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Machine learning (ML) has become increasingly influential to human society, yet the primary advancements
and applications of ML are driven by research in only a few computational disciplines. Even applications that
affect or analyze human behaviors and social structures are often developed with limited input from experts
outside of computational fields. Social scientists—experts trained to examine and explain the complexity of
human behavior and interactions in the world—have considerable expertise to contribute to the development
of ML applications for human-generated data, and their analytic practices could benefit from more human-
centered ML methods. Although a few researchers have highlighted some gaps between ML and social sciences
[51, 57, 70], most discussions only focus on quantitative methods. Yet many social science disciplines rely
heavily on qualitative methods to distill patterns that are challenging to discover through quantitative data. One
common analysis method for qualitative data is qualitative coding. In this work, we highlight three challenges
of applying ML to qualitative coding. Additionally, we utilize our experience of designing a visual analytics tool
for collaborative qualitative coding to demonstrate the potential in using ML to support qualitative coding by
shifting the focus to identifying ambiguity. We illustrate dimensions of ambiguity and discuss the relationship
between disagreement and ambiguity. Finally, we propose three research directions to ground ML applications
for social science as part of the progression toward human-centered machine learning.
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1 INTRODUCTION
Machine learning (ML) is one of the fastest growing fields in computer science (CS), and many
disciplines—physics, biology, finance, and others—have adopted ML methods to analyze data or
otherwise support their domains of research. At the same time, digital traces of human social
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interactions are proliferating, and increasing numbers of researchers in social science are working
to study human behaviors through social media and similar datasets (e.g., [59]). However, social
data are complex and require detailed examinations. Researchers have pointed out that the limited
data for minority populations may cause ML models to learn patterns or make inferences based
primarily or exclusively on majority group traits, which can lead to exacerbation of stereotypes or
unjust discrimination practices [3, 8, 11, 27, 32, 35, 45, 61, 69]. Therefore, it is important to carefully
integrate ML methods with social science practice, and to draw from the expertise of trained social
scientists, in order to make claims about human behaviors.

The field of computational social science has emerged to support analysis of ever larger datasets.
Nevertheless, progress in applying computational methods like ML to social science research has
been relatively slow compared to fields like biology [38]. Furthermore, much of the work using
ML techniques to make claims about human behavior derives from research in computational
fields such as computer science, statistics, and even physics, with limited involvement from social
scientists [13, 24, 69, 72]. Some researchers in computational social science are troubled by this
phenomenon because researchers with traditional computational backgrounds often lack training
in social science methods and have limited experience examining complex social data [24].

A number of existing discussions have tried to explain the gaps between social science and ML
in computer science. One suggested difference is that data analysis in social science is theory-
driven such that the data is drawn from a population with a presumed distribution (e.g., Poisson
distribution, Gaussian distribution, multinomial distributions). On the contrary, classical machine
learning problems, such as image recognition, are usually data-driven such that the data is assumed
to be drawn from an independent and identically distributed set where the goal is to find the
most optimal model that fits the data. Computer scientists often design and tweak models directly
from raw data, independent of theoretical presumptions of data distributions [51, 57]. Although
greater attention to alignment with theory may account for some of the gaps in ML as quantitative
analysis method for social science, other misalignments remain to be addressed. In fact, some social
science analysis methods, such as grounded theory methods, start from no theory and construct
theories iteratively based on data. This type of qualitative analysis is commonly used in analyzing
qualitative data, such as interview transcripts [4] and social media data [68]. Therefore, in order to
better utilize ML for social science analysis, understanding the gaps between ML and qualitative
methods in social science is critical.

In this paper, by leveraging our experiences of building a visual analytics tool for collaborative
qualitative coding, we highlight a few intrinsic tensions between social science practice andmachine
learning analysis in the context of qualitative coding. We then propose shifting the focus of ML
predictions to identify ambiguity. We conduct a Mechanical Turk study to understand different types
of ambiguity. Finally, we describe three future research directions and connect with existing work in
each direction. In highlighting these research opportunities, we intend to stimulate further research
toward supporting social scientists’ use of ML for both quantitative and qualitative methods. We
anticipate that more human-centered, interpretable ML methods have the potential to transform
social science research. Furthermore, findings from social science studies that use ML methods
may bolster the theoretical foundations for ML applications built upon social data, in addition to
promoting more human-centered, socially useful methods overall.

2 BACKGROUND
In this section, we define the scope of the terms ‘ML’ and ‘social sciences’ in this paper. Then, we
illustrate how ML is used in social science, followed by a summary of existing discussion on the
gaps between ML and social science. Next, we provide a brief overview of qualitative methods
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in social science, and specifically describe the process of qualitative coding and grounded theory
methods.

