{j|(i,j)∈A}

|uij |+
∑

{j|(j,i)∈A}

|uij |
)

+ |λ2|
∑
i∈N
|y2|
( ∑
{j|(i,j)∈A}

|uij |+
∑

{j|(j,i)∈A}

|uij |
)
<∞. (9)

Here, the last inequality follows because y1 and y2 satisfy H3.
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We next prove that a particular series that we will later use in writing our Lagrangian function
converges. We also establish that there is an alternative but equivalent way to write this series; this
alternative expression is additively separable over the arcs in A, which later helps in our analysis
of complementary slackness.

Lemma 2.3. For any x ∈ U and any y ∈ Y , the series
∑
i∈N

yi

( ∑
{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}
xij

)
converges (absolutely), and it also equals the series

∑
e∈A
−(yi − yj)xij.

Proof. For the first claim, we have,∑
i∈N

∣∣∣yi( ∑
{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij

)∣∣∣ ≤∑
i∈N
|yi|
(∣∣∣ ∑
{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij

∣∣∣) (10)

≤
∑
i∈N
|yi|
( ∑
{j|(j,i)∈A}

|xji|+
∑

{j|(i,j)∈A}

|xij |
)
≤
∑
i∈N
|yi|
( ∑
{j|(j,i)∈A}

|uji|+
∑

{j|(i,j)∈A}

|uij |
)
<∞, (11)

where the last inequality follows by H3. This shows that
∑
i∈N

yi

( ∑
{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}
xij

)
converges (absolutely).

We now define the node-arc incidence matrix A , {ai,(j,k)} whose countably infinite set of rows
corresponds to the set N of nodes in G and whose countably infinite set of columns corresponds to
the set A of arcs in G. Specifically, the entry ai,(j,k) corresponding to node i ∈ N and arc (j, k) ∈ A
is −1 if j = i; it is +1 if k = i; and it is 0 if j 6= i and k 6= i. Then, constraint (2) for node i ∈ N
can be written as

∑
(j,k)∈A

ai,(j,k)xjk = bi. Then, the convergent series in question can be written as

the iterated series∑
i∈N

yi

( ∑
{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij

)
=
∑
i∈N

( ∑
{j|(j,i)∈A}

xjiyi −
∑

{j|(i,j)∈A}

xijyi

)
(12)

=
∑
i∈N

∑
(j,k)∈A

ai,(j,k)xjkyi =
∑

(j,k)∈A

∑
i∈N

ai,(j,k)xjkyi =
∑

(j,k)∈A

−(yj − yk)xjk. (13)

Here, the interchange of sums that is employed to write the third equality is allowed by Theorem
8.43 in [3] owing to H3 (also see Lemma 2.1 in [10]). The fourth equality follows from the structure
of the node-arc incidence matrix A. This proves the second claim.

We are now ready to define our Lagrangian function as

L(x; y) ,
∑

(i,j)∈A

cij(xij) +
∑
i∈N

biyi +
∑
i∈N

yi

( ∑
{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij

)
, x ∈ U , y ∈ Y. (14)

Lemma 2.4. The Lagrangian function is well-defined and finite for every x ∈ U and y ∈ Y .
Moreover, for each fixed y ∈ Y , the Lagrangian function is continuous over U .

Proof. For the first claim, note that the term
∑

(i,j)∈A
cij(xij) in the Lagrangian function is finite by

H1 because functions cij are nonnegative and nondecreasing. The term
∑
i∈N

biyi is also finite by H2.

The third term is also finite by the first claim in Lemma 2.3.
For the second claim, recall that the first series

∑
(i,j)∈A

cij(xij) in the Lagrangian function was

shown to be continuous over x ∈ U in the proof of Lemma 2.1 in Section 2 using the Weierstrass
test. The third series in the Lagrangian function can be similarly shown to be uniformly convergent
and hence continuous over U by the Weierstrass test via H3. This completes the proof.
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We now let
φ(y) , min

x∈U
L(x; y), y ∈ Y, (15)

and then write the dual of (P ) as

(D) W , sup
y∈Y

φ(y). (16)

Note that we were able to define the function φ in (15) using a minimum instead of an infimum
because the function L(x; y) is continuous (by the second claim in Lemma 2.4) over the compact
set U and hence attains its infimum. Also observe that

W ≥ φ(0) = min
x∈U

L(x; 0) = min
x∈U

∑
(i,j)∈A

cij(xij) = 0. (17)

Here, the last equality follows since cij(0) = 0 and the functions cij are nondecreasing (and hence
nonnegative) over xij ∈ [0, uij ]. The discussion in this section helps in establishing weak duality
and complementary slackness by following the proof techniques from finite networks [5]. We show
this in the next section.

3 Weak duality and complementary slackness

Proposition 3.1 (Weak duality). Suppose x ∈ F and y ∈ Y . Then, C(x) ≥ φ(y). Note that this
implies that V ≥W .

Proof. Similar to the finite-dimensional case hence omitted.

Corollary 3.2. Suppose x∗ ∈ F and y∗ ∈ Y are such that C(x∗) = φ(y∗). Then x∗ is optimal to
(P ) and y∗ is optimal to (D).

Proof. Similar to the finite dimensional case hence omitted.

Our next goal is to establish a complementary slackness result by following a proof technique
that is identical to finite networks. In order to achieve this, we need some simple intermediate
lemmas. We first show that the Lagrangian function can be written using an expression that is
additively separable over arcs.

Lemma 3.3. The Lagrangian function originally defined in (14) can be equivalently rewritten as

L(x; y) =
∑

(i,j)∈A

(
cij(xij)− (yi − yj)xij

)
+
∑
i∈N

biyi, x ∈ U , y ∈ Y. (18)

Proof. We have,

L(x; y) =
∑

(i,j)∈A

cij(xij) +
∑
i∈N

biyi +
∑
i∈N

yi

( ∑
{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij

)
(19)

=
∑

(i,j)∈A

cij(xij) +
∑
i∈N

biyi −
∑

(i,j)∈A

(yi − yj)xij (20)

=
∑

(i,j)∈A

(
cij(xij)− (yi − yj)xij

)
+
∑
i∈N

biyi.

Here, the first equality is simply the original definition of the Lagrangian function as in (14); the
second equality follows by the second claim in Lemma 2.3; and the third equality holds by Theorem
8.8 in [3] because both

∑
(i,j)∈A

cij(xij) and
∑

(i,j)∈A
(yi − yj)xij converge.
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This lemma also allows us to write the function φ using an expression that is additively separable
over arcs.

Lemma 3.4. Problem (15) can be rewritten as

φ(y) =
∑

(i,j)∈A

φij(yi − yj) +
∑
i∈N

biyi, (21)

where functions φij, for (i, j) ∈ A, are given by

φij(yi − yj) , min
xij∈[0,uij ]

(
cij(xij)− (yi − yj)xij

)
. (22)

Proof. Problem (15) can be rewritten using the equivalent definition of the Lagrangian function
from Lemma 3.3 as

φ(y) = min
x∈U

L(x; y) = min
x∈U

( ∑
(i,j)∈A

(
cij(xij)− (yi − yj)xij

)
+
∑
i∈N

biyi

)
(23)

= min
{0≤xij≤uij |(i,j)∈A}

( ∑
(i,j)∈A

(
cij(xij)− (yi − yj)xij

)
+
∑
i∈N

biyi

)
(24)

=
∑

(i,j)∈A

min
{0≤xij≤uij}

(
cij(xij)− (yi − yj)xij

)
+
∑
i∈N

biyi =
∑

(i,j)∈A

φij(yi − yj) +
∑
i∈N

biyi (25)

as required. Here, the penultimate equality is obtained by interchanging the minimum with the
series.

