
Math 222 Rahman Week 4 and 5

3.2 Existence and Uniqueness and the Wronskian

Last time we discussed ODEs of the form,

pn(x)y(n)(x) + pn−1y
(n−1)(x) + · · ·+ p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = 0.

Now lets look at the general case of,

pn(x)y(n)(x) + pn−1y
(n−1)(x) + · · ·+ p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = g(x).

Lets put this in standard form by dividing through by pn(x) and naming the new functions “q” and “f”,

y(n)(x) + qn−1(x)y(n−1)(x) + · · ·+ q2(x)y′′(x) + q1(x)y′(x) + q0(x)y(x) = f(x). (1)

Consider the simple ODE,

y′ + q(x)y = f(x); q(x) =

{
1 if x is irrational,

0 if x is rational;

In order to solve this we would need to use integrating factors, however notice that q is not integrable (in
the usual fashion), so we can’t solve this - in fact it has no unique solution. So, we need conditions on q′s
and f to guarantee that we can find a unique solution. We outline this in the next theorem, however one
should proceed with caution because this only works for linear ODEs.

Theorem 1. Consider ODE (1) with initial conditions: y(x0) = a0, y
′(x0) = a1, . . . , y

(n−1)(x0) = an−1.
Then, if qn−1, qn−2, . . . , q2, q1, q0 are continuous on a common interval I containing x0, the IVP has exactly
one solution on I.

Now we proceed to defining certain important ideas that we will use in our following theorems.

Definition 1. The set of functions {h1, h2, . . . , hn−1, hn} are said to be linearly independent if c1h1+c2h2+
· · ·+ cn−1hn−1 + cnhn 6= 0, otherwise it is said to be linearly dependent.

Definition 2. The expression c1h1 + c2h2 + · · · + cn−1hn−1 + cnhn is said to be a linear combination of
h1, h2, . . . , hn−1, hn.

Last time we talked about superposition. We will pose it more rigorously in the next theorem. First
consider the homogeneous ODE in standard form,

y(n)(x) + qn−1(x)y(n−1)(x) + · · ·+ q2(x)y′′(x) + q1(x)y′(x) + q0(x)y(x) = 0. (2)

Theorem 2. If y1, y2, . . . , yn−1, yn are solutions to (2), then any linear combination of y’s are also solutions.

For example, y = c1y1 + c2y2, y = c1y1 + c2y2 + · · ·+ cnyn, etc. are also solutions.
Now we define what the Wronskian is, which will be a major part of this section.

Definition 3. Suppose h1(x), h2(x), . . . , hn−1, hn are functions with n− 1 derivatives, then the Wronskian
is defined to be the following determinant,

W =

∣∣∣∣∣∣∣∣∣∣∣

h1 h2 · · · hn
h′1 h′2 · · · h′n
h′′1 h′′2 · · · h′′n
...

...
. . .

...

h
(n−1)
1 h

(n−1)
2 · · · h

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
(3)

Theorem 3. Suppose y1, y2, . . . , yn−1, yn are solutions to (2) on I, with the usual initial conditions, then
W 6= 0 guarantees they are linearly independent on ∈ I.

So the rewording of the above theorem implies that if the Wronskian is zero at a single point then the
function may still be linearly independent.

The next definition and theorem will allow us to find guaranteed linearly independent solutions, but note
that these are not necessarily the only linearly independent solutions.
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Definition 4. The set of all linearly independent solutions of an ODE is called the fundamental set of that
ODE.

For the remaining theorems consider the second order ODE,

y′′ + q1(x)y′ + q0(x)y = 0. (4)

Theorem 4. Consider ODE (4), and let y1, y2 solve (4) for x ∈ I such that y1(x0) = 1, y′1(x0) = 0 and
y2(x0) = 0, y′2(x0) = 1. Then, y1, y2 form a fundamental set of (4).

The following theorem is a theorem we use in section 3.3.

Theorem 5. If y = u(t) + iv(t) solves (4) on I, then so does u and v independently, i.e. if y = c1u+ ic2v
is a solution, so is y = c3u+ c4v.

The next theorem gives us a formula to compute the Wronskian without having to take a determinant,
but it only works for second order ODEs.

Theorem 6 (Abel). The Wronskian of y1, y2 for (4) can be written as,

W (y1, y2) = c exp

(
−
∫
q1(x)dx

)
, (5)

and is zero (if c = 0) or nonzero (if c 6= 0) for all x ∈ I.

Now lets do some example problems,

1) The derivatives are 2e2t and (−3/2)e−3t/2, so our Wronskian is,

W =

∣∣∣∣ e2t e−3t/2

2e2t − 3
2e
−3t/2

∣∣∣∣ = −3

2
e2t−3t/2 − 2e2t−3t/2.