2.1 Definition of Machine Learning in This Paper
ML as a scientific field primarily focuses on developing algorithms and techniques to construct
representations (i.e., learn models) from data. Common topics in ML include supervised learning,
unsupervised learning, and reinforcement learning. Supervised learning algorithms, such as support
vector machine (SVM) and decision tree, aim to build a model based on a labeled dataset (i.e., data
with ground truth labels) for predicting unlabeled or even unseen data. Unsupervised learning
methods, like k-means and hierarchical clustering, try to represent a dataset without ground truth
labels. Reinforcement learning works under dynamic environments where model construction is
based not only on data but also on feedback from the environment. Data mining is the science
of extracting information from large, sometimes raw, data sets and can leverage techniques from
other disciplines such as statistics, ML, data management, pattern recognition, etc [26]. There are
four types of tasks within data mining. Exploratory data analysis is an interactive and iterative
process of exploring the data without any clear structure or goal (e.g., principal component analysis).
Descriptive modeling is a way to describe or generate data (e.g., clustering, density estimation).
Predictive modeling is a task that builds a model that predicts a variable given a set of other variables
extracted from data (e.g., classification, regression). Lastly, pattern recognition or detection is a way
to find regions in the space of data that differ from the rest (e.g., association rule learning). While
ML and data mining are easily conflated, it is important to remember that the goal of data mining
is to support the task of understanding and discovering of unknown structures in a given data
through the use of various techniques, and ML is one of many sources of methods that provides the
technical basis for data mining [75]. In this paper, we use the term ML to refer to the techniques
used for modeling, exploration, and pattern recognition without necessarily connecting these
techniques to how they are used in data mining.

2.2 Definition of Social Science in This Paper
In this paper, we refer to ‘social science’ as any discipline that studies human behaviors and social
phenomena. This definition includes traditional social science fields such as sociology, political
science, economics, anthropology, organization study, social psychology, etc. We also consider
more recently emerged disciplines or research areas like computer-supported cooperative work
(CSCW), social computing, and information science as social science since these fields partly inherit
social science traditions and often rely on theories or methods from traditional social science fields.

2.3 Use of Machine Learning in Social Science
2.3.1 Computational Methods in Social Science. Computational or statistical methods have been

widely used in social science since Adolphe Quetelet (1749-1827), one of the most influential social
statisticians and the inventor of the notion of the “average man," applied the principles and methods
of physical sciences to social sciences [46]. The study of social science events typically require some
type of basic descriptive statistics (e.g., central tendency, dispersion) and inferential statistics (e.g.,
estimation of confidence interval, significance testing). Regression analysis (e.g., linear regression,
analysis of variance) is used to model the relation between two or more variables for prediction
and forecasting [50].

ML methods, influenced heavily by statistics, have been gaining popularity in some social science
disciplines [63] and are used for predictive and descriptive analysis of data. With computational
and ML methods, social scientists can process and distill large amounts of data with numerous
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variables to infer causality or relations among latent variables or to predict outcomes for unseen
data.
Dimensionality reduction techniques (e.g., factor analysis, principal component analysis) can

infer the relations between latent structures [74]. Structural equation modeling is a technique
that allows development of a new variable from an existing set of variables [7]. Latent dirichlet
allocation is a generative probabilistic modeling technique used for topic modeling that reduces
the data to a probability distribution of “latent" topics discovered within the data [5]. K-means
clustering, although published more than 60 years ago, is still widely used among ML practitioners
and social scientists to separate large data space into subspaces that are manageable and meaningful
[33].

2.3.2 Bridging the Gap between Machine Learning and Social Science. Although ML methods
used in computational social science share the same foundations as statistical methods used in
traditional social science, some ML researchers in computational social science have indicated that
there are several fundamental conflicts between ML and social science [51, 57, 70]. For example,
the goal of ML is to predict behavior on unobserved data (A changes with B when everything else
is held constant, or correlation), whereas the goal of social science is to understand and explain
the whys and hows of observed phenomena (A influences B when all else is equal, or causation).
While causality has been a fundamental concern in social science, ML has traditionally not focused
on causality. Instead, ML puts emphasis on fine-tuning models and parameters to achieve high
prediction accuracy, or other metrics like precision and recall. Settles suggested that social science
is deductive and hypothesis-driven, while machine learning is inductive and data-driven [57].
Similarly, Rudin highlighted that a social scientist may form a hypothesis first and collect the data
specifically curated to test the hypothesis. A ML scientist will collect a large set of data with few
pre-defined goals and usually assume that the data is independent and identically distributed [51].
In addition, in a recent book chapter, Wallach pointed out several differences between social science
and computational social science in computer science [70]. For instance, social scientists usually
make claims based on multiple sources of information. However, most modern ML algorithms
only work under single-source settings. Thus, directly applying such a method to social science
problems is challenging. Furthermore, many ML methods are concerned merely about feasibility
and efficiency of the model. Results with only efficiency concerns without taking interpretability
or accountability into account can be risky for making social science claims.
With increasing demand and interest in computational social science, many efforts have been

