
Math 2450 Rahman Week 6

11.3 Partial derivatives (continued)

Ex: If f(x, y) = 4− x2 − 2y2, find fx(1, 1) and fy(1, 1) and interpret the slopes.
Solution: Lets first find the slopes; i.e., take the derivative. fx = −2x ⇒ fx(1, 1) = −2 and

fy = −4y ⇒ fy(1, 1) = −4.
Lets first think about what sort of shape this is. It is clearly a quadratic surface, but specifically

and elliptic paraboloid. Then what do the derivatives tell us? They are the slopes of the zx and zy
traces.

Ex: If f(x, y) = sin(x/(1 + y)), calculate ∂f/∂x and ∂f/∂y.
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Ex: Find ∂z/∂x and ∂z/∂y if z is defined implicitly as a function of x and y in the equation x3 + y3 + z3 +
6xyz = 1.

Solution:
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Ex: Find fx, fy, fz if f(x, y, z) = exy ln z.
Solution: fx = yexy ln z, fy = xexy ln z, fz = exy/z.

We can also have higher order derivatives just like with single variable functions: ∂x(fx) = fxx, ∂y(fy) =
fxy, ∂x(fy) = fyx, and ∂(fy) = fyy.

Ex: Find the second partial derivatives of f(x, y) = x3 + x2y3 − 2y2.
Solution: Recall fx = 3x2+2xy3 and fy = 3x2y2−4y, then fxx = 6x+2y3, fxy = 6xy2, fyx = 6xy2,

fyy = 6x2y − 4.

We notice that the middle partials are equivalent. However, this is because the function is “nice”, but it
won’t work for all functions.

Theorem 1. Clairaut Suppose f is defined on a disk D that contains point (a, b). If fxy and fyx are both
continuous on D, then fxy(a, b) = fyx(a, b).

This also extends to higher derivatives, for example fxyy = fyxy = fyyx if those functions are continuous.
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Ex: Calculate fxxyz if f(x, y, z) = sin(3x+ yz).
Solution:

fx = 3 cos(3x+yz)⇒ fxx = −9 sin(3x+yz)⇒ fxxy = −9z cos(3x+yz)⇒ fxxyz = −9 cos(3x+yz)+9yz sin(3x+yz).

Ex: Show that u(x, y) = ex sin y is a solution to Laplace’s equation uxx + uyy = 0.
Solution: All we have to do is plug into the differential equation. Notice that uxx = ex sin y and

uyy = −ex sin y, so it is obvious that this function satisfies the differential equation.

Ex: Verify that u(x, y) = sin(x− ct) satisfies the wave equation utt = c2uxx.
Solution: We do the same exact thing as before. utt = −c2 sin(x − ct) and uxx = − sin(x − ct).

And once again it is clear that this satisfies the differential equation.

11.4 Tangent planes, approximations, differentiability

Consider a surface x = f(x, y), where f has continuous first partial derivatives. Just like in the previous
section, we can find the tangent line in the x-direction and y-direction at point (x0, y0, z0) by doing fx(x0, y0)
and fy(x0, y0). For the tangent line in the x-direction we just use rise over run to get

fx(x0, y0) =
z − z0
x− x0

⇒ z − z0 = fx(x0, y0)(x− x0),

and similarly for the y-direction we get z − z0 = fy(x0, y0)(y − y0). Now let write down the equation of a
plane,

A(x− x0) +B(y − y0) + C(z − z0) = 0⇒ a(x− x0) + b(y − y0) = z − z0

where a = −A/C and b = −B/C. Now, if we set y = y0 we get z − z0 = a(x − x0), and notice that at the
tangent line in the x-direction the slope is a = fx(x0, y0), and similarly b = fy(x0, y0), then an equation of the
tangent plane to the surface z = f(x, y) at point (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0). (1)

Ex: Find the tangent plane of the elliptic paraboloid z = 2x2 + y2 at point (1, 1, 3).
Solution: Let f(x, y) = 2x2 + y2, then fx = 4x ⇒ fx(1, 1) = 4, and fy = 2y ⇒ fy(1, 1) = 2, and

hence

z − 3 = 4(x− 1) + 2(y − 1).

What happens to the distance between the plane and the surface as we move closer to the reference
point? What can we use this concept for? This works just like tangent lines in 1-D. We can approximate our
quadratic surface with a tangent plane, and the approximation gets better as we move closer to the reference
point.