Before defining complementary slackness, we next recall standard definitions and basic proper-
ties of the right- and the left-derivative.

Definition 3.5 (Right-derivative). (From Section 8A of [31].) The right-derivative of the function
cij at 0 ≤ xij < uij is given by

c+
ij(xij) , lim

z↓xij

cij(z)− cij(xij)
z − xij

(26)

The right-derivative c+
ij(uij) is defined to equal ∞.

Definition 3.6 (Left-derivative). (From Section 8A of [31].) The left-derivative of the function
cij at 0 < xij ≤ uij is given by

c−ij(xij) , lim
z↑xij

cij(z)− cij(xij)
z − xij

(27)

The left-derivative c−ij(0) is defined to equal −∞.

Since functions cij are convex over [0, uij ], both the right- and the left-derivatives are finite
over the open interval (0, uij). In general, for convex functions defined over the interval [0, uij ],
the right-derivative can be −∞ at the left endpoint 0; similarly, the left-derivative can be +∞
at the right-endpoint uij (see Figure 9.1(c) in [5] for an example)1. The right-derivative is right-
continuous over [0, uij) and the left-derivative is left-continuous over (0, uij ]. Both the right- and
the left-derivatives are nondecreasing. We refer the reader to Section 8A in [31], Section 24 in [30],
and Section 9.1 in [5] for detailed discussions and proofs of these properties.

1A flow x ∈ U is called regular if c−ij(xij) < ∞ and c+
ij(xij) > −∞ for all (i, j) ∈ A (see Definition 9.2 in Section

9.1 of [5]).
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Definition 3.7 (Complementary flows and prices). (As in Definition 9.1 in [5].) A flow x ∈ U
and a price y ∈ Y are said to be complementary if, for all arcs (i, j) ∈ A, we have that

c−ij(xij) ≤ yi − yj ≤ c
+
ij(xij). (28)

Remark 3.8. Exactly as in Section 9.3 of [5], x ∈ U and y ∈ Y are complementary if and only if
xij is the minimizer in (22) for all arcs (i, j) ∈ A.

Proposition 3.9 (Complementary slackness). A feasible flow x∗ ∈ F and price y∗ ∈ Y are comple-
mentary if and only if x∗ and y∗ are optimal to (P ) and (D), respectively, and the optimal objective
values in (P ) and (D) are equal.

Proof. Similar to the finite-dimensional case hence omitted.

Proposition 3.9 leaves open the question as to whether or not the optimal values V in (P ) and
W in (D) are equal. We answer it in the affirmative next using the planning horizon approach.

4 Absence of a duality gap

Following Section 2.1 from [36], we assume, without loss of generality, that network G is layered.
That is, the nodes of the network are divided into mutually exclusive sets (called layers) Ln such

that
∞⋃
n=1
Ln = N . Let L̄n ,

n⋃
m=1
Lm denote the set of all nodes in the first n layers. Then, a

layering can be constructed by starting with an arbitrary node î ∈ N , setting L1 , {̂i}, and then
recursively defining the other layers as

Ln+1 , {j ∈ N \ L̄n|∃i ∈ L̄n with either (i, j) ∈ A or (j, i) ∈ A}. (29)

This construction implies that each layer Ln only includes a finite number of nodes (because each
node has finite in- and out-degree). It also means that all arcs that connect nodes in L̄n with nodes
in N \ L̄n in fact connect nodes in L̄n with nodes in Ln+1 — informally, there are no arcs that
jump from one layer to a “distant” layer by skipping layer(s) in between. Let

An , {(i, j) ∈ A| either i ∈ L̄n or j ∈ L̄n}. (30)

We also denote the set of forward arcs from nodes in Ln to nodes in Ln+1 as

AFn , {(i, j) ∈ A|i ∈ Ln, j ∈ Ln+1}. (31)

Similarly, we denote the set of backward arcs from nodes in Ln+1 to nodes in Ln as

ABn , {(j, i) ∈ A|j ∈ Ln+1, i ∈ Ln}. (32)

Finally note that such a layering of G need not be unique because it depends on the choice of the
initial node î. A schematic of a layered network is shown in Figure 5 below.

We now consider a sequence (Pn) of finite-dimensional truncations of (P ). Problem (Pn) includes
the nodes in L̄n and the arcs in An. In addition, it includes an artificial node connected to all
forward and backward arcs between layers Ln and Ln+1; a source of −

∑
i∈L̄n

bi is assigned to this

artificial node. Then, problem (Pn) is a finite-dimesnional convex minimum cost network flow
problem written as

(Pn) Vn , inf Cn(x) ,
∑

(i,j)∈An

cij(xij) (33)

9



first layer second layer third layer

Figure 1: A layered network.

subject to
∑

{j|(i,j)∈An}

xij −
∑

{j|(j,i)∈An}

xji = bi, ∀i ∈ L̄n, (34)

∑
(i,j)∈AF

n

xij −
∑

(j,i)∈AB
n

xji =
∑
i∈L̄n

bi, (35)

xij ≤ uij , ∀(i, j) ∈ An, (36)

xij ≥ 0, ∀(i, j) ∈ An, (37)

x ∈ <#An . (38)

We first need two simple lemmas.

Lemma 4.1. Suppose flow x is feasible to (P ). Then its truncation to arcs in An is feasible to
(Pn).

Proof. It is clear that this truncation satisfies constraints (34), (36), and (37) in (Pn) as these
constraints are identical to the corresponding constraints (2), (3), and (4) in (P ). The solution x
uses arcs in AFn and ABn to deliver a flow of

∑
i∈L̄n

bi from nodes in N \L̄n to nodes in L̄n. In problem

(Pn), the artificial node with a source of −
∑
i∈L̄n

bi is an aggregate representation of all nodes in

N \ L̄n. As a result, the truncation of x must be feasible to constraint (35) as well.

Lemma 4.2. If (Pn) has a feasible solution then it has an optimal solution.

Proof. Holds since the feasible region of (Pn) is compact and the objective is continuous.

Proposition 4.3 (Primal value convergence). Suppose (P ) has a feasible solution. Then, problems
(Pn) have optimal solutions and their optimal values Vn converge to the optimal value V of (P );
that is, lim

n→∞
Vn = V .

Proof. Our proof employs a modification of the argument used in proving Berge’s maximum prin-
ciple [4]. Since (P ) has a feasible solution, Lemma 4.1 means that (Pn) has a feasible solution.
Lemma 4.2 thus implies that (Pn) has an optimal solution, which we denote by x∗(n). It may,
at times, be convenient to view x∗(n) as belonging to <#A by appending it with a sequence of
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zeros. We note that an x∗(n) constructed this way belongs to the set U ; to avoid introducing addi-
tional notation, we will continue to use the same notation for flows in <#An and their extensions
formed by appending zeros; the meaning should be clear from context. It now remains to show
that lim

n→∞
Vn = V .