made to bridge the gap between ML and social science. There has been a shift in focus to reframeML
in causal inference in order to discover natural experiments hidden in large data or to use machine
learning to predict counterfactual relations [2, 55, 66]. Some recent computational social science
research places strong focus on the explanation of phenomena (why and how), and while research
on single data source is still prevalent, there have been discussions on potential computational
challenges and opportunities to go beyond a single data source in order to answer meaningful
social science questions [70]. Wallach suggests several ways for computer scientists and social
scientists to collaborate and to advance computational social science: (1) understand each other by
engaging in meaningful discussions and attending each other’s conferences, (2) create high-quality
publication venues for interdisciplinary work, and (3) create interdisciplinary degree programs to
train the next generation of computational social scientists [70].

2.4 Qualitative Methods in Social Science andQualitative Coding
In addition to quantitative methods (e.g., statistical, computational,ML), social scientists use quali-
tative methods, such as observation, interviews, and case studies, as their primary research means
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or mixed with other quantitative methods. Qualitative methods have a long history in the hu-
manities. Since the early 20th century, fields like anthropology and sociology have established
the importance of qualitative inquiry [18]. For instance, a common approach to collect data in
anthropology is ethnography. In ethnographic studies, anthropologists go into a foreign society
(called a field site) for a long period of time and use a set of qualitative methods to collect data for
understanding the culture of the society: researchers observe people and their interactions on the
site, and interview people to collect their explanations of their behaviors. In the digital era, such
an ethnographic approach is often deployed to study people’s cyber behaviors and online social
phenomena. Researchers can go on a virtual site to observe users’ posting behaviors or collect a set
of historical posts to distill interaction patterns.
A common way to analyze qualitative data is qualitative coding. Qualitative coding, or simply

coding, is one of the major techniques used in qualitative analysis among social scientists [60].
In general, coding refers to the process of assigning descriptive or inferential labels to chunks
of data, which may assist concept or theory development [42, 44, 64]. Coding is usually a very
labor-intensive and time-consuming task [60, 77]. It requires researchers to examine their data
in detail, find relevant or potential points of interest, and assign labels. As the size of datasets
grows significantly in the era of big data, manually coding the entire dataset in detail is not
feasible for social scientists. As a result, social scientists can only sample and code a small part
of their data. Since a large portion will remain under-explored, researchers may not be able to
resolve inconsistencies in their theories and may not even recognize if some analysis is missing or
incomplete.

2.4.1 The need for qualitative coding. Coding is a process of arranging qualitative data in a
systematic order by segregating, grouping and linking it in order to facilitate formulation of meaning
and explanation. Such analysis is often used to search for patterns in the data by organizing and
grouping similarly coded data into categories based on commonly shared characteristics [53]. Even
though some qualitative data—such as tweets—have metadata, organizing data based on these
metadata is often not enough to achieve researchers’ analysis goals. Thus, coding is necessary for
researchers to create structure and impose it on the data to determine how best to organize the
information and facilitate its interpretation for their purposes [39].

2.4.2 Grounded Theory. Grounded theory (GT) is one of the most well-known set of approaches
to deal with code organization and theory development. As Charmaz articulated in one of the most
referenced GT textbooks [12], “grounded theory methods consist of systematic, yet flexible guide-
lines for collecting and analyzing qualitative data to construct theories from the data themselves.”
It is important to note that this broad definition encompasses a number of GT approaches such
as classical Glaserian GT [23] and Strauss’s approach [29]. Here we describe the steps involved
in one of the most recent variations of GT, called a constructionist GT as presented in Charmaz’s
introduction to grounded theory [12]. Despite differences, other GT approaches share a majority of
the steps described here.

Analysis steps under GT are not carried out sequentially since insights or realizations of analytic
connections can happen any time during the research process [12]. In GT, coding provides an
analytic skeleton and links connecting data with developing emergent theory. The analysis starts
with an initial line-by-line, unrestricted coding of the data termed open coding. The aim is to produce
concepts that seem to fit the data. The line-by-line focus is meant to prompt studying the data
closely and trigger conceptualizing emerging ideas. At this stage, codes are entirely provisional
and prone to change.
The second step is focused coding in which a researcher works with initial codes that indicate

analytic significance. This permits for separation, sorting and synthesizing large amounts of data
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and also accelerates the analytic pace [62]. While performing focused coding, it is also possible
to engage in an optional step of axial coding, which involves coding dimensions of a category
and exploring the relationship between that category and other categories and subcategories [22].
Extended notes, also known as memos, are an an important tool for comparing data, exploring
ideas about codes, and directing further data-gathering. Such memos often form the core of the
analysis and become a record for how it was developed [12].
The third step involves a process of theoretical sampling, which is a strategy in GT to obtain

further selective data and to refine and fill out major categories; this step ultimately leads to the
theoretical saturation [29]. Arriving at theoretical saturation of major categories (that is, no new
properties or dimensions have emerged from continued coding and comparison [30]) often becomes
a criterion for stopping further data collection.

