Supplementary problems: Sec. 2.1 # 26; 2.2 # 16; 2.3 # 4, 5, 7, 9, 11, 14; 2.4 # 13

Compulsory problems:

- (1) [5 pts.] Prove that if $|x x_0| < \epsilon/2$ and $|y y_0| < \epsilon/2$, then $|(x + y) (x_0 + y_0)| < \epsilon$ and $|(x y) (x_0 y_0)| < \epsilon$.
- (2) [5 pts.] Prove that \mathbb{R} is unbounded.
- (3) [5 pts.] Prove that for every $x \in \mathbb{R}$ there is an $n \in \mathbb{Z}^+$ such that n > x.
- (4) [5 pts. each] Find the sup and inf of the following (a) $S = \{2^{-p} + 3^{-p} + 5^{-r} : p, q, r \in \mathbb{Z}^+\}$ (b) $S = \{x : 3x^2 - 10x + 3 < 0\}$ (c) $S = \{x : (x - a)(x - b)(x - c)(x - d) < 0\}$, where a < b < c < d.
- (5) **[10 pts.]** Suppose $A, B \subseteq \mathbb{R}^+$ are bounded above, and define $C \subseteq \mathbb{R}$ as $C := \{xy : x \in A, y \in B\}$. Prove that $(\sup A)(\sup B) = \sup C$.
- (6) [15 pts.] Suppose $A, B \subseteq \mathbb{R}$ are nonempty with $A \subseteq B$ and B is bounded above. Prove that $\sup A \leq \sup B$. Further, prove if $\sup A < \sup B$ then $A \subset B$; i.e. $\sup A < \sup B \Rightarrow A \neq B$.

Your homework raw score is: $\frac{n}{2m} \cdot M + \left(1 - \frac{n}{2m}\right) \cdot N = N + \frac{n}{2m}(M - N)$. For this homework, M = 50, m = 9, N is the number of compulsory problems you get correct, and n is the number of supplementary problems you complete. It should be noted that for the supplementary problems I will be looking for **full completion**, but I won't take off points for mistakes.