Consider a sequence of optimal solutions {x∗(n)} ∈ U to problems (Pn). Since U is compact,
{x∗(n)} has a convergent subsequence; we denote this subsequence by {x∗(nm)} and use x̄ ∈ U to
denote its limit. We show by contradiction that x̄ is optimal to (P ). So suppose not. This implies
that ∑

(i,j)∈A

cij(x̂ij) <
∑

(i,j)∈A

cij(x̄ij). (39)

Now we construct another subsequence of flows {x̃(nm)} ∈ U such that

x̃ij(nm) =

{
x∗ij(nm), (i, j) ∈ Anm , and

x̂ij , (i, j) ∈ A \ Anm .
(40)

This new subsequence also converges to x̄ij . Consequently, inequality (41) can be rewritten as∑
(i,j)∈A

cij(x̂ij) <
∑

(i,j)∈A

cij( lim
m→∞

x̃ij(nm)). (41)

Since function cij are continuous, this inequality can be further rewritten as∑
(i,j)∈A

cij(x̂ij) <
∑

(i,j)∈A

lim
m→∞

cij(x̃ij(nm)). (42)

Recall that the series C(x) of functions cij(xij) in the objective function in (P ) converges uniformly
and hence is continuous over U . This implies that the limit and the infinite sum on the right hand
side of (42) can be exchanged (see Theorem 9.7 in [3]). This yields,∑

(i,j)∈A

cij(x̂ij) < lim
m→∞

∑
(i,j)∈A

cij(x̃ij(nm)). (43)

Then splitting each of the two series into two terms, we obtain,∑
(i,j)∈Anm

cij(x̂ij) +
∑

(i,j)∈A\Anm

cij(x̂ij) (44)

< lim
m→∞

[ ∑
(i,j)∈Anm

cij(x̃ij(nm)) +
∑

(i,j)∈A\Anm

cij(x̃ij(nm))

]
. (45)

Then, substituting for x̃(nm) from its definition, we get,

∑
(i,j)∈Anm

cij(x̂ij) +
∑

(i,j)∈A\Anm

cij(x̂ij) < lim
m→∞

[ ∑
(i,j)∈Anm

cij(x
∗
ij(nm)) +

∑
(i,j)∈A\Anm

cij(x̂ij)

]
. (46)

This implies that there exists a large enough m, which we call m∗, such that

∑
(i,j)∈Anm∗

cij(x̂ij) +
∑

(i,j)∈A\Anm∗

cij(x̂ij) <

[ ∑
(i,j)∈Anm∗

cij(x
∗
ij(nm∗)) +

∑
(i,j)∈A\Anm∗

cij(x̂ij)

]
. (47)
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In other words, ∑
(i,j)∈Anm∗

cij(x̂ij) <
∑

(i,j)∈Anm∗

cij(x
∗
ij(nm∗)). (48)

This contradicts the optimality of x∗(nm∗) to (Pnm∗ ). This completes the proof that x̄ is optimal
to (P ).

Finally, to show value convergence, we prove that every convergent subsequence of optimal
values Vn converges to the same limit and that this limit is V . This would imply that the sequence Vn
itself converges to V as required. So let Vnm be such a convergent subsequence and let {x∗(nm)} ∈ U
be the corresponding subsequence of optimal solutions to (Pnm). This subsequence of optimal
solutions has a further convergent subsequence, which we denote by {x∗(nmt)} ∈ U . We denote
the limit of this convergent subsequence by x̄ ∈ U . Then, as shown above, x̄ is optimal to (P ). We
thus have,

lim
t→∞

Vnmt
= lim

t→∞

∑
(i,j)∈Anmt

cij(x
∗
ij(nmt)) (49)

= lim
t→∞

∑
(i,j)∈A

cij(x
∗
ij(nmt)) (because the tail of x∗(nmt) is zero and cij(0) = 0) (50)

=
∑

(i,j)∈A

lim
t→∞

cij(x
∗
ij(nmt)) (by continuity of the objective function over U) (51)

=
∑

(i,j)∈A

cij( lim
t→∞

x∗ij(nmt)) (by continuity of functions cij) (52)

=
∑

(i,j)∈A

cij(x̄ij) = V. (53)

That is, Vnmt
converges to V as t → ∞. Since Vnmt

is a further subsequence of the convergent
subsequence Vnm , it must converge to the same limit as Vnm . In other words, lim

m→∞
Vnm = V .

Thus, we have shown that every convergent subsequence of Vn converges to V . This completes the
proof.

We next want to write the dual of (Pn). Toward this end, we define Un ,
∏

(i,j)∈An

[0, uij ] as the

truncation of U to <#An . For each x ∈ Un, y ∈ <#L̄n , and zn ∈ <, we first define the Lagrangian
function of (Pn) as

Ln(xn; (yn, zn)) ,
∑

(i,j)∈An

cij(x
n
ij) +

∑
i∈L̄n

biy
n
i − zn

∑
i∈L̄n

bi +
∑
i∈L̄n

yni

( ∑
{j|(j,i)∈An}

xnji −
∑

{j|(i,j)∈An}

xnij

)
+ zn

( ∑
(j,i)∈AB

n

xnji −
∑

(i,j)∈AF
n

xnij

)
(54)

=
∑

(i,j)∈An−1

(
cij(x

n
ij)− (yni − ynj )

)
+

∑
(i,j)∈AF

n

(
cij(x

n
ij)− (yni − zn)

)
+

∑
(j,i)∈AB

n

(
cij(x

n
ij)− (zn − yni )

)
+
∑
i∈L̄n

biy
n
i − zn

∑
i∈L̄n

bi. (55)

We now make an observation about this Lagrangian function, which will simplify our planning
horizon approach.
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Lemma 4.4. It is possible to set zn = 0 without affecting the value of the above Lagrangian
function.

Proof. First suppose that zn = −α < 0 for some real number α. Then consider the alternative pair
(ŷn, ẑn), where ŷni = yni + α for all i ∈ L̄n and ẑn = 0. Then, we have,

Ln(xn; (ŷn, ẑn)) = Ln(xn; (ŷn, 0)) (56)

=
∑

(i,j)∈An−1

(
cij(x

n
ij)− (ŷni − ŷnj )

)
+

∑
(i,j)∈AF

n

(
cij(x

n
ij)− (ŷni )

)
+

∑
(j,i)∈AB

n

(
cij(x

n
ij)− (−ŷni )

)
+
∑
i∈L̄n

biŷ
n
i . (57)

By substituting ŷni = yni + α, the above simplifies to

=
∑

(i,j)∈An−1

(
cij(x

n
ij)− (yni − ynj )

)
+

∑
(i,j)∈AF

n

(
cij(x

n
ij)− (yni + α)

)
+

∑
(j,i)∈AB

n

(
cij(x

n
ij)− (−α− yni )

)
+
∑
i∈L̄n

bi(α+ yni ). (58)

Then, substituting zn = −α, this reduces to

=
∑

(i,j)∈An−1

(
cij(x

n
ij)− (yni − ynj )

)
+

∑
(i,j)∈AF

n

(
cij(x

n
ij)− (yni − zn)

)
+

∑
(j,i)∈AB

n

(
cij(x

n
ij)− (zn − yni )

)
+
∑
i∈L̄n

biy
n
i − zn

∑
i∈L̄n

bi = Ln(xn; (yn, zn)), (59)

as required.
Similarly, if zn = α > 0 for some real number α, we consider the alternative pair (ŷn, ẑn), where

ŷni = yni − α for all i ∈ L̄n and ẑn = 0. We get,

Ln(xn; (ŷn, ẑn)) = Ln(xn; (ŷn, 0)) (60)

=
∑

(i,j)∈An−1

(
cij(x

n
ij)− (ŷni − ŷnj )

)
+

∑
(i,j)∈AF

n

(
cij(x

n
ij)− (ŷni )

)
+

∑
(j,i)∈AB

n

(
cij(x

n
ij)− (−ŷni )

)
+
∑
i∈L̄n

biŷ
n
i . (61)

By substituting ŷni = yni − α, the above simplifies to

=
∑

(i,j)∈An−1

(
cij(x

n
ij)− (yni − ynj )

)
+

∑
(i,j)∈AF

n

(
cij(x

n
ij)− (yni − α)

)
+

∑
(j,i)∈AB

n

(
cij(x

n
ij)− (α− yni )

)
+
∑
i∈L̄n

bi(y
n
i − α). (62)