The final step of theoretical coding is a sophisticated level of coding that uses the codes selected
during focused coding to integrate and solidify the analysis in a theoretical structure. In the end,
one of the theoretical codes will be chosen for the study [29]. Even though theoretical coding is
presented here as the last step, several theoretical code may emerge during analysis in practice [12].
As Charmaz advocated, using emergent theoretical codes keeps the analysis creative and fresh [12].

As there are many variations in how to conduct GT approaches [47], individual researchers may
use the method differently. Sometimes, the output from the analysis may be an under-developed
theory that captures only key theoretical ideas. Also, although GT evolved as a method of theory
construction, not everyone who uses its strategies intends to develop a theory [12].

2.5 Challenges in Adopting Machine Learning Approaches inQualitative Coding
Although the application of ML in quantitative/computational social sciences have been increasingly
popular in the recent years, only a relatively small number of references exist for ML-supported
applications that facilitate qualitative analysis of large datasets using fully or semi-automated
techniques. For example, Yan et al. proposed using natural language processing (NLP) and ML to
generate initial codes and then ask humans to correct the codes. Other work utilizes NLP to derive
potential codes and/or learn models [15, 16, 25, 40, 64, 77]. Recently, Muller et al. proposed new
research directions for combining grounded theory and ML methods [43]. While low accuracy
has been considered the primary limitation of such automated approaches, we outline three other
challenges for ML applications in qualitative coding. We do not intend to present a comprehensive
list of challenges, but rather highlight some of the fundamental complications in applying ML in
qualitative analysis, to encourage further research on mitigating them.
These challenges were identified during the design and implementation of Aeonium (Fig 1), a

visual analytics tool for collaborative qualitative coding that highlight ambiguity [20]. The details
of tool design are out of scope for this paper, but here we will summarize three key challenges
discovered from our formative studies during the initial phases of design of Aeonium as well as the
expert reviews for evaluating the tool. These formative studies included conceptual analyses drawn
from the authors’ experience with qualitative coding in CSCW research, as well as interviews with
five qualitative researchers in CSCW and social science fields. The expert reviews were conducted
with four other graduate-level qualitative researchers in CSCW and information science who did
not participate in the formative study. We invited them to test the tool in an one-hour think-aloud
session. More details of the studies can be found in our introduction to Aeonium [20].

2.5.1 Lack of understanding between disciplines may deteriorate trust. One of the core issues
limiting the application of ML in qualitative analysis is that people who use qualitative methods
are generally not trained in ML techniques. Due to the complexity of selecting features, building
models, and tuning parameters, it may be difficult for non-experts in ML to construct useful models.
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Fig. 1. Aeonium Review Interface. The design of the review interface highlights disagreement between coders
(the COMPARISON panel) and allows coders to give feedback to the disagreement (the SUBMITTED LABELS
panel).

Conversely, an ML expert might be able to train an accurate classifier using codes labeled by social
scientists, but that individual likely would not have the social science training to consider issues
that may be critical to analysis. For example, since few ML experts are trained in social science,
they may not have contextual information to engineer good features, nor to adequately address
issues such as overfitting. Social scientists are usually interested in sophisticated social phenomena,
so their codes often capture nuanced understanding of the data. These conceptualizations are often
difficult to characterize using de-contextualized features such as counts, keywords or even semantic
features. Sometimes, even social scientists do not have a clearly articulated vocabulary for some
concepts of interest. Understandably, then, it may be quite difficult for researchers who do not have
background in social science to engineer good features and find ways to distinguish these concepts
using ML. As a result, even if an ML expert can construct a model ostensibly capable of labeling
data with qualitative codes, social scientists may not have trust in the system. One of the Aeonium
expert review participants told us, “I am not sure if I can believe ML output. I don’t think keywords
(referring to dictionary features) are enough to represent the concept I am looking for.”

