Sec. 1.6 Transposes and Symmetric Matrices
If $A=A^{T}$ then it is symmetric.
If $A=L U$ (i.e., $A$ is regular), and we multiply the rows of $U$ by a scalar factor, the reciprocals of the scalar factor can be saved in a matrix $D$. That is,

$$
U=\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \Rightarrow D V=\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]\left[\begin{array}{cc}
1 & b / a \\
0 & 1
\end{array}\right]
$$

If we further assume that $A$ is symmetric, then $V=L^{T}$ and $A=L D L^{T}$. We'll see more neat properties when we do GramSchmidt.

Also note that if $P$ is a permutation matrix, then $P P^{T}=I$.

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \Rightarrow P^{T}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \Rightarrow P P^{T}
$$