Then, substituting zn = α, this reduces to

=
∑

(i,j)∈An−1

(
cij(x

n
ij)− (yni − ynj )

)
+

∑
(i,j)∈AF

n

(
cij(x

n
ij)− (yni − zn)

)
+

∑
(j,i)∈AB

n

(
cij(x

n
ij)− (zn − yni )

)
+
∑
i∈L̄n

biy
n
i − zn

∑
i∈L̄n

bi = Ln(xn; (yn, zn)), (63)

as required.
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In view of this lemma, it suffices to only focus on Ln(xn; (yn, 0)), which we simply denote by
Ln(xn; yn) for brevity and write it here again for emphasis:

Ln(xn; yn) =
∑

(i,j)∈An

cij(x
n
ij) +

∑
i∈L̄n

biy
n
i +

∑
i∈L̄n

yni

( ∑
{j|(j,i)∈An}

xnji −
∑

{j|(i,j)∈An}

xnij

)
. (64)

We also introduce the problem

φn(yn) , min
xn∈Un

Ln(xn; yn), yn ∈ <#L̄n , (65)

and then write the dual problem as

(Dn) Wn , sup
yn∈<#L̄n

φn(yn). (66)

It is easy to see, similar to (17), that Wn ≥ 0. We now prove that the optimal values Wn provide
lower bounds on W .

Lemma 4.5. For each n, we have, W ≥Wn.

Proof. For each yn ∈ <#L̄n , we define ξ(yn) as the corresponding price in Y constructed by ap-
pending yn with a sequence of zeros. Specifically,

ξi(y
n) ,

{
yni , i ∈ L̄n
0, i ∈ N \ L̄n.

(67)

The set of all such price vectors is defined as

Ξ ,
{
ξ(yn)|yn ∈ <#L̄n

}
⊆ Y. (68)

As a result, we get,

Wn = sup
yn∈<#L̄n

φn(yn) = sup
yn∈<#L̄n

(
min
xn∈Un

Ln(xn; yn)
)

= sup
yn∈<#L̄n

(
min
x∈U

L(x; ξ(yn))
)

(69)

= sup
ξ∈Ξ

(
min
x∈U

L(x; ξ)
)
≤ sup

y∈Y

(
min
x∈U

L(x; y)
)

= W. (70)

Here, the first equality is simply the definition ofWn. The second equality follows from the definition
of φn(yn). The third equality holds because, for every yn ∈ <#L̄n , we have, min

xn∈Un
Ln(xn; yn) =

min
x∈U

L(x; ξ(yn)) as the components xij for (i, j) ∈ A\An do not appear in this latter minimization.

The fourth equality is simply an equivalent rewriting of the supremum in terms of the variable
ξ ∈ Ξ. The subsequent inequality holds because Ξ ⊆ Y . The last equality is simply the definition
of W .

We are now ready to prove the main result of this section.

Theorem 4.6 (Zero duality gap). Suppose (P ) has a feasible solution. Then 0 ≤W = V <∞.
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Proof. The fact that 0 ≤W was proven in (17). Since (P ) has a feasible solution, it has an optimal
solution by Lemma 2.1 and thus V <∞. Now it remains to prove the main claim of this theorem,
which is that W = V .

Since (P ) has a feasible solution, Lemma 4.1 implies that problems (Pn) have feasible solutions
for each n. Then Lemma 4.2 implies that problems (Pn) have optimal solutions with optimal
values Vn. This also implies, from a well-known result about the absence of a duality gap for
finite-dimensional convex minimum cost network flow problems (see Proposition 9.4 in [5]), that
Wn = Vn. Combining this with our weak duality result that V ≥W as in Proposition 3.1 and our
bound that W ≥Wn from Lemma 4.5, we get,

V ≥W ≥Wn = Vn, (71)

for all n. Since lim
n→∞

Vn = V by our value convergence in Proposition 4.3, taking a limit on the

right hand side of (121) yields V ≥W ≥ V . This shows that W = V .

Corollary 4.7 (Dual value convergence). Suppose (P ) has a feasible solution. Then, lim
n→∞

Wn = W .

Proof. From the proof and the result of Theorem 4.6 and from the result of Proposition 4.3, we
get,

lim
n→∞

Wn = lim
n→∞

Vn = V = W (72)

as claimed.

We view Theorem 4.6 as the countably infinite counterpart of Proposition 9.4 in [5] for finite
networks, which implies that if the primal problem has a feasible solution, then there is no duality
gap. This theorem, however, does not guarantee that the dual problem has an optimal solution.
Specifically, at this point, it is not clear whether or not strong duality holds between (P ) and (D).
We next provide a condition under which it does.

5 Strong duality

We begin with a simple lemma.

Lemma 5.1. Suppose (P ) has a regular feasible solution. Then the finite-dimensional dual problems
(Dn) have optimal solutions, which we denote by y∗(n) in the sequel.

Proof. Since (P ) has a regular feasible solution, its truncation to <An is feasible to (Pn) by Lemma
4.1 and it is also regular. Moreover, (P ) has an optimal solution by Lemma 2.1. By Lemma 4.2,
(Pn) has an optimal solution, say x∗(n). Then, by the strong duality Proposition 9.3 in [5] for finite
networks, (Dn) has an optimal solution y∗(n) that is complementary to x∗(n).

Theorem 5.2 (Strong duality). Suppose (P ) has a regular feasible solution (and hence has an
optimal solution by Lemma 2.1). Let {x∗(n), y∗(n)}, for n = 1, 2, . . ., be a sequence of pairs
of complementary optimal solutions to (Pn) and (Dn) as in Lemma 5.1. Suppose there exists a
sequence v , {vi}i∈N in Y formed by positive real numbers such that |y∗i (n)| ≤ vi for all i ∈ N and
all n. Then (D) has an optimal solution with W = V .

Proof. We define the set V ,
∏
i∈N

[−vi, vi], which is in Y because the sequence v is in Y . Since U and

V are compact by Tychonoff’s theorem, the sequence {x∗(n), y∗(n)} has a convergent subsequence
{x∗(nk), y∗(nk)}. We denote its limit by the pair (x̄, ȳ) ∈ U × V ⊂ X × Y . We show that x̄ and
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ȳ are complementary in (P ) and (D). We also show that x̄ is feasible to (P ). This will imply, by
Proposition 3.9, that x̄ and ȳ are optimal solutions to problems (P ) and (D), respectively, and that
V = W as claimed.

To show that x̄ and ȳ are complementary, we need to prove that

c−ij(x̄ij) ≤ ȳi − ȳj ≤ c
+
ij(x̄ij), (73)

for all arcs (i, j) ∈ A. We do this by contradiction. So suppose not. Then there must exist either
an arc (i, j) ∈ A such that

c−ij(x̄ij) > ȳi − ȳj (74)

or an arc (i, j) ∈ A such that
ȳi − ȳj > c+

ij(x̄ij). (75)

First suppose that it is the former. We note that x̄ij 6= 0 because c−ij(0) = −∞ and this
contradicts (74). We consider two other subcases: (A) there exists a subsequence x∗(nkt) such
that x∗(nkt) ≤ x̄ij for all t; and (B) there is no such subsequence and hence x∗(nk) > x̄ij for
all k large enough. In subcase (A), x∗(nkt) ↑ x̄ij as t → ∞. Then, since the left-derivative is
left-continuous over (0,∞), we have, c−ij(x̄ij) = c−ij

(
↑ x∗(nkt)

)
= lim

t→∞
c−ij(x

∗(nkt)). Moreover,

ȳi − ȳj = lim
t→∞

(
y∗i (nkt) − y∗j (nkt)

)
. These two observations, when combined with (74) yield that

c−ij(x
∗
ij(nkt)) > y∗i (nkt)−y∗j (nkt) for some t large enough. But this contradicts the fact that the pair