2.5.2 Building a learnable model is not the primary goal. In some cases, ML experts’ limited
understanding of social science values and methods can hamper effective collaborations. However,
some inherent tensions or conflicts between goals of ML and social science could also cause
complications. For example, the goal of performance optimization of ML models may be in conflict
with goals of qualitative coding. To build a strong classifier, we usually need predefined categories
and a large quantity of corresponding labeled data (for supervised learning), or the distributions of
the dataset must have some distinct separation (for unsupervised learning). However, most often,
neither of these is the case for qualitative coding. As coding requires significant manual analysis, it
is difficult to label sufficient data for strong ML results. In the open coding stage, scientists often
do not have a priori categories, but rather, categories gradually emerge from careful analysis of
the data. Even in closed coding, in which categories have usually been determined, the definition
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of each category may still need to evolve or shift as more of the dataset is explored. While social
scientists may sometimes want to label as much data as possible, their ultimate goal is not to build
a machine learnable model, but instead to discover patterns in the data or to answer particular
research questions. Labeling sufficient data to train a strong ML classifier may not have utility
for these researchers. If new patterns are not emerging from qualitative coding, social scientists
may determine that “saturation” has been reached, and coding more data in the dataset will not
contribute significantly to the analysis.

2.5.3 Fundamental differences between qualitative and quantitative methods. Additionally, ML
usually performs better on categories that have more instances, but codes with numerous instances
might not be the most meaningful to social scientists. In quantitative analysis, data points that
appear very few times may be considered noise, but from a qualitative analysis perspective, quantity
of instances is not always reflective of significance. Since it is very hard for any ML method to
capture categories that have sparse instances in the dataset, social scientists may prefer to manually
code the raw data rather than spend time trying to tune the models. Aside from the considerations
of utility of coding effort, even highly accurate ML models may not be very informative or reliable
from a social scientist’s point of view. Most ML methods function as black boxes and do not offer
explanations or interpretable results. Without knowing how prediction results are derived, social
scientists may be reluctant to adopt ML in their analytical practices.
In addition, although some computer-assisted qualitative data analysis software (CAQDAS),

such as NVivo, ATLAS.ti, and MaxQDA, have been developed and used, there are debates on the
potential negative impact of computer assistance on qualitative research [73]. For instance, when
people do not have sufficient understanding and experience in the methods they use, they might
be more easily influenced by the results the software suggested [21]. If people start to depend on
ML and statistical methods in their qualitative analysis, we need to be careful about unintended
consequences of over-reliance.

3 SHIFTING THE FOCUS OF ML: A CASE STUDY IN IDENTIFYING AMBIGUITY IN
COLLABORATIVE CODING

In this section, we begin by extending our earlier discussion of the challenges in adopting ML in
qualitative coding, and we describe our approach to bridging the gap between ML and qualitative
coding through drawing out ambiguity in collaborative coding. Then we discuss dimensions of
ambiguity and highlight results from an MTurk study for testing the relation between disagreement
and ambiguity.

3.1 Emphasizing Ambiguity in Collaborative Coding
The challenges from the results of our formative studies of Aeonium, outlined in section 2.5,
indicated that it might not be possible or useful to build ML models to predict codes for data
instances, so we shifted our focus to identifying ambiguity in the context of collaborative qualitative
coding. In qualitative coding, it is common to have multiple coders working collaboratively to
label data with codes, dividing the labor and helping to ensure quality of the codes. However, since
coding is inherently subjective, inconsistencies between coders necessarily arise. Our interviewees
in the formative studies expressed interest in exploring inconsistencies between coders, as these
disagreements may indicate ambiguity in either the code definitions or particular data points that
collaborators need to negotiate or clarify. In addition, ambiguity can signal potential nuances in
data that are interesting to social scientists. Moreover, collaborative qualitative coding frequently
reveals unanticipated complexities in the dataset that could require articulation of new codes or
reconsideration of previously labeled data.
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The inherent ambiguity of qualitative data derives from the fact that it is generated by humans
with diverse experiences, priorities, and ways of communicating. In our case, we focused on social
media data, which are particularly subject to ambiguity due to the style of informal text commu-
nication. In social media, people condense their ideas into brief statements and often presume
shared context with an audience based on the time and venue for posts. The abridged structure
of such posts enables only limited clarification of context within the data. After completing our
initial iteration of the Aeonium tool, we conducted an expert review with graduate-level qualitative
researchers who rely on qualitative analysis as a core method in their research. In addition to
evaluating Aeonium, participants in this review helped distill our analysis of the core challenges
in applying ML to qualitative analysis. During the review, experts indicated that qualitative re-
searchers may interpret such data quite differently depending upon their own experiences. As one
expert noted, “Coding is a process to help coders get familiar with the data and the domain, and
inconsistency sometimes comes from information asymmetry. In other words, one collaborator
may know something that the other person doesn’t know. By pointing out inconsistency, it can help
resolve these differences in background knowledge.” For qualitative coding, additional ambiguity
may be introduced through unclear boundaries of code definitions. Another qualitative researcher
noted, “Coding always involves some analytical messiness. [Codes] are never defined enough.” In
other words, regardless of how carefully researchers consider and articulate codes, new insights
may arise in the data that confound interpretations or do not fall neatly into already defined code
categories.