3) The derivatives are −2e−2t and e−2t − 2te−2t, so our Wronskian is,

W =

∣∣∣∣ e−2t te−2t

−2e−2t e−2t − 2te−2t

∣∣∣∣ = e−4t − 2te−4t + 2te−4t = e−4t.

9) We put the ODE in standard form,

y′′ +
3

t− 4
y′ +

4

t(t− 4)
y =

2

t(t− 4)
.

Notice, that this has discontinuities at t = 0, 4, and since we need to include the initial condition,
the largest domain where a unique solution exists is t ∈ (0, 4).

11) Again we convert the ODE into standard form,

y′′ +
x

x− 3
y′ +

ln |x|
x− 3

y = 0

This is discontinuous when x = 0, 3, so our largest domain where a unique solution containing the
initial condition exists is x ∈ (0, 3).

17) Here we have an inverse problem. We need to find a g that satisfies the Wronskian given, so lets
take the Wronskian and see what we get,

W =

∣∣∣∣ e2t g
2e2t g′

∣∣∣∣ = e2tg′ − 2e2tg = e2t(g′ − 2g) = 3e4t ⇒ g′ − 2g = 3e2t

So we have to solve this first order ODE via integrating factor,

µ = exp

(
−
∫ t

2dτ

)
⇒
∫
d(e−2tg) =

∫
3dt⇒ e−2tg = 3t+ C ⇒ g = 3te2t + Ce2t.



23) We go straight to the characteristic polynomial, r2+4r+3 = (r+1)(r+3) = 0⇒ r = −1,−3, so our
general solution is y = c1e

−x+c2e
−3x. Now, by Theorem 4, we solve two different IVPs for this ODE:

y1(1) = c1e
−1 + c2e

−3 = 1 and y′1(1) = −c1e−1− 3c2e
−3 = 0. By summing the two equations we get

−2c2e
−3 = 1 ⇒ c2 = −e3/2, this gives c1 = 3e/2, so our first solution is y1 = 3

2e
(1−x) − 1

2e
3(1−x).

For the second solution we have y2(1) = c1e
−1 + c2e

−3 = 0 and y′2(1) = −c1e−1 − 3c2e
−3. We easily

get c2 = −e3/2 and then c1 = e/2, which gives us a solution of y2 = 1
2e

(1−x) − 1
2e

3(1−x). So, the
following equations make a fundamental set of the ODE,

y1 =
3

2
e(1−x) − 1

2
e3(1−x); y2 =

1

2
e(1−x) − 1

2
e3(1−x).

27) For the first solution we have y′1 = 1⇒ y′′1 = 0⇒ −xy′1+y′1 = 0. For the second solution we have y′2 =
cosx⇒ y′′2 = − sinx, then (1−x cotx)(− sinx)−x cosx+sinx = − sinx+x cosx−x cosx+sinx = 0.
Now, we take the Wronskian of these,

W =

∣∣∣∣ x sinx
1 cosx

∣∣∣∣ = x cosx− sinx 6= 0 for x ∈ (0, π).

So, they are linearly independent on that domain.

30) We put the ODE into standard form: y′′ + (tan t)y′ − ty/ cos t = 0. Then we use Abel’s theorem to
get,

W = c exp

(
−
∫

(tan t)dt

)
= c cos t.

19) Recall the Wronskians in 2D is W (f, g) = fg′ − f ′g and W (u, v) = uv′ − u′v. Then

W (u, v) = (2f − g)(f ′ + 2g′)− (2f ′ − g′)(f + 2g) = 2ff ′ + 4fg′ − gf ′ − 2gg′ − 2f ′f − 4f ′g + g′f + 2g′g

= 4[fg′ − f ′g] + [fg′ − f ′g] = 5W (f, g).

3.3 Complex Roots

Again consider the ODE,
ay′′ + by′ + cy = 0, (6)

which has the characteristic polynomial equation,

ar2 + br + c = 0. (7)

Using the quadratic formula we get,

r =
−b±

√
b2 − 4ac

2a
.

What if b2 − 4ac < 0? Then r is of the form r = ξ ± iθ where ξ, θ ∈ R, but this means r is a complex
conjugate. However, we do the same thing as usual to get,

y = c1e
r1x + c2e

r2x = c1e
(ξ+iθ)x + c2e

(ξ−iθ)x = eξx
(
c1e

iθx + c2e
−iθx) .

