
Math 112 - 018 Rahman Final Exam Practice Problems

Spring 2011 solutions

(1) We use disks to solve this,

V = π

∫ 1

0
(xex)2dx = π

∫ 1

0
x2e2xdx.

We solve this via integration by parts with u = x2 ⇒ du = 2xdx
and dv = e2xdx⇒ v = e2x/2,

V =
π

2
x2e2x

∣∣∣∣1
0

− π
∫ 1

0
xe2xdx.

This is another integration by parts with u = x ⇒ du = dx and
dv = e2xdx⇒ v = e2x/2,

V =
πe2

2
− π

2
xe2x

∣∣∣∣1
0

+ π

∫ 1

0

1

2
e2xdx =

πe2

2
− πe2

2
+
π

4
e2x
∣∣∣∣1
0

=
π

4
(e2 − 1).

(2) (a) This is a typical partial fractions problem,

6x+ 8

x(x+ 2)2
=
A

x
+

B

x+ 2
+

C

(x+ 2)2
.

This gives us A(x+ 2)2 +Bx(x+ 2) + Cx = A(x2 + 4x+ 4) +
B(x2 + 2x) +Cx = (A+B)x2 + (4A+ 2B+C)x+ 4A = 6x+ 8.
The easiest thing to solve for is A = 2 ⇒ B = −2, plugging
these into the middle term gives, C = −4. Now we put these
into the integra,

∫
6x+ 8

x(x+ 2)2
dx =

∫ (
2

x
− 2

x+ 2
+

2

(x+ 2)2

)
dx = 2 ln |x| − 2 ln |x+ 2| − 2

x+ 2
+ C.

(b) We solve this via integration by parts with u = x ⇒ du = dx
and dv = sec2 xdx⇒ v = tanx,

∫
x sec2 xdx = x tanx−

∫
tanxdx = x tanx+ ln | cosx|+ C.

Recall, we solve
∫

tanxdx by breaking it up into sin and cos
and using u-sub.
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(3) (a) This is another partial fractions problem,

x2 + 2x+ 3

x(x2 + 1)
=
A

x
+
Bx+ C

x2 + 1
.

From this we get Ax2 +A+Bx2 +Cx = (A+B)x2 +Cx+A =
x2 + 2x+ 3. Then we solve for the coefficients A = 3, C = 2⇒
B = −2, and integrate

∫
x2 + 2x+ 3

x(x2 + 1)
dx =

∫ (
3

x
+

2

1 + x2
− 2x

x2 + 1

)
dx = 3 ln |x|+ 2 tan−1 x− ln |x2 + 1|+ C.

(b) This is a typical u-sub problem with u =
√
x⇒ du = 1/2

√
xdx,

∫
cos
√
x√

x
dx = 2

∫
cosudu = 2 sin

√
x+ C.

(4) (a) This is a trig integral problem where we convert sin2 x,

I =

∫
sin3 x cos2 xdx =

∫
(1− cos2 x) cos2 x sinxdx.

Now, we use u-sub with u = cosx⇒ du = − sinxdx,

I =

∫
(u4 − u2)du =

1

5
u5 − 1

3
u3 =

1

5
cos5 x− 1

3
cos3 x+ C.

(b) This is a trig-sub problem where x = sin θ ⇒ dx = cos θdθ,

∫
x2dx√
1− x2

=

∫
sin2 θ cos θ√

1− sin2 θ
dθ =

∫
sin2 θ cos θ

cos θ
dθ =

∫
sin2 θdθ =

∫
1

2
(1− cos 2θ)dθ

=
θ

2
− 1

4
sin 2θ + C =

1

2
sin−1 x− 1

2
sin θ cos θ + C =

1

2
sin−1 x− 1

2
x
√

1− x2 + C.

(5) The next two are improper integral problems.
(a) Here we first take the limit and then apply our u-sub of u =

tan−x ⇒ du = dx
1+x2

,

∫ ∞
0

tan−1 x

1 + x2
dx = lim

t→∞

∫ t

0

tan−1 x

1 + x2
dx = lim

t→∞

∫ tan−1 t

0
udu = lim

t→∞

u2

2

∣∣∣∣tan
−1 t

0

= lim
t→∞

1

2
(tan−1 t)2 =

π2

8
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(b) Again, we first include the limit then we use “by parts” using
u = lnx⇒ du = dx/x and dv = x2dx⇒ v = x3/3,

∫ 2

0
x2 lnxdx = lim

t→0

∫ 2

t
x2 lnxdx = lim

t→0

[
1

3
x3 lnx

∣∣∣∣2
t

−
∫ 2

t

1

3
x2dx

]
= lim

t→0

[
8

3
ln 2− 1

3
t3 ln t− 1

9
x3
]2
t

= lim
t→0

[
8

3
ln 2− 8

9
+
t3

9
− 1

3
t3 ln t

]
=

8

3
ln 2− 8

9
.