(x∗(nkt), y
∗(nkt)) is complementary for (Pnkt

) and (Dnkt
). In subcase (B), c−ij(x

∗
ij(nk)) ≥ c

−
ij(x̄ij) for

all k large enough because the left-derivative is nondecreasing. Moreover, ȳi − ȳj = lim
k→∞

(
y∗i (nk)−

y∗j (nk)
)
. So again combining these two observations with (74), we get, c−ij(x

∗
ij(nk)) > y∗i (nk)−y∗j (nk)

for some k large enough. This contradicts the fact that the pair (x∗(nk), y
∗(nk)) is complementary

for (Pnk
) and (Dnk

). Thus, (74) cannot occur.
Now suppose that it is the latter. We note that x̄ij 6= uij because c+

ij(uij) = +∞ and this
contradicts (75). We again consider two subcases: (A) there exists a subsequence x∗(nkt) such
that x∗(nkt) ≥ x̄ij for all t; and (B) there is no such subsequence and hence x∗(nk) < x̄ij for
all k large enough. In subcase (A), x∗(nkt) ↓ x̄ij as t → ∞. Then, since the right-derivative is
right-continuous over [0,∞), we have, c+

ij(x̄ij) = c+
ij

(
↓ x∗(nkt)

)
= lim

t→∞
c+
ij(x

∗(nkt)). Moreover,

ȳi − ȳj = lim
t→∞

(
y∗i (nkt) − y∗j (nkt)

)
. These two observations, when combined with (75) yield that

c+
ij(x

∗
ij(nkt)) < y∗i (nkt)−y∗j (nkt) for some t large enough. But this contradicts the fact that the pair

(x∗(nkt), y
∗(nkt)) is complementary for (Pnkt

) and (Dnkt
). In subcase (B), c+

ij(x
∗
ij(nk)) ≤ c

+
ij(x̄ij) for

all k large enough because the right-derivative is nondecreasing. Moreover, ȳi− ȳj = lim
k→∞

(
y∗i (nk)−

y∗j (nk)
)
. So again combining these two observations with (75), we get, c+

ij(x
∗
ij(nk)) < y∗i (nk)−y∗j (nk)

for some k large enough. This contradicts the fact that the pair (x∗(nk), y
∗(nk)) is complementary

for (Pnk
) and (Dnk

). Thus, (75) cannot occur either.
We now need to show that x̄ ≥ 0 and that it satisfies the flow balance constraints (2) in order

to establish its feasibility to (P ). The sequence x̄ is nonnegative because it is the componentwise
limit of nonnegative sequences {x∗(nk)}. The sequence x̄ satisfies the flow balance constraints (2)
because, for any node i ∈ N , we have,∑

{j|(i,j)∈A}

x̄ij −
∑

{j|(j,i)∈A}

x̄ji =
∑

{j|(i,j)∈A}

lim
k→∞

x∗ij(nk)−
∑

{j|(j,i)∈A}

lim
k→∞

x∗ji(nk) (76)

= lim
k→∞

∑
{j|(i,j)∈A}

x∗ij(nk)− lim
k→∞

∑
{j|(j,i)∈A}

x∗ji(nk) (77)
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= lim
k→∞

( ∑
{j|(i,j)∈A}

x∗ij(nk)−
∑

{j|(j,i)∈A}

x∗ji(nk)

)
= bi. (78)

Here, the first equality is simply by the definition of x̄. The second equality holds because the
two sums include only a finite number of terms as node i has finite in- and out-degree. The third
equality holds simply because the difference of limits equals the limit of the difference. The last
equality holds because x∗(nk) satisfies (2) for node i for all k large enough. This completes our
proof of strong duality.

6 Application to an infinite-horizon shortest path problem

Here we apply the above results to a convex infinite-horizon shortest path problem whose special
case with bounded linear costs is equivalent to infinite-horizon discounted cost dynamic program-
ming (see [11, 14] for a detailed discussion). We will use N , {1, 2, 3, . . .} to denote the set of
positive integers. Consider a countable collection of nodes N ,

⋃
n∈N

Sn, where S1 = {i1} is a single-

ton and Sn are finite sets of nodes in. Cardinalities #Sn of these sets are uniformly bounded above
by a positive integer K. In the special case of dynamic programming, n corresponds to discrete
time-periods and Sn corresponds to the state-space in period n with S1 , {i1} being the initial
state. Let A,

⋃
n∈N
AFn denote the countable set of arcs, where AFn is the set of arcs that emerge

from nodes in Sn and end at nodes in Sn+1. In dynamic programming, the arcs in AFn correspond
to the set of actions available in various states in Sn. A supply of βin is available at node in in set
Sn, for n ∈ N; here, βin are strictly positive numbers such that β∗ ,

∑
n∈N

∑
in∈Sn

βin < 1. We assume

without loss of generality that each node has at least one emerging arc; in dynamic programming,
this means that there is at least one feasible action in each state. Figure 2 illustrates the structure
of one such network.

+

+

+

+

+

+ +

+

S1

+

S2 S3 S4 S5

Figure 2: An infinite-horizon shortest path network. All nodes are supply nodes as suggested by
the + signs on the nodes.

The goal is to push the flow out of all nodes all the way to a virtual node at infinity at minimum
total discounted cost where the single-period discount factor is 0 < λ < 1. The undiscounted cost
function for arc (i, j) ∈ A is denoted by fij . Since the flow in any arc cannot be more than the
total available supply in this network, arc flows are bounded above by β∗ < 1. We thus choose
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uij = 1 for each (i, j) ∈ A without loss of feasibility. This convex shortest path problem can be
formulated as

(shortP) V , inf C(x) ,
∑
n∈N

∑
(i,j)∈AF

n

λn−1fij(xij) (79)

subject to
∑

{j|(i1,j)∈AF
1 }

xi1j = βi1 , (80)

∑
{j|(in,j)∈AF

n }

xinj −
∑

{j|(j,in)∈AF
n−1}

xjin = βin , ∀in ∈ Sn, n ∈ N \ 1, (81)

xij ≤ 1, ∀(i, j) ∈ A, (82)

xij ≥ 0, ∀(i, j) ∈ A, (83)

x ∈ <#A. (84)

As in Section 2, we assume that, for each (i, j) ∈ AFn , the flow cost function cij(xij) , λn−1fij(xij)
is real-valued, continuous, convex, and nondecreasing over [0, 1] with fij(0) = 0. Also, hypothesis
H1 reduces in this context to requiring that

∑
n∈N

∑
(i,j)∈AF

n

λn−1fij(1) <∞. A sufficient condition for

this is that sup
n∈N

(
max

(i,j)∈AF
n

fij(1)

)
<∞. This shortest path problem has a feasible solution, say the

one that splits equally, all incoming flow at each node, among all emerging arcs. In the special case
of dynamic programming (where the costs are linear), solving this problem yields an infinite-horizon
optimal policy.

We choose the space Y of dual prices as l1, which is the space of absolutely summable sequences.
H2 then holds because ∑

n∈N

∑
in∈Sn

|yin ||βin | ≤
∑
n∈N

∑
in∈Sn

|yin | <∞. (85)

Here, the first inequality holds because |βin | ≤ 1. Let AF0 , ∅. H3 then holds because∑
n∈N

∑
in∈Sn

|yin |
( ∑
{j|(in,j)∈AF

n }

1 +
∑

{j|(j,in)∈AF
n−1}

1

)
≤ 2K

∑
n∈N

∑
in∈Sn

|yin | <∞.