Qualitative researchers indicated in our formative studies that it would be a valuable contribution
for ML to help identify points of probable inconsistency and ambiguity. They did not necessarily
intend to resolve all inconsistencies or come to agreement about each data point, but they could
often gain more insight analyzing ambiguous data in greater depth than they could analyzing data
for which coders’ initial interpretations agree. The inconsistent or unclear data may help researchers
disambiguate related concepts or themes. Moreover, by analyzing their own disagreements and
interpretations, they can build more complete understandings of the data, relying on the diversity
of experiences, background knowledge, and analytical styles of all members of a research team. If
an ML model is able to successfully identify ambiguous data, qualitative researchers may use it to
focus their energy on data that are more likely to extend or better articulate their insights around a
dataset.
Based on our interviews with qualitative researchers, as well as our own experiences coding

qualitatively, we articulated dimensions of ambiguity and proxies for ambiguity that may be valuable
for the purposes of drawing out ambiguous data. One of these proxies is described in detail in our
initial work with the Aeonium system [20], but we have explored the dimensions further through
studies using Amazon Mechanical Turk (Mturk) in order to articulate them more clearly for future
ML or visual analytics applications.

3.2 Dimensions of Ambiguity
Two dimensions of ambiguity seem most significant to us: data ambiguity and human subjectivity.
Data ambiguity refers to ambiguity inherent in data that usually arises from a lack of context
in particular data points. One form of data ambiguity, which we call “semantic ambiguity,” has
limited context due to the structure or formulation of expression. For instance, someone may
clearly express an attitude or opinion, but not state explicitly who or what the target of the
opinion is, leaving the overall opinion unclear. Alternatively, statements may contain multiple,
sometimes contradictory sentiments. Adjusting the granularity of interpretation can help mitigate
inconsistencies of interpretation for these cases, but sometimes inconsistencies cannot be fully
resolved.
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The second dimension of ambiguity, human subjectivity, results from different levels of under-
standing or sets of experiences among collaborating researchers, leading to distinct interpretations.
Some of the significant components of human subjectivity are exposure to different kinds of dis-
course and confidence in knowledge about particular topics. “Unknown unknowns” may be the
most problematic of these inconsistencies, since people are often unaware of gaps in their own
knowledge about particular topics and may be confident in faulty interpretations. It should be
noted that these dimensions are not mutually independent, and the line between data ambiguity
and human subjectivity is not clear-cut. However, each dimension may contribute differently to
the ambiguity and inconsistency between coders of qualitative data.
In consideration of these dimensions, the clearest proxy for ambiguity that we identified is

disagreement between coders. Disagreement may indicate human subjectivity of interpretation but
could also signify that multiple reasonable interpretations are possible due to data ambiguity. Other
proxies might include comments or annotations around data to explain coding choices or time
spent analyzing data. In Aeonium, we also provided mechanisms for explicit flagging of ambiguity
based on user interpretation and for feedback about ambiguity after identification of inconsistency
between coders (Fig. 1). However, the proxy on which we most relied was coder disagreement.

When designing Aeonium, we leveraged our understandings of ambiguity—particularly the proxy
of coder disagreement—to draw out data points that are most likely to be inconsistently coded
between two collaborators. Our approach is similar to the Query by Committee (QBC) sampling
method in active learning [56]. The Aeonium system takes coded data from a pair of coders, and
then trains individual SVM models for two coders respectively, using keyword features extracted
from the data set (i.e., bag-of-words n-gram features) and user-defined keywords as additional
features. Next, the system uses the trained model to label uncoded data, and it identifies data
points that are inconsistent between partners but for which the model has high confidence in the
label applied. The system also includes a review interface that highlights data points (which are
tweets in our current design) for which coders disagreed, and the interface allows coders to review
disagreement in the codes applied. Our study participants indicated that these functionalities helped
draw their attention to details or other context that they did not consider when initially coding the
tweets. They also reported that the features highlighting ambiguity and disagreement helped them
develop insight about the dataset and reflect more on their own interpretations in coding.

Our approach to identify ambiguous data points using a QBC-style method is still preliminary, and
we have not yet performed a longitudinal study with users to examine how such an approach can
benefit coders in a long run. However, the positive feedback we received from expert users indicate
that this direction is promising. We believe that using ML methods to help draw out ambiguous
data is one path toward a better ML support for qualitative coding and that this approach merits
further research. As an initial validation study for this sampling approach and the proxy of coder
disagreement for ambiguity, we examined the relationship between disagreement and ambiguity
utilizing MTurk.

