Physics-based models and simulations of cancer drug response in solid tumors

Aminur Rahman\(^1\), Souparno Ghosh\(^2\), Erdi Kara\(^3\), Eugenio Aulisa\(^3\);
\(^1\)Department of Applied Mathematics, University of Washington; \(^2\)Department of Statistics, University of Nebraska - Lincoln; \(^3\)Department of Mathematics and Statistics, Texas Tech University; ara@uw.edu, http://faculty.washington.edu/arahman2

2020 National Cancer Institute statistics:
- Almost 40% of men and women in the United States end up developing cancer in their lifetime.
- 57% of new cancer cases and 65% cancer-related deaths are in less developed parts of Africa, Asia, and Central America.
- Underrepresented?
- National expenditure on cancer was $147.3 Billion in 2017.

The effect of transport on efficacy
- Known since the 80’s that ethanol kills solid tumor cells.
- Also kills healthy cells.
- Mohard et al. \([1]\) mixed ethyl-cellulose with ethanol to change the fluidic properties of the drug.
- Ethyl-cellulose mixture achieved similar efficacy as previous studies while injecting a quarter of the volume.

The model can perform two layer optimization:
- Use the mechanistic model’s performance on par with its data-driven counterparts.
- Can be used as an alternative to the ubiquitous Hill and sigmoidal data-driven models.
- Using only two free parameters, the mechanistic model performs better than twelve parameter data-driven models.

Can the inhomogeneous-anisotropic model predict treatment strategies that outperform the intuitive choice?
- For a nearly homogeneous-isotropic tumor, the intuitive choice of injecting into the center would work well.
- For highly inhomogeneous-anisotropic regions such as the brain, injecting into the center is not necessarily the best.
- Oncologists have more advanced intuition due to heristic knowledge of the blood-brain barrier, blood-brain-tumor barrier, and location of blood vessels.
- This supplements an oncologists expertise with more information about the expected transport in the tumor.

Brain tumors are different
- The brain is highly inhomogeneous and anisotropic.
- Tumors also become inhomogeneous and anisotropic.
- Diffusion tensor magnetic resonance imaging (DTI) is employed to map the inhomogeneities and anisotropies in the brain.

Current and future work
- Mechanistic - Statistics hybrid models.
- Stochastic population models.
- Asymptotic analysis on weak inhomogeneities/anisotropies.
- Collaborate with clinicians for better MRI data and test the theory through experiments.

References
[4] E.K. and E.A. gratefully acknowledge support from the Department of Mathematics and Statistics at TTU. S.G. acknowledges support from the National Science Foundation.

Acknowledgements
E.K. and E.A. gratefully acknowledge support from the Department of Mathematics and Statistics at TTU. S.G. acknowledges support from the Department of Mathematics at Texas Tech University.

Figure: Simulated dose-response curves of efficacy (blue), in vitro toxicity (red) and empirical observation (blue stan).

Figure: Simulated dose-response curves of efficacy (blue), in vitro toxicity (red), and empirical observation (blue stan).

Figure: Visualizations of DTI volume, mean diffusivity, and fractional anisotropy constructed from the eigenvalues of diffusion tensor, D(x).

Figure: Left: DTI image of a brain. Right: Plot of diffusion tensor from three intersecting slices.

Figure: Left: Performance of various injection points. Right: Dose-response curves from four representative points.

Challenges for simplest model
- Can the mechanistic model’s performance be on par with its data-driven counterparts?
- Both efficacy and toxicity is necessary to develop a treatment strategy.
- Real-world tumor population dynamics is more complex.
- Initial mechanistic model required calibration, which would be too clumsy for real world implementation.
- Initial mechanistic model assumed homogeneous-isotropic spherical tumors.

Efficacy-toxicity model
- Similar set up to simplest model.
- Only cancerous cells in the inner sphere.
- Only healthy cells outside of the sphere.
- Piecewise-constant diffusivity between healthy and cancerous cells.
- Natural cell death negates cell growth.