Thus the Lagrangian function is given by

L(x; y) =
∑
n∈N

∑
(i,j)∈AF

n

(
λn−1fij(xij)− (yi − yj)xij

)
+
∑
n∈N

∑
in∈Sn

βinyin , 0 ≤ x ≤ 1; y ∈ l1. (86)

Furthermore, we have,
φ(y) = min

0≤x≤1
L(x; y). (87)

The dual problem then reduces to

(shortD) W = sup
y∈l1

φ(y). (88)

Weak duality as in Proposition 3.1 and complementary slackness as in Proposition 3.9 thus hold
for (shortP) and (shortD).

To establish the absence of a duality gap and strong duality, we first note that a natural layering
of this infinite network is obtained by setting Ln = Sn for n ∈ N. Then, an N -layer truncation
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of the countably infinite network is obtained by considering the nodes in L̄N =
N⋃
n=1

Sn, the arcs

in AN =
N⋃
n=1
AFn , and an artificial node with a source of −

N∑
n=1

∑
in∈Sn

βin , which is connected to the

nodes in SN via the arcs in AFN . A schematic of such a truncation of the infinite-horizon network
from Figure 2 is shown in Figure 3.

+

+

+

+

+

+

-

S1

+

S2 S3 S4

Figure 3: A four-layer truncation of the infinite-horizon shortest path network from Figure 2. The
artificial “terminal” node (shown in solid grey) in this truncation is the only demand node as
suggested by the − sign on that node.

The resulting N -layer truncation of (shortP) is written as

(shortPN) VN , inf CN (x) ,
N∑
n=1

∑
(i,j)∈AF

n

λn−1fij(xij) (89)

subject to
∑

{j|(i1,j)∈AF
1 }

xi1j = βi1 , (90)

∑
{j|(in,j)∈AF

n }

xinj −
∑

{j|(j,in)∈AF
n−1}

xjin = βin , ∀in ∈ Sn, n = 2, 3, . . . , N, (91)

−
∑

{j|(j,i)∈AF
N}

xji = −
N∑
n=1

∑
in∈Sn

βin , (92)

xij ≤ 1, ∀(i, j) ∈ AN , (93)

xij ≥ 0, ∀(i, j) ∈ AN , (94)

x ∈ <#AN . (95)

Then, value convergence as in Proposition 4.3 holds: lim
N→∞

VN = V .

The Lagrangian function for (shortPN) reduces to

LN (xN ; yN ) =
N∑
n=1

∑
(i,j)∈An

(
λn−1fij(x

N
ij )− (yNi − yNj )xNij

)
+ y1, 0 ≤ xN ≤ 1; yN ∈ <|L̄N |, (96)
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with
φN (yN ) , min

0≤xN≤1
LN (xN ; yN ), yN ∈ <|L̄N |. (97)

The finite-dimensional dual problem is thus given by

(shortDN) WN = sup
y∈<|L̄N |

φN (yN ). (98)

The bound W ≥ WN as in Lemma 4.5 holds and there is no duality gap between (shortP) and
(shortD) as in Theorem 4.6. Dual value convergence as in Corollary 4.7 also holds: lim

N→∞
WN = W .

A bit more work is needed in exploring if and when strong duality between (shortP) and (shortD)
can be established via Theorem 5.2 as described next.

First fix some integer N ≥ 1. Suppose x∗(N) is an optimal solution to (shortPN). Suppose
y∗(N) is its complementary optimal solution to (shortDN) — such a solution exists by Lemma 5.1.
Any feasible solution, and in particular the optimal solution x∗(N), to (shortPN) has the property
that for each node in ∈ Sn, for n = 1, 2, . . . , N , there is at least one arc (in, in+1) ∈ AFn such that
x∗inin+1

(N) > 0. Then, by complementary slackness, we obtain,

0 ≤ c−inin+1
(x∗inin+1

(N)) ≤ y∗in − y
∗
in+1
≤ c+

inin+1
(x∗inin+1

(N)) ≤ c+
inin+1

(β∗), for n = 1, . . . , N. (99)

Here, the lower bound of zero holds because c−inin+1
(x∗inin+1

(N)) ≥ 0 since cinin+1 is nondecreasing.

Also, the upper bound of c+
inin+1

(β∗) holds because x∗inin+1
≤ β∗ and c+

inin+1
is nondecreasing.

Then, after setting y∗iN+1
= 0 as shown in Lemma 4.4 and using the above upper and lower bounds

recursively in the order n = N,N − 1, . . . , 1, we obtain,

0 ≤ y∗in ≤
N∑

m=n

c+
imim+1

(β∗) ≤
∞∑
m=n

c+
imim+1

(β∗) (because the right-derivative is nonnegative) (100)

= λn−1
∞∑
m=n

λm−nf+
imim+1

(β∗), n = 1, 2, . . . , N. (101)

By letting ρn ,
∞∑
m=n

λm−n max
(im,im+1)∈AF

m

(
f+
imim+1

(β∗)
)

, we see that if
∑
n∈N

λn−1ρn < ∞, then the

hypothesis in Theorem 5.2 would hold with vin = λn−1ρn. This follows because∑
n∈N

∑
in∈Sn

vin =
∑
n∈N

∑
in∈Sn

λn−1ρn ≤ K
∑
n∈N

λn−1ρn <∞. (102)

A simple sufficient condition for
∑
n∈N

λn−1ρn < ∞ is that ρn be uniformly bounded above inde-

pendently of n, which in turn holds if sup
m∈N

(
max

(im,im+1)∈AF
m

(
f+
imim+1

(β∗)
))

< ∞. In short, strong

duality holds if the right-derivatives at β∗ are uniformly bounded. In the special case of dynamic
programming (where the costs are linear), the right-derivative simply equals the cost per unit flow;
thus, in that case, our conclusion reduces to the known result that strong duality holds when costs
are bounded [14].
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Figure 4: A hypernetwork with seven nodes and six hyperarcs.

7 Extension to infinite hypernetworks

Directed hypernetworks generalize directed networks by allowing for arcs with multiple tails/heads
and for flow gains on tails/heads (see Figure 4). Minimum cost flow problems on directed hy-
pernetworks with a finite number of nodes and hyperarcs arise in polyhedral combinatorics; in
expert systems; in stationary Markov decision processes (MDPs) with finite state- and action-
spaces; and in planning problems such as single- and multi-facility economic lot sizing, lot-size
smoothing, warehousing, product-assortment, batch-queuing, capacity expansion, investment con-
sumption, and reservoir-control [6, 20, 27, 38, 39]. Flow problems on hypernetworks with a count-
ably infinite number of nodes and hyperarcs arise, for example, in infinite-horizon versions of such
planning problems; in nonstationary and countable-state MDPs and generalized MDPs; and in
infinite-horizon planning models of Leontief economies [7, 8, 9, 14, 16, 21, 22, 24, 36]. In this sec-
tion, we extend the above results to countably infinite hypernetworks. We apply these results to a
convex infinite-horizon stochastic shortest path problem on a hypernetwork. A special case of this
analysis recovers known duality results for nonstationary MDPs.

7.1 Problem formulation

Here, N denotes the countably infinite set of nodes i and A denotes the countably infinite set of
directed hyperarcs e. The resulting directed infinite hypernetwork is denoted by G , (N ,A). Define
Te to be the finite set of tail-nodes of e and He to be the finite set of head-nodes of e. We make
the standard assumption that node-degrees are finite; that is, each node is connected to a finite
number of hyperarcs. Corresponding to all head-nodes i ∈ He of each hyperarc e ∈ A, there are
nonnegative real numbers gi(e). These numbers are called head-gains. Similarly, associated with all
tail-nodes i ∈ Te of each hyperarc e ∈ A, there are nonnegative real numbers µi(e). These numbers
are called tail-gains. There is a real number bi associated with each node i ∈ N . When bi > 0,
i is called a supply node; when bi < 0, i is called a demand node; and when bi = 0, i is called a
transshipment node. Let nonnegative real numbers ue denote the flow capacities of hyperarcs e ∈ A.
Let xe denote the amount of flow through hyperarc e. Let ce(xe) be a nondecreasing, continuous and
convex function on [0, ue] that denotes the cost of carrying flow xe through hyperarc e ∈ A. Assume
that ce(0) = 0; this also implies that flow costs are nonnegative since they are nondecreasing. Our
first hypotheses generalizes in this case to H1: the series

∑
e∈A

ce(ue) of nonnegative terms is finite.