3.3 MTurk Study on The Relation between Disagreement and Ambiguity
We designed our MTurk study to assess whether and to what extent coder disagreement correlates
with perceived ambiguity of data. The dataset for this study is drawn from a collection of tweets
collected in February 2016 focused on Hillary Clinton during one of the Democratic primary debates.
“Master coders” for the dataset refer to members of our research team with experience in qualitative
coding who open-coded the tweets and came up with a set of five mutually exclusive codes to be
applied to each tweet. The master coders then proceeded to closed coding, independently labeling
tweets with a code and reviewing these initial codes together to make code decisions and identify
ambiguity. Master coders identified ambiguity in part through disagreement between coders, but
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in some cases, master coders determined that a tweet was ambiguous even though the initial codes
independently assigned by master coders were in agreement. In our MTurk study, we asked MTurk-
ers to go through the same process of closed coding and then individually make determinations
about the degree of ambiguity in a particular tweet. We sought to evaluate whether the master
coder determinations of ambiguity extended to a more general perception of ambiguity by others
interpreting the same data. We expected that at least some sources of ambiguity are inherent in the
data itself, and thus might be identified even when there is agreement among coders in the codes
applied. Consequently, we expected that the ambiguity is predictable, meaning that tweets deemed
ambiguous by one set of coders are more likely to be considered ambiguous by other coders as
well. We thus formed our first hypothesis:

H1: Tweets identified as ambiguous by master coders will more likely be rated as ambiguous
by the MTurk coders, as compared to the tweets deemed unambiguous by master coders.

We also wanted to investigate if the disagreement amongmaster coders is predictive of disagreement
among other group of coders. Such higher disagreement may stem from the fact that the specific
tweets contain conflicting or hard to interpret information pieces that are likely to lead to different
interpretations and disagreement among other coders. Therefore, we formed our second hypothesis:

H2: Tweets for which master coders’ labels disagreed will likely show more disagreement among
the MTurk coders, as compared to the tweets for which master coders’ labels agreed.

Participants. Participants for the study were 41 MTurk master workers (a distinction that Amazon
makes based on overall performance on MTurk tasks). All of the participants, according to MTurk’s
criteria limitations, had also completed high school in the U.S., so we anticipate that they had some
degree of familiarity with U.S. electoral politics. Voluntarily provided demographic data indicates
that participants ranged in age from 20 years to 60+ years, with the majority aged 39 or younger.
14 participants stated they fell in age range 20-29, 19 fell in the range 30-39, 4 in the range 40-49, 2
in the range 50-59, and 2 in the range 60+. Most also indicated at least some university education,
with 3 having completed a master’s degree, 20 having completed a bachelor’s (4-year) degree, 6 an
associate’s (2-year) degree, and 7 more having completed some college. 5 indicated having earned a
high school diploma, and none identified having received graduate degrees other than master’s
degrees. The racial makeup of participants was more heavily skewed, with 37 identifying as White,
2 as Black or African American, 3 as Latino or Hispanic and 1 as Asian. None identified as American
Indian or Alaska Native, Native Hawaiian or Pacific Islander, or any other racial/ethnic identity. 20
participants identified as male, 20 as female, and 1 as genderqueer. Postal codes provided voluntarily
reveal a variety of locations within the U.S., most along the east and west coasts, with many also in
the southeast and midwest.

Study Design and Procedure. Our study considered within-group measures for all participants.
Participants were asked to label 45 tweets with a code (choosing from one of the five codes defined
by master coders) and also to label that tweet as either ambiguous or unambiguous. Detailed code
definitions and the definitions for ‘ambiguous’ and ‘unambiguous’ data are provided in Appendix A.
After a brief set of training exercises for participants to practice coding tweets, participants labeled
15 tweets each from the following three groups of data:

(1) Data for which master coders’ initial codes disagreed, which master coders determined to
be ambiguous after reviewing together
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(2) Data for which master coders’ initial codes agreed, which master coders determined to be
ambiguous after reviewing together

(3) Data for which master coders’ initial codes agreed, which master coders determined to be
unambiguous after reviewing together

We did not consider data for which master coders’ initial codes disagreed but which master coders
determined to be unambiguous for two reasons: there were insufficient data points in the group,
and most of these cases resulted from coder inattention. To avoid ordering effects in the study,
tweets were presented to participants in random order.