Simple transport-population model
Developed by A.R. \([2]\) to build a transport-population modeling framework with predictive performance on par with data-driven models.

Transport model
- Assumptions:
 - Spherical solid tumor.
 - Constant diffusivity.
 - Leaky boundary.
 - Injection into the center.
 - Diffusion begins after injection ends.

Population model
- Assumptions:
 - Minimum drug concentration, \(cT\) required to kill a cell.
 - Once apoptosis is triggered in a cell it cannot be stopped.
 - Initial mechanistic model intersecting slices.

What is cancer?
Step 1: Mutation
- Original sequence
- Point mutation

Step 2: Abnormal Growth
- Step 3: Invasion
- Normal
- Hyperplasia
- Dysplasia
- Cancer

Step 4: Metastasis
Source: https://www.cancer.gov/about-cancer/understanding/what-is-cancer

Source: [In this section, there are diagrams and images that are not fully visible or may require further description to understand clearly.]

Brain tumors are different
- The brain is highly inhomogeneous and anisotropic.
- Tumors also become inhomogeneous and anisotropic.
- Diffusion tensor magnetic resonance imaging (DTI) is employed to map the inhomogeneities and anisotropies in the brain.

Inhomogeneous - anisotropic model
Developed by E.K. et al. \([4]\) to model drug response in the brain from injection therapies such as convection enhanced delivery.

\[
\frac{\partial u}{\partial t} = \nabla \cdot (D(x) \nabla u(x,t)) - u(x,t) \gamma(x,t) \nabla u(x,t) \quad \text{for} \quad x \in \Omega; \quad u(x,t) = 0, \quad \nabla \cdot D(x) \nabla u(x,t) = 0 \quad \text{at} \quad \partial \Omega.
\]

Can be used as an alternative to the ubiquitous Hill and sigmoidal data-driven models.
- Using only two free parameters, the mechanistic model performs better than twelve parameter data-driven models.
- Can be used as an alternative to the ubiquitous Hill equation (state-of-the-art for over 100 years) to fit dose-response curves.
- The model can perform two layer optimization: biochemistry and biophysics.

Figure: Simulated dose-response curves of efficacy (blue), in vitro toxicity (red), and empirical observation (blue stan).

Figure: Simulated dose-response curves of efficacy (blue), in vitro toxicity (red), and empirical observation (blue stan).

Figure: Visualizations of DTI volume, mean diffusivity, and fractional anisotropy constructed from the eigenvalues of diffusion tensor, D(x).

Figure: Left: DTI image of a brain. Right: Plot of diffusion tensor from three intersecting slices.

Figure: Left: DTI image of a brain. Right: Plot of diffusion tensor from three intersecting slices.

Figure: Visualizations of DTI volume, mean diffusivity, and fractional anisotropy constructed from the eigenvalues of diffusion tensor, D(x).

Figure: Simulated dose-response curves of efficacy (blue), in vitro toxicity (red), and empirical observation (blue stan).

Can the inhomogeneous-anisotropic model predict treatment strategies that outperform the intuitive choice?
- For a nearly homogeneous-isotropic tumor, the intuitive choice of injecting into the center would work well.
- For highly inhomogeneous-anisotropic regions such as the brain, injecting into the center is not necessarily the best.
- Oncologists have more advanced intuition due to heuristic knowledge of the blood-brain barrier, blood-brain-tumor barrier, and location of blood vessels.
- This supplements an oncologists expertise with more information about the expected transport in the tumor.

Current and future work
- Mechanistic - Statistics hybrid models.
- Stochastic population models.
- Asymptotic analysis on weak inhomogeneities/anisotropies.
- Collaborate with clinicians for better MRI data and test the theory through experiments.

References
[4] E.K. and E.A. gratefully acknowledge support from the Department of Mathematics and Statistics at TTU. S.G. acknowledges support from the National Science Foundation.

Acknowledgements
E.K. and E.A. gratefully acknowledge support from the Department of Mathematics and Statistics at TTU. S.G. acknowledges support from the National Science Foundation.