Math 2450 Rahman Exam II Sample Problems

(1) Compute the following limits or show it does not exist:

$$
\begin{gather*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x y} \tag{1}\\
\lim _{(x, y) \rightarrow(1,1)} \frac{(x-1)^{2}-(y-1)^{2}}{x-y} \tag{2}\\
\lim _{(x, y) \rightarrow(0,0)} \tag{3}\\
\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}+y^{2}}{x y} \tag{4}\\
\lim _{(x, y) \rightarrow(1,0)}\left(\tan ^{-1} \frac{x}{y}\right)^{2} \tag{5}
\end{gather*}
$$

Solution:

(a) Take $y=x$, then the limit is 2 , then take $y=x^{2}$, then the limit is ∞, so the limit DNE because we found two limits that were different.
(b) Notice that $x-y=(x-1)-(y-1)$, then the denominator is one factor of the numerator,

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{(x-1)^{2}-(y-1)^{2}}{x-y}=\lim _{(x, y) \rightarrow(1,1)} \frac{(x-1)^{2}-(y-1)^{2}}{(x-1)-(y-1)}=\lim _{(x, y) \rightarrow(1,1)}(x-1)+(y-1)=0 .
$$

(c) 1 .
(d) 2 .
(e) Limit DNE. Take $y=m x$, then you get $\left(\tan ^{-1}(1 / m)\right)^{2}$ which is going to be different for different values of m.
Interesting side note: if it was x / y^{2} instead, then the limit would exists since $x / y^{2} \rightarrow \infty$ and $\tan ^{-1}(\infty)=\pi / 2$.
(2) Find the equation of the tangent plane to the graph of the function $f(x, y)=(x+2 y) \cos (3 x y)$ at point ($0,1,2$).

Solution: If $f(x, y)=z$, let $g(x, y, z)=(x+2 y) \cos (3 x y)-z=0$, then

$$
\nabla g=\langle\cos (3 x y)-3 y(x+2 y) \sin (3 x y), 2 \cos (3 x y)-3 x(x+2 y) \sin (3 x y),-1\rangle \Rightarrow \nabla g(0,1,2)=\langle 1,2,-1\rangle
$$

Then the equation for the plane is

$$
3(x-0)+6(y-1)-1(z-2)=0
$$

(3) The total resistance R of two resistors with resistance R_{1} and R_{2} connected in parallel is given by the following well-known formula:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Suppose that R_{1} and R_{2} are measured to be 300 and 600 ohms, respectively, with an error of ± 15 ohms in each measurement. Use differentials to estimate the maximum error in ohms in the calculated value of R.

Solution: We implicitly differentiate to get

$$
\frac{-1}{R^{2}} d R=\frac{-1}{R_{1}^{2}} d R_{1}+\frac{-1}{R_{2}^{2}} d R_{2} \Rightarrow d R=\left(\frac{1}{R_{1}^{2}} d R_{1}+\frac{1}{R_{2}^{2}} d R_{2}\right) R^{2}=\left(\frac{1}{R_{1}^{2}} d R_{1}+\frac{1}{R_{2}^{2}} d R_{2}\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-2}
$$

and plugging in the resistance gives us

$$
d R=\left(\frac{ \pm 15}{300^{2}}+\frac{ \pm 15}{600^{2}}\right)\left(\frac{1}{300}+\frac{1}{600}\right)^{-2}
$$

(4) Consider the surface described implicitly by the equation

$$
2 y x^{3}+\frac{z^{2}}{x}+x y \ln z=3
$$

(a) Find the equation of the tangent plane to the surface at point $(1,1,1)$

Solution: The normal vector will be of the form $\langle\partial z / \partial x, \partial z / \partial y,-1\rangle$. The implicit derivatives will be

$$
\begin{aligned}
6 y x^{2}-\frac{z^{2}}{x^{2}}+\frac{2 z}{x} \frac{\partial z}{\partial x}+y \ln z+\frac{x y}{z} \frac{\partial z}{\partial x} & =0 \\
2 x^{3}+\frac{2 z}{x} \frac{\partial z}{\partial y}+x \ln z+\frac{x y}{z} \frac{\partial z}{\partial y} & =0
\end{aligned}
$$

We plug in the points before solving for $\partial z / \partial x$ and $\partial z / \partial y$ because it makes the calculation much easier

$$
\begin{aligned}
6-1+2 \frac{\partial z}{\partial x}+0+\frac{\partial z}{\partial x} & =0 \Rightarrow \frac{\partial z}{\partial x}=-\frac{5}{3} \\
2+2 \frac{\partial z}{\partial y}+0+\frac{\partial z}{\partial y} & =0 \Rightarrow \frac{\partial z}{\partial y}=-\frac{2}{3}
\end{aligned}
$$