We need to deal with the part inside the parentheses, and we do this by what’s called, Euler’s Identity. And
we can derive this fairly easily by using Taylor series, since we know the taylor series,

eit =

∞∑
n=0

(it)n

n!
=

∞∑
n=0

(−1)nt2n

(2n)!
+ i

∞∑
n=0

(−1)n+1t2n+1

(2n+ 1)!
= cos t+ i sin t. (8)

Then our solution becomes,

y = eξx[c1(cos θx+ i sin θx) + c2(cos θx− i sin θx)] = eξx[(c1 + c2) cos θx+ i(c1 − c2) sin θx].

However, we only want real solutions. Notice that cos θx and sin θx, with the proper constant coefficients,
are solutions to (6) independently. So, by Theorem 5, y = eξx(A cos θx + B sin θx) is also a solution. We
have just developed a theorem,



Theorem 7. If (7) has complex roots, i.e. r = ξ + iθ, then the general solution of (6) is,

y = eξx(A cos θx+B sin θx). (9)

Now, lets do some examples,

4) Applying Euler’s identity, e2−iπ/2 = e2(cosπ/2− i sinπ/2) = −ie2.

6) 1
π e

i2 lnπ = 1
π (cos(2 lnπ) + i sin(2 lnπ)).

10) We go to the characteristic polynomial, r2 + 2r + 2 = 0 and use the quadratic formula, r = (−2 ±√
4− 8)/2 = −1± i, which gives us a general solution of y = e−t(A cos t+B sin t).

18) Again our characteristic polynomial gives, r2 + 4r + 5 = 0, and the quadratic formula gives, r =
(−4 ±

√
−4)/2 = −2 ± i, so our general solution is y = e−2t(A cos t + B sin t). Now we go to our

initial conditions: y(0) = A = 1. Then, y′(t) = −2e−2t(cos t + B sin t) + e−2t(− sin t + B cos t), so
y′(0) = −2 +B = 0⇒ B = 2. So, our solution is y = e−2t(cos t+ 2 sin t).

20) As per usual we have r2 + 1 = 0 ⇒ r = ±i ⇒ y = A cos t + B sin t. From the first initial condition

we have, y(π/3) = A/2 +
√

3B/2 = 2 ⇒ A = 4 −
√

3B. From the second initial condition we have,

y′(π/3) = −
√

3A/2 +B/2 = −4⇒ −
√

3 + 3B/2 +B/2 = −2
√

3 + 2B = −4⇒ B =
√

3− 2. So, we

get A = 1 + 2
√

3. Then our solution is y = (1 + 2
√

3) cos t+ (
√

3− 2) sin t.

3.4 Repeated Roots and Reduction of Order

Repeated Roots: Again consider a second order homogeneous IVP with it’s respective characteristic poly-
nomial equation,

y′′ + by′ + cy = 0; y(0) = A, y′(0) = B (10)

r2 + br + c = 0 (11)

Then our roots (also called eigenvalues) are r = 1
2 (−b±

√
b2 − 4c). What if b2 − 4c = 0⇒ c = b2/4? Then

r1,2 = −b/2. If we plug this in as usual we get y = c1e
−bx/2 + c2e

−bx/2 = (c1 + c2)e−bx/2. However, this
only gives us one constant so there is no way we can satisfy the two initial conditions. So, we need another
solution in addition to the one we have.

Suppose the “constant” c1 + c2 is not a constant, but rather a function of x; i.e. y = v(x)e−bx/2. We have
to figure out if a v will satisfy our ODE, and if so, what v is it. We want to plug into 10. The derivatives are

y′ = v′(x)e−bx/2 − b

2
e−bx/2v(x)⇒ y′′ = v′′(x)e−bx/2 − be−bx/2v′(x) +

b2

4
e−bx/2v(x).

Plugging into the ODE gives

e−bx/2
(
v′′ + (−b+ b)v′ +

(
b2

4
− b2

2
+
b2

4

))
= e−bx/2v′′ = 0

Since exp(−bx/2) can’t be zero in finite x, v′′ = 0⇒ v′ = c3 ⇒ v = c3x+ c4, which gives us a solution of

y = (c3x+ c4)e−bx/2.

We still don’t know if this is a legitimate solution or not yet, but let’s write down the theorem anyway and
then prove it.

Theorem 8. Consider the ODE

ay′′ + by′ + c = 0. (12)

If the characteristic polynomial has repeated roots; i.e. r1,2 = λ, then the general solution to 12 is,

y = (c1 + c2x)eλx. (13)



Proof. Clearly 13 is a solution to 12, which we verified by differentiating and plugging into the ODE.
Furthermore, W (eλx, xeλx) = e2λx 6= 0, which we calculated in class. �

Now, lets solve some problems before moving onto the second part of this section.