We get this by employing

lim
t→0

t3 ln t = lim
t→0

ln t

t−3
= lim

t→0

1

−3t−3
= 0.

(6) Remember the standard forms of these series!
(a) We go straight to ratio test,

lim
t→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
t→∞

∣∣∣∣ (n+ 1)2

(2n+ 2)!
· (2n)!

n2

∣∣∣∣ = lim
t→∞

∣∣∣∣ (1 + 1/n)2

(2n+ 2)(2n+ 1)

∣∣∣∣ = 0 < 1.

Hence, it converges.
(b) This looks like it diverges pretty badly so we just take the limit

of the “nth” term,

lim
t→∞

21/n = 1 6= 0.

Hence, it diverges.
(c) The easiest thing to do here is use limit comparison,

lim
t→∞

(1 + 3n)/(1 + 4n)

3n/4n
= lim

t→∞

1 + 3n

1 + 4n
· 4n

3n
= lim

t→∞

1 + 12n

1 + 12n
= 1.

So, this is a valid comparison. Since
∑∞
n=1(3/4)n converges

by the geometric series because 3/4 < 1, therefore
∑∞
n=1

1+3n

1+4n

converges by the limit comparison test.
(d) We can do this one by direct comparison, but if you’re not

sure you should just use limit comparison. Notice that
√
n−1

3n2+4
≤

√
n

3n2 = 1
3n3/2 . Since 1

3

∑∞
n=1 1/n3/2 converges by p-series because

p > 1,
∑∞
n=1

√
n−1

3n2+4
converges by the direct comparison test.



(7) As per usual we first employ the ratio test,

lim
t→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
t→∞

∣∣∣∣(x− 2)n+1

√
n+ 2

·
√
n+ 1

(x− 2)n

∣∣∣∣ = lim
t→∞

√
n+ 1

n+ 2
|x− 2| = lim

t→∞

√
1 + 1/n

1 + 2/n
|x− 2| = |x− 2|.

Since we need |x − 2| < 1 by the ratio test, the radius of conver-
gence is R = 1, and the interval of absolute convergence is 1 < x < 3.
Now we must test the end points. When x = 1, our series becomes∑∞
n=1 1/

√
n+ 1 =

∑∞
n=2 1/

√
n diverges by p-series because p < 1.

When x = 3, our series becomes
∑∞
n=1(−1)n/

√
n+ 1. We first take

the limit of the nth term, limt→∞ 1/
√
n+ 1 = 0. Next we show that

it’s decreasing, 1/
√
n+ 1 > 1/

√
n+ 2. Therefore, by the alternating

series test, it converges. So, our interval of convergence is 1 < x ≤ 3.
(8) Notice that f(π/4) =

√
2/2, f ′(π/4) = −

√
2/2, f ′′(π/4) = −

√
2/2

and hence

f(x) ≈
√

2

2
−
√

2

2

(
x− π

4

)
−
√

2

4

(
x− π

4

)2

.

(9) Recall that the series for exponentials about x = 0 is ex =
∑∞
n=0 x

n/n!.
(a) Now we just plug in −x5 and multiply out by x,

xe−x
5

= x
∞∑
n=0

(−x5)n

n!
= x

∞∑
n=0

(−1)nx5n

n!
=
∞∑
n=0

(−1)nx5n+1

n!
.

(b) Now we integrate term by term,

∫ 0.1

0
xe−x

5
dx =

∫ 0.1

0

∞∑
n=0

(−1)nx5n+1

n!
=
∞∑
n=0

∫ 0.1

0

(−1)nx5n+1

n!
=
∞∑
n=0

(−1)nx5n+2

(5n+ 2)n!

∣∣∣∣0.1
0

=
∞∑
n=0

(−1)n(0.1)5n+2

(5n+ 2)n!
=
∞∑
n=0

(−1)n(10)−(5n+2)

(5n+ 2)n!

(c) We see here that the exponential gets large very quickly and that
it’s an alternating series. The error for an alternating series is
just the next term from the truncation, so lets just compute
each term and find where it gives us the desired error and then
just take all the terms up to but not including that term,

n = 0 :
1

200
n = 1 : −10−7

7
n = 2 :

10−12

24
< 10−8.