Then the equation for the tangent plane is

$$
\frac{5}{3}(x-1)+\frac{2}{3}(y-1)+(z-1)=0 .
$$

(b) Using the linear approximation evaluate the approximate value of z on the surface when $x=1.01$ and $y=0.98$.
Solution: Plugging in the values into the equation for the tangent plane gives us

$$
z \approx 1-\frac{5}{3}(1.01-1)-\frac{2}{3}(0.98-1)
$$

(5) Determine the local extrema locations (critical points) for

$$
z=x y^{2}+\frac{1}{2} x^{2}+y^{2}+10
$$

Solution: $\quad f_{x}=y^{2}+x=0, f_{y}=2 x y+2 y=0$, then if $y=0, x=0$ if $y \neq 0,2 x+2=0 \Rightarrow x=$ $-1 \Rightarrow y= \pm 1$, so the critical points are $(0,0),(-1,1)$, and $(-1,-1)$.
(6) Find and classify (max, min, saddle, inconclusive) the critical points of

$$
z=2(x+1)^{2}+3(y-2)^{2}+6(y-2)
$$

Solution: $\quad f_{x}=4(x+1)=0$ and $f_{y}=6(y-2)+6=0$, then $x=-1$ and $y=1$, so the critical point is $(-1,1)$. The second derivatives are $f_{x x}=4, f_{y y}=6$, and $f_{x y}=f_{y x}=0$, so the Hessian is

$$
H(-1,1)=\left|\begin{array}{ll}
4 & 0 \\
0 & 6
\end{array}\right|=24>0
$$

Since $H(-1,1)>0$ and $f_{x x}(-1,1)>0, f(-1,1)$ is a minima.
(7) Determine the following derivatives, using chain rule, for $w=x e^{z}+z y$
(a) $d w / d t$ at $t=1$, where $x=1 / t, y=t^{3}$, and $z=t-1$

Solution:

$$
\frac{d w}{d t}=e^{z} \frac{d x}{d t}+x e^{z} \frac{d z}{d t}+y \frac{d z}{d t}+z \frac{d y}{d t}=e^{z} \frac{-1}{t^{2}}+x e^{z}+y+z\left(3 t^{2}\right) .
$$

plugging in our point gives us $x=1, y=1$, and $z=0$, then

$$
\frac{d w}{d t}=-1+1+1+0=1
$$

(b) $\partial w / \partial v$ at $u=1$ and $v=1$, where $x=u^{2}+v, y=u v^{2}$, and $z=v^{2}-u^{2}$.

Solution:

$$
\frac{\partial w}{\partial v}=e^{z} \frac{\partial x}{\partial v}+x e^{z} \frac{\partial z}{\partial v}+y \frac{\partial z}{\partial v}+z \frac{\partial y}{\partial v}=e^{z}+x e^{z}(2 v)+y(2 v)+z(2 u v) .
$$

plugging in our points give us $x=2, y=1$, and $z=0$, then

$$
\frac{\partial w}{\partial v}=1+4+2+0=7
$$

(8) For the surface given by the equation $x^{2} y z+x+y z^{3}=7$, determine the following at point $(2,1,1)$
(a) The equation of the plane tangent to the surface

Solution:

$$
\nabla f=\left\langle 2 x y z+1, x^{2} z+z^{3}, x^{2} y+3 y z^{2}\right\rangle
$$

and after plugging in the points we get

$$
\nabla f(2,1,1)=\langle 5,5,7\rangle \Rightarrow 5(x-2)+5(y-1)+7(z-1)=0
$$

(b) write $\partial z / \partial x$ only in terms of x, y, z, and constants (just like we did in class).

Solution: We could use the implicit function theorem, but I don't like remembering formulas, so lets derive it from scratch.

$$
\frac{\partial}{\partial x}\left[x^{2} y z+x+y z^{3}=7\right] \Rightarrow 2 x y z+x^{2} y \frac{\partial z}{\partial x}+1+3 y z^{2} \frac{\partial z}{\partial x}=0 \Rightarrow \frac{\partial z}{\partial x}=-\frac{2 x y z+1}{x^{2} y+3 y z^{2}}
$$

which is the same thing you would get from the implicit function theorem: $\partial z / \partial x=-f_{x} / f_{z}$.
(9) For the function $f(x, y, z)=x / y+2 x y z$, evaluate the following at point $(1,1,0)$
(a) The directional derivative in the direction $\vec{v}=\hat{\mathbf{\imath}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$

Solution: $\quad \vec{u}=\langle 1,-2,-2\rangle / 3$ and

$$
\nabla f=\left\langle\frac{1}{y}+2 y z, \frac{-x}{y^{2}}+2 x z, 2 x y\right\rangle \Rightarrow \nabla f(1,1,0)=\langle 1,-1,1\rangle
$$

then $D_{u} f(1,1,0)=1 / 3$.
(b) A unit vector in the direction in which the directional derivative is maximum Solution:

$$
\left.\frac{\nabla f}{\|\nabla f\|}\right|_{(1,1,0)}=\frac{\langle 1,-1,1\rangle}{\sqrt{3}}
$$

(c) The maximum value of the directional derivative Solution:

$$
\|\nabla f\|=\sqrt{3}
$$

(10) Using Lagrange multipliers, find the point on the plane $x+2 y+3 z=6$ that is closest to the origin ($0,0,0$).

Solution: We first use the distance function $d=\sqrt{x^{2}+y^{2}+z^{2}}$ since the reference point is the origin. Let $d^{2}=f(x, y, z)=x^{2}+y^{2}+z^{2}$ with constraint $g(x, y, z)=x+2 y+3 z=6$.

Step 1: Then we take the gradients $\nabla f=\langle 2 x, 2 y, 2 z\rangle$ and $\nabla g=\langle 1,2,3\rangle$ and our system of equations is

$$
\begin{gathered}
2 x=\lambda \\
2 y=2 \lambda \\
2 z=3 \lambda \\
x+2 y+3 z=6
\end{gathered}
$$

then $y=2 x$ and $z=3 x$, and plugging this into the last equation gives us $x+4 x+9 x=14 x=6$, so the point on the plane that is closest to the origin is $(3 / 7,6 / 7,9 / 7)$.