Linear approximations

In our previous example we get our linearization of f at (1, 1) by solving for z:

L(x, y) = 4x+ 2y − 3. (2)

and we can use this for our linear approximation of f at (1, 1):

f(x, y) ≈ 4x+ 2y − 3. (3)

For example, f(1.1, 0.95) ≈ 4 ·(1.1)+2 ·(0.95)−3 = 3.3, which is close to the real value: f(1.1, 0.95) = 3.3225.
However, L(2, 3) = 11, but f(2, 3) = 17, so (2, 3) is too far from (1, 1) for the linearization L to be a good
approximation for f .

In general if z0 = f(a, b); i.e., a = x0 and b = y0, then

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) is the tangent plane, (4a)

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) is the linearization, (4b)

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) is the linear approximation, (4c)

We may not always have such approximations. Consider

f(x, y) =

{
xy

x2+y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0);

Here fx(0, 0) = 0 and fy(0, 0) = 0, but f(x, y) ≈ 0 and f(x, y) = 1/2 along the line y = x, so we cannot use
this approximation. This is because fx and fy are not continuous.

Theorem 2. If the partial derivatives fx and fy exist near (a, b) and are continuous at (a, b), then f is
differentiable at (a, b).

Notice that this may not be the only time f is differentiable, but continuity of fx and fy guarantees
differentiability.

Ex: Show that f(x, y) = xex,y is differentiable at (1, 0) and find its linearization there. Then use it to
approximate f(1.1,−0.1).

Solution: fx = exy + xyexy and fy = x2exy are continuous since they are products of polynomials
and exponentials, so the function is differentiable. Therefore, we can calculate the linearization at
(1, 0)

L(x, y) = f(1, 0) + fx(1, 0)(x− 1) + fy(1, 0)(y − 0) = 1 + (x− 1) + y = x+ y,

and we can use this to approximate the function near that point; i.e., xexy = x+ y at (1, 0), so

f(1.1,−0.1) ≈ 1.1− 0.1 = 1.



Just as with functions of one variable, we have differentials:

dz

dx
= fx(x, y)⇒ dz = fx(x, y)dx,

in the x-direction and similarly dz = fy(x, y)dy in the y-direction, so

dz = fx(x, y)dx+ fy(x, y)dy =
∂z

∂x
dx+

∂z

∂y
dy (5)

Ex: (a) If z = f(x, y) = x2 + 3xy − y2, find the differential dz.
Solution:

dz = fxdx+ fydy = (2x+ 3y)dx+ (3x− 2y)dy.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare ∆z with dz.
Solution: dx = 0.05 and dy = −0.04, then

dz = (2 · 2 + 3 · 3) · 0.05 + (3 · 2− 2 · 3) · (−0.04) = 0.65.

and

∆z = f(2.05, 2.96)− f(2, 3) = 0.6449.

So, dz is a good approximation of ∆z, and easier to compute.

Ex: The base radius and height of a right circular cone are measured as 10 cm and 25 cm respectively,
with a possible error in measurement of as much as 0.1 0.1cm in each. Use differentials to estimate
the maximum error in the calculated volume.

Solution: The volume of a right circular cone V = πr2h/3, then
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3
(10)2(0.1) = 20π cm3.



11.5 Chain rules

Recall for a single variable function, if f(x) and x = g(t), then dy/dt = (dy/dx)(dx/dt), then for a two
variable function z = f(x, y) and x = g(t), y = h(t), this becomes

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
. (6)

Ex: If z = x2y + 3xy4, where x = sin 2t and y = cos t, find dz/dt at t = 0.
Solution: Let us go step by step with the derivatives ∂z/∂x = 2xy + 3y4, ∂z/∂y = x2 + 12xy3,

dx/dt = 2 cos 2t, and dy/dt = − sin t.
Now we want to evaluate at t = 0, but notice that it is not absolutely necessary to substitute the

functions for x and y since we can simply plug in t = 0, so

dz

dt

∣∣∣∣
t=0

= (2xy + 3y4)(2 cos 2t) + (x2 + 12xy3)(− sin t)

∣∣∣∣
t=0, x=0, y=1

= 6.

What if x and y are functions of two variables? Let z = f(x, y) and x = g(s, t), y = h(s, t), then
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Ex: If z = ex sin y where x = st2 and y = s2t, find ∂z/∂s and ∂z/∂t.
Solution:
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2
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2

cos(s2t).

This can be extended to as many variables we want, but it won’t help to memorize these formulas. Think
about the concepts and just differentiate.