The minimum cost flow problem on G can then be formulated as

(P ) V , inf C(x) ,
∑
e∈A

ce(xe) (103)
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subject to
∑

{e|i∈Te}

µi(e)xe −
∑

{e|i∈He}

gi(e)xe = bi, ∀i ∈ N , (104)

xe ≤ ue, ∀e ∈ A, (105)

xe ≥ 0, ∀e ∈ A, (106)

x ∈ <#A. (107)

Again, we use the product topology of componentwise convergence on <#A. Similar to Lemma 2.1,
if (P ) has a feasible solution then it has an optimal solution.

Hypothesis H2 and H3 from above generalize in this case as follows. Let <#N denote the set
of all sequences π , {πi}i∈N of real numbers indexed by the nodes in N . Moreover, let Y be
the subset of <#N that includes all such sequences π for which H2: the series B(π) ,

∑
i∈N
|bi||πi|

of nonnegative terms is finite; and H3: the series
∑
i∈N
|πi|
( ∑
{e|i∈Te}

|µi(e)ue| +
∑

{e|i∈He}
|gi(e)ue|

)
of

nonnegative terms is also finite. It can be shown similar to Lemma 2.2 that Y is a linear subspace
of <#N .

We use U ,
∏
e∈A

[0, ue] to denote the Cartesian product of the intervals [0, ue] over arcs in A.

Then, for any x ∈ U and any π ∈ Y , the series
∑
i∈N

πi

( ∑
{e|i∈He}

gi(e)xe −
∑

{e|i∈Te}
µi(e)xe

)
converges

absolutely, and it also equals the series −
∑
e∈A

( ∑
i∈Te

πiµi(e) −
∑
i∈He

πigi(e)
)
xe. This can be shown

similar to Lemma 2.3.
Now define the Lagrangian function as

L(x;π) ,
∑
e∈A

ce(xe) +
∑
i∈N

(bi −
∑

{e|i∈Te}

µi(e)xe +
∑

{e|i∈He}

gi(e)xe)πi. (108)

It is then easy to show, similar to Lemma 2.4, that this Lagrangian function is well-defined and
finite for every x ∈ U and π ∈ Y , and that it is continuous over U for each fixed π ∈ Y . Since U is
compact, this implies that L(x;π) attains its minimum over U for each fixed π. Let

φ(π) , min
x∈U

L(x;π), π ∈ Y, (109)

and then write the dual of (P ) as

(D) W , sup
π∈Y

φ(π). (110)

Also, since W ≥ φ(π) for all π ∈ Y , observe that W ≥ φ(0) = min
x∈U

L(x; 0) = min
x∈U

∑
e∈A

ce(xe) = 0.

7.2 Weak duality and complementary slackness

Let F denote the set of flows feasible to (P ).

Proposition 7.1 (Weak duality). Suppose x ∈ F and π ∈ Y . Then, C(x) ≥ φ(π). Note that this
implies that V ≥W .

Proof. Similar to Proposition 3.1 hence omitted.

Corollary 7.2. Suppose x∗ ∈ F and π∗ ∈ Y are such that C(x∗) = φ(π∗). Then x∗ is optimal to
(P ) and π∗ is optimal to (D).
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Proof. Similar to Corollary 3.2 hence omitted.

It can be shown, similar to Lemma 3.3, that the Lagrangian function originally defined in (108)
can be equivalently rewritten as

L(x;π) =
∑
e∈A

ce(xe) +
∑
i∈N

biπi −
∑
e∈A

(∑
i∈Te

µi(e)πi −
∑
i∈He

πigi(e)
)
xe, x ∈ U , π ∈ Y. (111)

Thus, similar to Lemma 3.4, the function φ can be rewritten using an expression that is additively
separable over hyperarcs and nodes as

φ(π) =
∑
e∈A

φe(π
e) +

∑
i∈N

biπi. (112)

Here, we have used the shorthand πe to denote the vector of prices of nodes that are connected to
hyperarc e, and functions φe are given by

φe(π
e) , min

xe∈[0,ue]
ce(xe)−

(∑
i∈Te

µi(e)πi −
∑
i∈He

πigi(e)
)
xe. (113)

Let c+
e and c−e denote the right- and left-derivative of the flow cost function for hyperarc e ∈ A.

Definition 7.3 (Complementary flows and prices). A flow x ∈ U and a price π ∈ Y are said to be
complementary if, for all arcs e ∈ A, we have that

c−e (xe) ≤
∑
i∈Te

µi(e)πi −
∑
i∈He

gi(e)πi ≤ c+
e (xe). (114)

Remark 7.4. As in Section 9.3 of [5], x ∈ U and π ∈ Y are complementary if and only if xe is
the minimizer in (113) for all arcs e ∈ A.

Proposition 7.5 (Complementary slackness). A feasible flow x∗ ∈ F and price π∗ ∈ Y are comple-
mentary if and only if x∗ and π∗ are optimal to (P ) and (D), respectively, and the optimal objective
values in (P ) and (D) are equal.

Proof. Similar to Proposition 3.9 hence omitted.

7.3 Absence of a duality gap

We show that nodes of hypernetwork G can be divided into mutually exclusive layers Ln such that
∞⋃
n=1
Ln = N . Toward this end, let L̄n ,

n⋃
m=1
Lm denote the set of all nodes in the first n layers.

Such a layering can be constructed by starting with an arbitrary node î ∈ N , setting L1 , {̂i}, and
then recursively defining the other layers as Ln+1 , {j ∈ N \L̄n|∃i ∈ L̄n with either i ∈ He and j ∈
Te, or i ∈ Te and j ∈ He}. Let An , {e ∈ A|∃i ∈ L̄n such that either i ∈ He or i ∈ Te} denote
the set of hyperarcs connected to nodes in the first n layers. A layering of G need not be unique
because it depends on the choice of the initial node î. Three possible layerings of the hypernetwork
from Figure 4 are shown in Figure 5 below to build intuition behind this idea. Now consider a
sequence (Pn) of finite-dimensional truncations of (P ), where problem (Pn) includes flow balance
constraints on nodes in L̄n using hyperarcs in An. This problem is written as

(Pn) Vn , inf Cn(x) ,
∑
e∈An

ce(xe) (115)
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Figure 5: Three layerings of the hypernetwork from Figure 4. Although this picture depicts a finite
hypernetwork, the ideas hold for countable hypernetworks as well.

subject to
∑

{e|i∈Te}

µi(e)xe −
∑

{e|i∈He}

xegi(e) = bi, ∀i ∈ L̄n, (116)

xe ≤ ue, ∀e ∈ An, (117)

xe ≥ 0, ∀e ∈ An, (118)

x ∈ <#An . (119)

Because all constraints in (Pn) also appear in (P ), a truncation to An of any flow feasible to (P )
is feasible to (Pn). This idea is similar to Lemma 4.1. Moreover, via a standard continuity and
compactness argument as in Lemma 4.2, it is easy to see that if (Pn) has a feasible solution then
it has an optimal solution.

