5.1 Continuity

Definition 1. The function f is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$;
i.e., for all $\varepsilon>0$ there is a $\delta>0$ such that for all $x 0<|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon$;
otherwise f is said to be discontinuous at $x=a$.
Remark: It should be noted that we can write $f\left(B_{\delta}(c)\right) \subseteq B_{\varepsilon}(f(c))$.
Definition 2. Let $A \subset \mathbb{R}$ and let $f: A \mapsto \mathbb{R}$. If $B \subseteq A$, we say that f is continuous on B if f is continuous at every point in B.

Notice that the format of proving a specific function is continuous is the same as proving a limit exists. Now lets look at some examples from the book.
4.1.12 d) In this problem they want us to prove that the $\operatorname{limit} \lim _{x \rightarrow 0} \sin \frac{1}{x^{2}}$ does not exist. So we need to show that for all δ and some x there is an ε such that $|x-0|=|x|<\delta \Rightarrow|f(x)-L|<\varepsilon$ for all L. Let us prove this by taking a few cases of L.
Proof. Consider $|L|>1$, then $\left|\sin \left(1 / x^{2}\right)-L\right| \geq|1-L|$, so choose $\varepsilon=|1-L|$. If $|L|=1$, there is an x such that $\sin \left(1 / x^{2}\right)=0$, then choose $\varepsilon=1$. If $|L|<1$, there is an x such that $\sin \left(1 / x^{2}\right)=1$, then choose $\varepsilon=(1-L) / 2$.
5.1.1) This wants us to prove the following theorem

Theorem 1. A function $f: A \mapsto \mathbb{R}$ is continuous at $c \in A$ if and only if for all sequences $\left\{x_{n}\right\} \subseteq A$, $x_{n} \rightarrow c \Rightarrow f\left(x_{n}\right) \rightarrow f(c)$.
Proof. Suppose $|x-c|<\delta$, then $|f(x)-f(c)|<\varepsilon$, so if there is an N such that $\left|x_{n}-c\right|<\delta$ for all $n \geq N$, then $\left|f\left(x_{n}\right)-f(c)\right|<\varepsilon$ for all $n \geq N$, so $x_{n} \rightarrow c$. Suppose there is an N such that for all $n \geq N$ $\left|x_{n}-c\right|<\delta \Rightarrow\left|f\left(x_{n}\right)-f(c)\right|<\varepsilon$. Then there is a $\delta>0$ such that $\left|x_{n}-c\right|<\delta \Rightarrow\left|f\left(x_{n}\right)-f(c)\right|<\varepsilon$.
5.1.2) This wants us to prove the following theorem

Theorem 2. Let $A \subseteq \mathbb{R}, f: A \mapsto \mathbb{R}$, and let $c \in A$. Then f is discontinuous at c if and only if there exists a sequence $\left\{x_{n}\right\} \subseteq A$ such that $x_{n} \rightarrow c$, but $f\left(x_{n}\right) \nrightarrow f(c)$.
Proof. This is the contrapositive of the previous theorem.
5.1.10) $\lim _{x \rightarrow c}|x|=|c|$.

Proof. If $|x-c|<\delta$, by the triangle inequality,

$$
\|x|-|c|| \leq\| x-c| |=|x-c|<\delta
$$

so, choose $\delta=\varepsilon$.
5.1.11) For this one lets write it as a definition and theorem.

Definition 3. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be Lipschitz continuous if $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in \mathbb{R}$, where $K>0$.
Theorem 3. If f is Lipschitz it is continuous for all $c \in \mathbb{R}$
Remark: In fact we will show later that it is uniformly continuous.
Proof. Suppose $|x-y|<\delta$, then $|f(x)-f(y)|<K \delta$. If $y=c,|x-y|<\delta \Rightarrow|f(x)-f(c)| \leq K \delta<2 K \delta$. Then choose $\delta=\varepsilon / 2 K$.

