Supplementary problems: 13.3 \# 1,3,5,8
Quiz: 13.3
Compulsory problems:
Consider the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=K \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

with the following initial and boundary conditions
(1) [9 pts.] $u(a, t)=5, u_{x}(b, t)=0$. Which of the following initial conditions will yield no solution? Provide reasoning.
(Hint1: Don't solve the heat equation). (Hint2: If the initial temperature profile (initial condition) does not match the boundary conditions or if there is a jump/essential discontinuity at any point in the initial temperature profile, we can't solve the heat equation as is.)
(a) $u(x, 0)=10$
(b) $u(x, 0)=5$
(c) $u(x, 0)=\frac{5(x-a)}{a-b}+5$
(d)

$$
u(x, 0)= \begin{cases}6-\frac{x}{a} & \text { for } a<x<(b-a) / 2 \\ 6-\frac{b-a}{2 a} & \text { for }(b-a) / 2<x<b\end{cases}
$$

(e)

$$
u(x, 0)= \begin{cases}5 & \text { for } a<x<(b-a) / 2 \\ 4 & \text { for }(b-a) / 2<x<b\end{cases}
$$

Hint3: Here are the three possible reasons that you can give for no solution, otherwise the heat equation will have a solution. Occasionally multiple reasons work for the same problem, but you only need to pick one.

- The initial condition doesn't match the boundary condition at $x=a$.
- The initial condition doesn't match the boundary condition at $x=b$.
- The initial condition has a jump discontinuity in the middle.
(2) [11 pts.] $u(1, t)=u(\infty, t)=0 ; u(x, 0)=1$.

Do a change of variables $x \mapsto \xi$ to put the equation onto a finite domain; i.e. $u(\xi=0, t)=u(\xi=1, t)$. And write down the heat equation with this change of variables; i.e. in terms of ξ.

Hint: Recall if $\xi=f(x)$

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x}=f^{\prime}(x) \frac{\partial u}{\partial \xi} \tag{2}
\end{equation*}
$$

(3) [40 pts.]

$$
u(0, t)=u_{x}(2, t)=0 ; \quad u(x, 0)= \begin{cases}x & \text { for } 0<x<1 \tag{3}\\ 1 & \text { for } 1<x<2\end{cases}
$$

Solve the heat equation and write down the complete solution. You can skip the nonessential steps, but please show the integration.

Your homework raw score is: $\frac{n}{2 m} \cdot M+\left(1-\frac{n}{2 m}\right) \cdot N=N+\frac{n}{2 m}(M-N)$. For this homework, $M=60, m=4, N$ is the number of compulsory problems you get correct, and n is the number of supplementary problems you complete. It should be noted that for the supplementary problems I will be looking for full completion, but I won't take off points for mistakes.

