
Math 3350 Rahman Lecture 5

3.3 Homogeneous Linear Equations with Constant Coefficients

It should be noted that while this chapter is on second order ODEs, we will develop the theory for higher order ODEs because
the theory is exactly the same! Let us first go over some definitions we might not know,

Definition 1. An ODE is homogeneous if it is of the form

pn(t)y(n)(t) + pn−1(t)y(n−1)(t) + · · ·+ p2(t)y′′(t) + p1(t)y′(t) + p0(t)y(t) = 0. (1)

So an example of a second order homogeneous ODE would be
p2y
′′ + p1y

′ + p0y = 0.

Definition 2. An ODE is said to be nonhomogeneous if it’s not homogeneous.

An example of a second order nonhomogeneous ODE would be p2y
′′ + p1y

′ + p0y = f(t). In this section we will only deal
with constant coefficients which mean each pn(t) = an where a0, a1, . . . , an−1, an are all constants.

Now, we consider a special case of Eq. (1): y′+ay = 0 We know how to solve this, we simply use separation to get y = ke−ax.
So, we can “guess” that the form of the solutions for Eq. (1) with constant coefficients will be y = kerx. Now, we plug this
guess in to see what the solutions exactly are. Notice that the nth derivative is, y(n) = krnerx, so plugging this into (1) with
pn(t) = an gives,

ankr
nerx + an−1kr

n−1erx + · · ·+ a2kr
2erx + a1kre

rx + a0ke
rx = 0

⇒ kerx
(
anr

n + an−1r
n−1 + · · ·+ a2r

2 + a1r + a0
)

= 0.

Now, all we have to do is solve the polynomial equation. Since this is an nth order polynomial, there will be n solutions, i.e.
r = r1, r2, . . . , rn−1, rn. Since the polynomial equation has n solutions, the ODE will also have n solutions, so by superposition
we get,

y = k1e
r1x + k2e

r2x + · · ·+ kn−1e
rn−1x + kne

rnx.

We have just proved a theorem,

Theorem 1. Consider the ODE

any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a2y
′′(x) + a1y

′(x) + a0y(x) = 0. (2)

such that a0, a1, . . . , an−1, an are constants. Then,

y = k1e
r1x + k2e

r2x + · · ·+ kn−1e
rn−1x + kne

rnx, (3)

where k1, k2, . . . , kn−1, kn are constants and r1, r2, . . . , rn−1, rn satisfy the polynomial equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0, (4)

only if r1 6= r2 6= · · · 6= rn−1 6= rn.

Definition 3. We call Eq. (4) the characteristic equation of ODE (2), and the polynomial is called the characteristic polynomial.

Now, lets do a few problems,

Ex: y′′ + 2y′ − 3y = 0
Solution: The characteristic polynomial is r2 + 2r − 3, so

r2 + 2r − 3 = 0⇒ (r + 3)(r − 1) = 0⇒ r = 1,−3⇒ y = c2e
x + c2e

−3x.

Ex: y′′ − 9y′ + 9 = 0
Solution: The characteristic polynomial is r2 − 9r + 9, so

r =
1

2
(9± 3

√
5)⇒ y = c1e

1
2 (9+3

√
5)x + c2e

1
2 (9−3

√
5)x.

Ex: y′′ + 3y′ = 0; y(0) = −2, y′(0) = 3
Solution: The characteristic polynomial is r2 + 3r, so

r = 0,−3⇒ y = c1 + c2e
−3x,

and from the initial conditions we get y = −1− e−3x.

Ex:
Solution: Here they give us the solution and we have to extract the ODE. Notice that from the solution we deduce

r = −1

2
,−2⇒ (r +

1

2
)(r + 2) = r2 +

5

2
r + 1 = 0⇒ y′′ +

5

2
y′ + y = 0.

1



Ex:
Solution: This is kind of a silly question, but since there is a similar one on the homework lets do it. We solve the

ODE as per usual,

r2 − r − 2 = (r − 2)(r + 1) = 0⇒ r = −1, 2⇒ y = c1e
−x + c2e

2x.

From the initial condition we have the equations c1 +c2 = α and 2c2−c1 = 2, so 3c2 = α+2. This means that if α = −2,
as t → ∞, y → 0. However, for the second part of the problem there are no solutions that always blow up because we
have a negative exponential term that will persist.

24) For this problem the ODE itself has the parameter α. This leads to interesting conclusions without even solving, but
the easiest most intuitive way to come to those conclusions will be by solving, even though it is more tedious and time
consuming. We solve the ODE,

r2 + (3− α)r − 2(α− 1) = 0⇒ (r − (α− 1))(r + 2) = 0⇒ r = −2, α− 1⇒ y = c2e
−2x + c2e

(α−1)x.

So, for α < 1, y →∞. If α = 1, y → c2, and if α > 1, and y → ±∞ only if c2 6= 0.