Therefore the following is correct up to 10−8,

∫ 0.1

0
xe−x

5
dx ≈ 1

200
− 10−7

7
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(10) We have to find the points at which these two curves intersect,
2 cos θ = 1 ⇒ θ = π/3,−π/3. Notice that we want the interval
−π/3 ≤ θ ≤ π/3 because as hypothesized by the problem, 2 cos θ
is larger in that region. Now we just plug into our formula and
integrate,

1

2

∫ π/3

−π/3
(4 cos2 θ − 1)dθ =

∫ π/3

−π/3
(1 + cos 2θ)dθ − θ

2

∣∣∣∣π/3
−π/3

= θ +
1

2
sin 2θ − θ

2

∣∣∣∣π/3
−π/3

=

√
3

2
.

(11) Lets first find the respective derivatives,

dy

dt
=

1

1 + t

dx

dt
=

1 + t− t
(1 + t)2

=
1

(1 + t)2
.

Therefore, dy/dx = 1 + t, and in the same vein

d2y/dx2 = dy′/dx = dy′/dt
dx/dt = (1 + t)2.



Fall 2011 solutions

(1) First lets calculate the respective derivatives, dx/dt = −2 cos t sin t =
− sin 2t and dy/dt = 2 sin t cos t = sin 2t.
(a) We plug into our arc length formula,

L =

∫ π/4

0

√
2 sin2 2tdt =

√
2

∫ π/4

0
sin 2tdt =

−
√

2

2
cos 2t|π/40 =

√
2

2
.

(b) We plug into the surface area formula,

SA =

∫ π/4

0
2π sin2 t

√
2 sin 2tdt = π

√
2

∫ π/4

0
(1− cos 2t) sin 2tdt = π

√
2

∫ π/4

0
(sin 2t− cos 2t sin 2t)dt

= π
√

2

[
−1

2
cos 2t|π/40 −

∫ π/4

0

1

2
sin 4tdt

]
=

√
2

2
π +

π
√

2

8
cos 4t|π/40 =

√
2

2
π −
√

2

4
π =

√
2

4
π.

(2) Lets convert this to cartesian coordinates x = r cos θ = 4 sin θ cos θ =
2 sin 2θ and y = r sin θ = 4 sin2 θ.
(a) Now lets find the respective derivatives, dy/dθ = 8 sin θ cos θ =

4 sin 2θ and dx/dθ = 4 cos 2θ, then we get

dy

dx

∣∣∣∣
θ=π/3

=
sin 2θ

cos 2θ

∣∣∣∣
θ=π/3

= −
√

3.

(b) To find the area we notice that the bounds will be θ = 0 and
θ = π,

A =
1

2

∫ π

0
16 sin2 θdθ = 4

∫ π

0
(1− cos 2θ)dθ = 4θ − 2 sin θ|π0 = 4π.

(3) (a) This is a typical partial fractions problem,

4x+ 1

x(x+ 1)2
=
A

x
+

B

x+ 1
+

C

(x+ 1)2
.

This gives, A(x + 1)2 + Bx(x + 1) + Cx = A(x2 + 2x + 1) +
B(x2 + x) + Cx = (A + B)x2 + (2A + B + C)x + A = 4x + 1,
which gives A = 1, B = −1, C = 3. Then the integral becomes,

∫
4x+ 1

x(x+ 1)2
dx =

∫ (
1

x
− 1

x+ 1
+

3

(x+ 1)2

)
dx = ln |x| − ln |x+ 1| − 3

x+ 1
+ C.



(b) This is a typical trig-sub problem, where x = 2 sin θ ⇒ dx =
2 cos θdθ,

∫
dx

(4− x)3/2
=

∫
2 cos θdθ

(4− 4 sin2 θ)3/2
=

∫
2 cos θ

(2 cos θ)3
dθ =

∫
dθ

4 cos2 θ

=
1

4

∫
sec2 θdθ =

1

4
tan θ =

x

4
√

4− x2
+ C.

(4) (a) This is a typical partial fractions problem, but we already did
the partial fractions in 3a from Spring 2011 so we go straight
to the coefficients: (A + B)x2 + Cx + A = 3x − 1, so we get
A = −1, B = 1, C = 3. Now we integrate,

∫
3x− 1

x(x2 + 1)
dx =

∫ (
x

x2 + 1
+

3

x2 + 1
− 1

x

)
dx =

1

2
ln |x2 + 1|+ 3 tan−1 x− ln |x|+ C.

(b) We use by parts with u = lnx ⇒ du = dx/x and dv =

x−1/2dx⇒ v = 2x1/2,

∫
lnx√
x

dx =

∫
x−1/2 lnxdx = 2

√
2 lnx− 2

∫
dx√
x

= 2
√
x lnx− 4

√
x+ C.

Notice that I did not include absolute values here, because ab-
solute values would make it incorrect.