2) The characteristic equation is 9r2 +6r+1 = 0⇒ r = −1/3, then our solution is y = (c1 + c2x)e−x/3.

8) As per usual, 16r2 + 24r + 9 = 0⇒ r = −3/4⇒ y = (c1 + c2x)e−3x/4.

15) I’ll just show part d here. Solving the ODE gives us 4r2 + 12r + 9 = 0 ⇒ r = −3/2 ⇒ y =
(c1 + c2x)e−3x/2. The first initial condition gives y(0) = c1 = 1. The other one gives y′(0) =
−3/2 + c2 = b⇒ c2 = b+ 3/2. So, when b < −3/2 it’s eventually negative, but when b ≥ −3/2 it’s
always positive.

12) Again, we have to solve an IVP. Our roots are r2 − 6r + 9 = 0 ⇒ r = 3. So, our solution is
y = (c1 + c2x)e3x. From the initial conditions we have, y(0) = c1 = 0 and y′(0) = c2 = 2, so our
solution is y = 2xe3x.

20) We’re going to first solve for one solution, get our Wronskian, then use the Wronskian to solve for
the other solution,
(a) y1 = e−at

(b) W = C exp
(
−
∫

2adt
)

= Ce−2at.

(c) W = e−aty′2 + ae−aty2 = e−2at ⇒ y′2 + ay2 = e−at. We can solve this via integrating factor:
µ = eat, then

eaty2 =

∫
dt = t⇒ y2 = te−at.

Reduction of Order: The method we used in the beginning of class is called reduction of order, but we’ll
see that this is far more powerful than it first seemed. Consider the ODE

y′′ + p(x)y′ + q(x)y = 0 (14)

and suppose we know one solution, say y = y1(x), then we “guess” the full solution is of the form y =
v(x)y1(x). First we find the derivatives

y′ = y′1v + v′y1 ⇒ y′′ = y′′1 v + 2v′y′1 + v′′y1.

Plugging this in and grouping the respective v’s gives us

y′′1 v + 2v′y′1 + v′′y1 + py′1v + pv′y1 + qy1v = y1v
′′ + (2y′1 + py1)v′ +

���
���

��:0
(y′′1 + py′1 + qy1)v

= y1v
′′ + (2y′1 + py1)v′ = 0.

And set u = v′ to get

y1u
′ + (2y′1 + py1)u = 0⇒ u′ = −2y′1 + py1

y1
u = 0⇒

∫
du

u
= −

∫
2y′1 + py1

y1
dx

⇒ lnu = −
∫

2y′1 + py1
y1

dx⇒ u = exp

(
−
∫

2y′1 + py1
y1

dx

)
⇒ v =

∫
exp

(
−
∫

2y′1 + py1
y1

dx

)
.



Now, we’ll do some problems

27) Let y = vy1 ⇒ x(v′′y1 + 2v′y′1 + vy′′1 ) − (v′y1 + vy′1) + 4x3y1 = 0. Grouping all the v, v′, and v′′

terms gives

xy1v
′′ + 2xy′1v

′ − y1v′ +
���

���
���:

0

(xy′′1 − y′1 + 4x3y1)v = xy1v
′′ + 2xy′1v

′ − y1v′ = 0.

Set u = v′, then

u′ +

(
2y′1
y1
− 1

x

)
u = 0⇒ u′ =

(
1

x
− 4x cosx2

sinx2

)
u

⇒ lnu = lnx− 2

∫
2x cosx2

sinx2
dx = lnx− ln sin2 x2 + C0 ⇒ u =

kx

sin2 x2

⇒ v = k

∫
x csc2 x2dx = k1 cotx2 + C1 ⇒ y = k1 cosx2 + C1 sinx2.

So, y2 = cosx2.

29) Again we let y = vy1 ⇒ x2(v′′y1 + 2v′y′1 + vy′′1 )− (x− 0.1875)vy1 = 0. Grouping gives

x2y1v
′′ + 2x2y′1v

′ +
��

���
���

���:
0

[x2y′′1 − (x− 0.1875)y1]v = x2y1v
′′ + 2x2y′1v

′ = 0.

Set u = v′, then

u′ = −2
y′1
y1
u =

(
−2√
x
− 1

2x

)
u⇒ lnu = −2

∫
x−1/2dx+

1

2

∫
dx

x
= −4

√
x− 1

2
lnx+ C

⇒ u =
k√
x
e−4
√
x ⇒ v = ke−4

√
x + C ⇒ y = kx1/4e−2

√
x + Cx1/4e2

√
x.

So, y2 = x1/4e−2
√
x


