12.3: Even and Odd Functions

As we saw for the last problem in the preceding section, it can be useful to know whether or not a function is odd or even. Also, many times we will want the Fourier series of a non-periodic function. In order to do this we need to create a periodic function that includes our non-periodic function. Instead of creating something that is neither odd nor even if we create an even or odd function we can save a lot of time. Before we see these techniques lets define some terms and develop the theory.

Definition 1. Consider the function $f(x)$ such that $f(-x)=f(x)$, then f is said to be even.
Definition 2. Consider a function $f(x)$ such that $f(-x)=-f(x)$, then f is said to be odd.
There are some important properties that we should keep in mind.

Properties.

- Sum/difference of two even functions is even.
- Sum/difference of two odd functions is odd.
- Sum/difference of an even and an odd function is neither even nor odd.
- Product/quotient of two even functions is even.
- Product/quotient of two odd functions is even.
- Product/quotient of an even function and an odd function is odd.
- If f is even, $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$.
- If f is odd, $\int_{-L}^{L} f(x) d x=0$.

Now we can think of a Fourier cosine series and Fourier sine series. These can be derived straight from the Fourier series equations so it's best not to memorize these formulas.

Fourier cosine series. If f is an even periodic function generated on $-L \leq x \leq L$, then $b_{n}=0$, so

$$
\begin{align*}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right) \tag{1}\\
& a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
\end{align*}
$$

Fourier sine series. If f is an odd periodic function generated on $-L \leq x \leq L$, then $a_{n}=0$, so

$$
\begin{array}{r}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{2}\\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{array}
$$

For the next few problems we just apply the definition of odd and even functions.
(1) Odd
5) Even
6) Neither

Periodic Extensions. Suppose a function f is defined only on $[0, L]$. If we want to find the Fourier series of this we need to make a periodic function that "includes" f. These are called periodic extensions and can either be odd or even.

For these problems we did the sketching in class. Here I will do the problems that requires calculations
Ex: Find the Fourier Sine Series of $f(x)=L-x$ on $[0, L]$.
(a) Notice that for odd extensions our periodic function of period $2 L$ becomes

$$
g(x)=\left\{\begin{array}{ll}
-f(-x) & -L<x<0 \\
f(x) & 0<x<L
\end{array}= \begin{cases}-L-x & -L<x<0 \\
L-x & 0<x<L\end{cases}\right.
$$

We know that for odd extensions we'll get a sine series so we only do the sine calculations,
$b_{n}=\frac{2}{L} \int_{0}^{L}(L-x) \sin \left(\frac{n \pi x}{L}\right) d x=-\left.(L-x) \frac{2}{n \pi} \cos \left(\frac{n \pi x}{L}\right)\right|_{0} ^{L}+\frac{2}{n \pi} \int_{0}^{L} \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2 L}{n \pi}+\left.\frac{2 L}{(n \pi)^{2}} \sin \left(\frac{n \pi x}{L}\right)\right|_{0} ^{b \rightarrow 0}$
Then our Fourier sine series is

$$
f(x)=\frac{2 L}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{L}\right)
$$

(b) Sketch the solution for $L=4$.

Ex: Find the Fourier Sine and Cosine series of the following function

$$
f(x)= \begin{cases}x & \text { for } 0<x<1 \\ 0 & \text { for } 1<x<2\end{cases}
$$

(a) Sketch the even and odd extensions of the function.
(b) For the cosine series we have

$$
a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x=\int_{0}^{1} x d x=\frac{1}{2}
$$

and

$$
\begin{aligned}
a_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=\int_{0}^{1} x \cos \left(\frac{n \pi x}{2}\right) d x=\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)+\left.\frac{4}{(n \pi)^{2}} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{1} \\
& =\frac{2}{n \pi} \sin \left(\frac{n \pi}{2}\right)+\frac{4}{(n \pi)^{2}} \cos \left(\frac{n \pi}{2}\right)-\frac{4}{(n \pi)^{2}}
\end{aligned}
$$

Notice that for this problem we can't simplify the indices in any reasonable manner, so we leave it as is. So the Fourier cosine series is

$$
f(x)=\frac{1}{4}+\sum_{n=1}^{\infty}\left[\frac{2}{n \pi} \sin \left(\frac{n \pi}{2}\right)+\frac{4}{(n \pi)^{2}} \cos \left(\frac{n \pi}{2}\right)-\frac{4}{(n \pi)^{2}}\right) \cos \left(\frac{n \pi x}{2}\right)
$$

Now, for the sine series we have

$$
\begin{aligned}
b_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\int_{0}^{1} x \sin \left(\frac{n \pi x}{2}\right) d x=-\frac{2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\left.\frac{4}{(n \pi)^{2}} \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{1} \\
& =-\frac{2}{n \pi} \cos \left(\frac{n \pi}{2}\right)+\frac{4}{(n \pi)^{2}} \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

Then our Fourier series is

$$
f(x)=\sum_{n=1}^{\infty}\left[-\frac{2}{n \pi} \cos \left(\frac{n \pi}{2}\right)+\frac{4}{(n \pi)^{2}} \sin \left(\frac{n \pi}{2}\right)\right] \sin \left(\frac{n \pi x}{2}\right)
$$

