Supplementary problems: Sec. $2.1 \# 26 ; 2.2 \# 16 ; 2.3 \# 4,5,7,9,11,14 ; 2.4 \# 13$
Compulsory problems:
(1) [5 pts.] Prove that if $\left|x-x_{0}\right|<\epsilon / 2$ and $\left|y-y_{0}\right|<\epsilon / 2$, then $\left|(x+y)-\left(x_{0}+y_{0}\right)\right|<\epsilon$ and $\left|(x-y)-\left(x_{0}-y_{0}\right)\right|<\epsilon$.
(2) [5 pts.] Prove that \mathbb{R} is unbounded.
(3) [5 pts.] Prove that for every $x \in \mathbb{R}$ there is an $n \in \mathbb{Z}^{+}$such that $n>x$.
(4) [5 pts. each] Find the sup and inf of the following
(a) $S=\left\{2^{-p}+3^{-p}+5^{-r}: p, q, r \in \mathbb{Z}^{+}\right\}$
(b) $S=\left\{x: 3 x^{2}-10 x+3<0\right\}$
(c) $S=\{x:(x-a)(x-b)(x-c)(x-d)<0\}$, where $a<b<c<d$.
(5) [10 pts.] Suppose $A, B \subseteq \mathbb{R}^{+}$are bounded above, and define $C \subseteq \mathbb{R}$ as $C:=\{x y: x \in A, y \in B\}$. Prove that $(\sup A)(\sup B)=\sup C$.
(6) [15 pts.] Suppose $A, B \subseteq \mathbb{R}$ are nonempty with $A \subseteq B$ and B is bounded above. Prove that sup $A \leq \sup B$. Further, prove if $\sup A<\sup B$ then $A \subset B$; i.e. $\sup A<\sup B \Rightarrow A \neq B$.

Your homework raw score is: $\frac{n}{2 m} \cdot M+\left(1-\frac{n}{2 m}\right) \cdot N=N+\frac{n}{2 m}(M-N)$. For this homework, $M=50, m=9, N$ is the number of compulsory problems you get correct, and n is the number of supplementary problems you complete. It should be noted that for the supplementary problems I will be looking for full completion, but I won't take off points for mistakes.

