1. Sets and Functions

You have probably seen a lot of these things in intro to proofs, but it is worth reviewing.
Definition 1. Two sets A and B are said to be equal (notated as $A=B$) if they contain the same elements.
We showed examples of finite sets in class.
To prove $A=B$, for simple sets we can simply match the elements, however for more complex sets we need to show $A \subseteq B$ (proper subset) and $B \subseteq A$. To prove $A \subseteq B$, we suppose $x \in A$ and show $x \in B$.

1.1. Some important sets.

$$
\begin{aligned}
\mathbb{N} & :=\{1,2,3, \ldots, n, \ldots\} \\
\mathbb{Z} & :=\{0, \pm 1, \pm 2, \ldots, \pm n, \ldots\} \\
\mathbb{Q} & :=\left\{\frac{n}{m}: m, n \in \mathbb{Z}, n \neq 0\right\} \\
\mathbb{Q}^{c} & :=\mathbb{R} \backslash \mathbb{Q}
\end{aligned}
$$

Now lets go over some set operations and other important definitions.
Definition 2. (1) The union of sets A and B is $A \cup B:=\{x: x \in A$ or $B\}$.
(2) The intersection of sets A and B is $A \cap B:=\{x: x \in A$ and $B\}$.
(3) The complement (set minus) of B relative to A is $A \backslash B:=\{x: x \in A$ and $x \in B\}$

Definition 3. The empty set, denoted as \emptyset, is a set with no elements.
Definition 4. Two sets A and B are said to be disjoint if $A \cap B=\emptyset$
We went over examples of these definitions in class.
Now lets look at a theorem on set identities.
Theorem 1. Consider the sets A, B, C. The following identities hold,
(1) $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$
(2) $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$

Before we prove the theorem, lets first think of what strategy we are going to use. Recall that in order to prove equality we have to do two proofs each:
(a) $A \backslash(B \cup C) \subseteq(A \backslash B) \cap(A \backslash C)$
(b) $(A \backslash B) \cap(A \backslash C) \subseteq A \backslash(B \cup C)$
(2) (a) $A \backslash(B \cap C) \subseteq(A \backslash B) \cup(A \backslash C)$
(b) $(A \backslash B) \cup(A \backslash C) \subseteq A \backslash(B \cap C)$

Proof. (1) (a) Suppose $x \in A \backslash(B \cup C)$, then $x \in A$, but $x \notin B \cup C \Rightarrow x \notin B, x \notin C \Rightarrow x \in A \backslash B$ and $x \in A \backslash C \Rightarrow x \in(A \backslash B) \cap(A \backslash C)$.
(b) Suppose $x \in(A \backslash B) \cap(A \backslash C)$, then $x \in A \backslash B$ and $A \backslash C \Rightarrow x \in A$, but $x \notin B, x \notin C \Rightarrow x \notin$ $(B \cup C) \Rightarrow x \in A \backslash(B \cup C)$.
Since (a) and (b) hold, $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
(2) (a) Suppose $x \in A \backslash(B \cap C)$, then $x \in A$, but $x \notin(B \cap C) \Rightarrow x \notin B$ or $x \notin C$. If $x \notin B$, then $x \in(A \backslash B)$. if $x \in C$, then $x \in(A \backslash C) \Rightarrow x \in(A \backslash B) \cup(A \backslash C)$.
(b) Suppose $x \in(A \backslash B) \cup(A \backslash C)$, then $x \in(A \backslash B)$ or $x \in(A \backslash C)$. If $x \in(A \backslash B), x \in A$ but $x \notin B$. If $x \in(A \backslash C), x \in A$ but $x \notin C \Rightarrow x \notin(B \cup C) \Rightarrow x \in A \backslash(B \cap C)$.
Since (a) and (b) hold, $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$.
Thereby completing the proof.

