Supplementary problems: Sec $2.2 \# 2,4,6,8,10,24,26,28$

Compulsory problems:
(1) $[7 \mathrm{pts}]$ Sketch the direction field for $y^{\prime}=y(3-y)-2$. What happens as $t \rightarrow \infty$ (i.e. outline the behavior for various domains)?
(2) [2pts each] What is the order of the following ODEs and state if it is linear or nonlinear.
a) $y^{2} y^{\prime}=t$;
b) $y y^{\prime \prime}=t$;
c) $y^{\prime \prime}-2 t y^{\prime}+t^{2} y=2$;
(3) Consider the IVP $y^{\prime}=t y(4-y) / 3, y(0)=y_{0}$
(a) $[8 \mathbf{p t s}]$ Solve the IVP.
(b) [2pts] How does the behavior of the solution depend on the initial value y_{0} as t increases?
(c) [2pts] Suppose $y_{0}=0.5$. Find the time T at which the solution first reaches the value $y=3.98$.

A word on how the grading will work: Let m be the number of supplementary problems, n the number of supplementary problems completed, M the total number of points for the compulsory problems, and N the number of points earned for the compulsory problems. Then your homework score is: $\frac{n}{2 m} \cdot M+\left(1-\frac{n}{2 m}\right) \cdot N=N+\frac{n}{2 m}(M-N)$. Just be glad it's not a differential equation.