(5) Both of these are improper integrals.
(a) We already did the u-sub in problem 3b Spring 2011, we will

skip that step,

∫ 1

0

cos
√
x√

x
dx = lim

t→0

∫ 1

t

cos
√
x√

x
dx = lim

t→0
2 sin

√
x|1t = 2 sin(1)− lim

t→0
2 sin

√
t = 2 sin(1).

(b) We integrate this by parts with u = x ⇒ du = dx and dv =
e−xdx⇒ v = −e−x,

∫ ∞
0

xe−xdx = lim
t→∞

∫ t

0
xe−xdx = lim

t→∞

[
−xe−x

∣∣t
0

+

∫ t

0
e−xdx

]
= lim

t→∞

[
−xe−x − e−x

]t
0 = lim

t→∞
1− te−t − e−t = 1

We get this by employing,

lim
t→∞

te−t = lim
t→∞

t

et
= lim

t→∞

1

et
= 0.



(6) We use disks to get V = π
∫ 1
0

dx
(1+x2)2

. Then we use trig-sub with

x = tan θ ⇒ dx = sec2 θdθ,

V = π

∫ π/4

0

sec2 θdθ

(1 + tan2 θ)2
= π

∫ π/4

0

sec2 θ

sec4 θ
dθ = π

∫ π/4

0
cos2 θdθ

= π

∫ π/4

0

1

2
(1 + cos 2θ)dθ =

π

2

[
θ +

1

2
sin 2θ

]π/4
0

=
π

2

[
π

4
+

1

2

]
(7) Again, remember the standard forms of series.

(a) This is a typical limit comparison problem. Lets compare to
1/n,

lim
n→∞

(n+ 1)/
√
n4 + 4

1/n
= lim

n→∞
n+ 1√
n4 + 4

· n = lim
n→∞

n2 + n√
n4 + 4

= lim
n→∞

1 + 1/n√
1 + 4/n

= 1.

So, this is a valid comparison. Since
∑∞
n=1 1/n diverges by p-

series because p = 1,
∑∞
n=1(n+1)/

√
n4 + 4 diverges by the limit

comparison test.
(b) We can use direct comparison for this. Notice 1/(en + 1) ≤

1/en, and since
∑∞
n=1 1/en converges by geometric series be-

cause 1/e < 1,
∑∞
n=1 1/(en+1) converges by the direct compar-

ison test.
(c) We can tell this diverges so lets just take the limit of the “nth”

term,

lim
n→∞

2n + 5n

4n + 5n
= lim

n→∞
(2/5)n + 1

(4/5)n + 1
= 1 6= 0

And therefore it diverges.
(8) As per usual we apply ratio test,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣3n+1(x− 1)n+1

n+ 1
· n

3n(x− 1)n

∣∣∣∣ = lim
n→∞

3n

n+ 1
|x− 1| = lim

n→∞
3|x− 1|
1 + 1/n

= 3|x− 1|.

By the ratio test this needs to be less than 1 to converge absolutely,
hence we require |x− 1| < 1/3, i.e. the radius of convergence is R =
1/3. So the interval of absolute convergence is 2/3 < x < 4/3. Now
we test the end points. For x = 4/3 our series becomes

∑∞
n=1 1/n

which diverges by p-series because p = 1. For x = 2/3 we get∑∞
n=1(−1)n/n, which is an alternating series. We first take the limit

of the “nth” term, limn→∞ 1/n = 0. Next we show it’s decreasing,
1/n > 1/(n+ 1). Therefore, the series converges by the alternating
series test. This gives an interval of convergence of 2/3 ≤ x < 4/3.



(9) We know the Taylor series of cosx =
∑∞
n=0(−1)n x2n

(2n)! .

(a) Plugging in x2 and multiplying through by x gives,

x cosx2 = x
∞∑
n=0

(−1)n
x4n

(2n)!
=
∞∑
n=0

(−1)n
x4n+1

(2n)!
.

(b) We take one more term than the x5 term and take the limit,

lim
x→0

x cos(x2 − x)

3x5
= lim

x→0

(
x− x5

2 + x9

24 + · · ·
)
− x

3x5
= lim

x→0

−x5

2 + x9

24 + · · ·
3x5

=
−1

6
.

(10) (a) Notice f (n)(2) = e2, so we get,

ex ≈ e2 + e2(x− 2) +
e2

2
(x− 2)2 +

e2

6
(x− 2)3.

(b) For the erorr we apply the Taylor remainder formula and we
notice

∣∣(x− 2)4
∣∣ ≤ 1 in our interval.

|R3| ≤
∣∣∣∣M4!

(x− 2)4
∣∣∣∣ ≤ ∣∣∣∣e24!

(x− 2)4
∣∣∣∣ ≤ e2

24
.