Proposition 7.6 (Primal value convergence). Suppose (P ) has a feasible solution. Then, problems
(Pn) have optimal solutions and their optimal values Vn converge to the optimal value V of (P );
that is, lim

n→∞
Vn = V .

Proof. Similar to Proposition 4.3 hence omitted.

We next want to write the dual of (Pn). Toward this end, we define Un ,
∏

e∈An

[0, ue] as the

truncation of U to <#An . For each x ∈ Un and π ∈ <#L̄n , we first define the Lagrangian function
of (Pn) as

Ln(xn;πn) ,
∑
e∈An

ce(x
n
e ) +

∑
i∈L̄n

biπ
n
i +

∑
i∈L̄n

πni

( ∑
{e∈An|i∈He}

gi(e)x
n(e)−

∑
{e∈An|i∈Te}

µi(e)x
n(e)

)
,

and introduce the problem φn(πn) , min
xn∈Un

Ln(xn;πn), πn ∈ <#L̄n . Then write the dual of (Pn)

as
(Dn) Wn , sup

πn∈<#L̄n
φn(πn). (120)

It is easy to see, similar to the earlier observation W ≥ 0, that Wn ≥ 0. Moreover, W ≥ Wn, for
each n. The proof of this fact is similar to Lemma 4.5.

Theorem 7.7 (Zero duality gap). Suppose (P ) has a feasible solution. Then 0 ≤W = V <∞.

24



Proof. The fact that 0 ≤ W was proven in Section 7.1. Since (P ) has a feasible solution, it has
an optimal solution and thus V < ∞. Now it remains to prove that W = V . Since (P ) has
a feasible solution, problems (Pn) have feasible solutions for each n. Thus problems (Pn) have
optimal solutions with optimal values Vn. Problems (Pn) belong to the class of finite-dimensional
monotropic programs (see Section 9.7 in [5], and [31]). This implies, from a well-known result about
the absence of a duality gap for finite-dimensional monotropic programs (see Proposition 9.19 in
[5]), that Wn = Vn. Combining this with our weak duality result that V ≥W as in Proposition 7.1
and our bound that W ≥Wn as discussed earlier, we get,

V ≥W ≥Wn = Vn, (121)

for all n. Since lim
n→∞

Vn = V by value convergence as in Proposition 4.3, taking a limit on the right

hand side of (121) yields V ≥W ≥ V . This shows that W = V .

We end this section with the comment that if (P ) has a feasible solution then lim
n→∞

Wn = W .

That is, dual value convergence holds if the primal is feasible. The proof is similar to Corollary 4.7.

7.4 Strong duality

We begin with an observation. Suppose (P ) has a regular feasible solution. Then the finite-
dimensional dual problems (Dn) have optimal solutions. This can be seen as follows. Since (P )
has a feasible solution, it has an optimal solution as explained in Section 7.1. The truncation of
this solution to <#An is feasible to (Pn) as explained in Section 7.3 and also regular. Moreover,
as explained in Section 7.3, (Pn) has an optimal solution, say x∗(n). Then, by Proposition 9.18
in [5] for finite-dimensional monotropic programs, (Dn) has an optimal solution π∗(n) that is
complementary to x∗(n). This is utilized in our next result.

Theorem 7.8 (Strong duality). Suppose (P ) has a regular feasible solution (and hence has an
optimal solution). Let {x∗(n), π∗(n)}, for n = 1, 2, . . ., be a sequence of pairs of complementary
optimal solutions to (Pn) and (Dn) as explained above. Suppose there exists a sequence v , {vi}i∈N
in Y formed by positive real numbers such that |π∗i (n)| ≤ vi for all i ∈ N and all n. Then (D) has
an optimal solution with W = V .

Proof. Similar to Theorem 5.2 hence omitted.

7.5 Application to an infinite-horizon stochastic shortest path problem

Here we apply the above results to a convex infinite-horizon stochastic shortest path problem. Its
special case with bounded linear costs is equivalent to nonstationary infinite-horizon discounted
cost MDPs (see [11, 14] for a detailed discussion). The deterministic special case of this problem
yields the shortest path problem in Section 6.

Consider a countable collection of nodes N ,
⋃
n∈N

Sn, where S1 = {i1} is a singleton and Sn

are finite sets of nodes in. Cardinalities #Sn of these sets are uniformly bounded above. In the
special case of MDPs, n corresponds to discrete time-periods and Sn corresponds to the state-space
in period n with S1 , {i1} being the initial state. Each hyperarc has a single tail. Let A,

⋃
n∈N
AFn

denote the countable set of hyperarcs, where AFn is the set of hyperarcs that emerge from nodes in
Sn and end at nodes in Sn+1. In MDPs, hyperarcs in AFn correspond to actions in various states
in Sn. For hyperarc e ∈ AFn−1, for n = 2, 3, . . ., head-gains gin(e) are assumed to be nonnegative
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fractions that add to 1. That is, 0 ≤ gin(e) ≤ 1 and
∑

in∈He

gin(e) = 1. In MDPs, these correspond

to state-transition probabilities. A supply of βin is available at node in in set Sn, for n ∈ N; here,
βin are strictly positive numbers such that β∗ ,

∑
n∈N

∑
in∈Sn

βin < 1. We assume without loss of

generality that each node has at least one emerging arc; in MDPs, this means that there is at least
one feasible action in each state. The goal is to push the flow out of all nodes all the way to a
virtual node at infinity at minimum total discounted cost where the single-period discount factor
is 0 < λ < 1. The undiscounted flow cost function for hyperarc e ∈ A is denoted by fe. Since
the flow in any arc cannot be more than the total available supply in this network, arc flows are
bounded above by β∗ < 1. We thus choose ue = 1 for each e ∈ A without loss of feasibility. We
assume that, for each e ∈ An, the undiscounted flow cost functions fe(xe) are continuous, convex,
and nondecreasing over [0, 1] with fe(0) = 0.

The resulting convex stochastic shortest path problem can be formulated as

(stochasticshortP) V , inf C(x) ,
∑
n∈N

∑
e∈An

λn−1fe(xe)

subject to
∑

{e∈A1|i1=Te}

xe = βi1 ,∑
{e∈An|in=Te}

xe −
∑

{e∈An−1|in∈He}

gin(e)xe = βin , ∀in ∈ Sn, n ∈ N \ 1,

xe ≤ 1, ∀e ∈ A,
xe ≥ 0, ∀e ∈ A,
x ∈ <#A.

This problem is a special case of our formulation (P ) from Section 7.1. In the special case of
nonstationary MDPs (where costs are bounded and linear), solving this problem yields an infinite-
horizon optimal policy.

A sufficient condition for hypothesis H1 in this case is that sup
n∈N

(
max
e∈An

fe(1)

)
< ∞; that is,

flow costs are uniformly bounded. Choose the space Y of dual prices as l1, which is the space of
absolutely summable sequences. It is then easy to show, similar to the deterministic case, that H2
and H3 hold. Our weak duality and complementary slackness results thus hold.

Problem (stochasticshortP) has a regular feasible solution. For instance, the one that splits
equally, all incoming flow at each node, among all outgoing hyperarcs. Absence of a duality gap
can then be established by noting that a natural layering of this infinite hypernetwork is obtained
by setting Ln = Sn for n ∈ N. Finally, a more tedious variation of the algebraic derivation from the
deterministic case can be done to show that strong duality holds if the right-derivatives at β∗ are

uniformly bounded. That is, strong duality holds if sup
m∈N

(
max
em∈Am

(
f+
em(β∗)

))
<∞. In the special

case of nonstationary MDPs (where costs are linear), the right-derivative simply equals the cost
per unit flow. Thus, in that case, our conclusion reduces to the known result that strong duality
holds when costs are bounded [14].
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