Data analysis. For testing our first hypothesis, we focused our analysis on every coded tweet.
We had 15 tweets from each of the three groups, a total of 45 per participant, or a grand total of
1845 coded tweets for all 41 participants. Therefore, we transformed the data into 1845 rows as
shown in Table 1. Each row represents a coding instance with data corresponding to the tweet id
(1–45), the group the tweet belonged to (1,2 or 3), the categorical ambiguity rating (0-unambiguous,
1-ambiguous) and a unique id of the participant who coded this tweet. To analyze such data and
take into account that the tweet codings were not independent (multiple tweets were coded by
the same participant), we used a mixed-effects logistic regression model. In the model, we used
ambiguity rating of individual coded tweets as a predicted outcome (hence the logistic model), the
group the tweet belonged to as fixed effect, and participant id as well as tweet id as random effects
to account for dependency among codings. We obtained p-values for the model using the Wald test.
To test the second hypothesis, we calculated the level of agreement across coders for each

individual tweet (this is different than the explicit ambiguity rating we investigate in H1). For this
analysis we represented the data per unique individual tweet, not individual coding of a tweet as in
analysis for the first hypothesis. Consequently we had a total of 45 rows in this representation, with
codes assigned by individual participants as 41 columns. We defined a measure of code agreement
for an individual tweet as a ratio of the count of the most frequent category given for a tweet divided
by the total number of codes for this tweet (fixed at 41 as each tweet has been coded by all the
participants). We further normalized this measure based on the total number of available categories

Table 1. Example format of transformed MTurk study result data

row_id participant_id group_id tweet_id labeled_code is_ambiguous

1 1 1 1 Not Understandable 1
2 2 1 1 Support 1

...

41 41 1 1 Support 0
42 1 1 2 Not Understandable 1

...

82 41 1 2 Neutral 1
...

616 1 2 16 Neutral 1
...

1845 41 3 45 Rejection/Criticism 0
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(5 in our case), so that it takes a value from 0 to 1, where 0 represents a uniform distribution
of all possible codes per category and 1 represents the situation when a tweet is coded under
the same category by all the coders (e.g. if a tweet has been coded as Support by 38 coders, as
Unrelated by 2 coders, as Rejection/Criticism by 1 coder, and never coded as belonging to the 2
remaining categories, the Agreement would be ≈ 0.91; if the codes distribution was: Support-14,
Neutral-10, Rejection/Criticism-12, Not understandable-3, and Unrelated-2, the Agreement would
be ≈ 0.18). With such organization we could apply a simple one-way ANOVA with the group the
tweet belonged to as the independent variable and the code agreement level for a tweet as the
dependent variable. Post-hoc comparisons (conservative Bonferroni correction) were conducted to
compare the groups.

Results. H1: Testing of our first hypothesis, on the predictability of the ambiguity rating, revealed
that on average 6.93 (sd = 2.79) out of 15 tweets were rated as ambiguous in Group 1 (master
coders disagree and ambiguous). Similarly, for Group 2 (master coders agreed and ambiguous) the
average number of tweets rated as ambiguous was 6.85 (sd = 2.74). For both these groups the
difference as compared to the average ambiguity ratings of 4.71 (sd = 2.75) in Group 3 (master
coders agreed and unambiguous) was statistically significant (β = 0.7471, SE = 0.3166, p < .05) for
Group 2 and (β = 0.7712, SE = 0.3161, p < .05) for Group 1 in the mixed-effects logistic regression
model. Interpreting our results as odds ratio, a tweet from Group 1 is 2.2 times more likely to be
rated as ambiguous as compared to the tweet from Group 3. Similarly, a tweet from Group 2 is 2.1
times more likely to be rated as ambiguous as compared to the tweet from Group 3. The odds were
not significantly different between Groups 1 and 2.
This result shows that the ambiguity determination under the same coding scheme seems pre-

dictable to other coders, meaning tweets that are deemed ambiguous by one group of coders are
likely to also be rated ambiguous by other coders under the same coding scheme.

H2: Testing the second hypothesis, on the predictability of disagreement, revealed that for tweets
in Group 1 (master coders disagree and ambiguous) the average agreement among MTurk coders
was indeed the lowest, on average 0.38 (sd = 0.18). It was significantly lower (p < 0.01) than
for Group 3 (master coders agreed and unambiguous), where the average agreement was 0.63
(sd = 0.20), but not significantly lower than for Group 2 (master coders agreed and ambiguous),
where it was 0.48 (sd = 0.24).

These results show that whenever master coders disagreed with other master coders on the
appropriate label for a tweet, the MTurk coders were also more likely to disagree. This suggests that
the disagreement is predictable between different groups of coders under the same coding scheme.
Lack of significant difference in agreement between tweets in Group 1 and Group 2 may indicate
that the rating of ambiguity might also be meaningful for predicting disagreement. In order to
test this observation and estimate how predictive the master coders ambiguity rating is for MTurk
coders disagreement, we performed correlation analysis. Please note that in our dataset ambiguity
rating is binary (level 1 - combined tweets from groups 1 and 2, level 2 - tweets from group 3) and
disagreement rating is continuous. Point-Biseral Correlation is most appropriate in such case. We
found a moderate, positive correlation, which was statistically significant (rpb = 0.403, p < 0.01).
This result suggests that ambiguity rating is indeed predictive of coding disagreement.

Qualitative feedback about ambiguity. In addition to the labeling of tweets with a code and ambi-
guity label, we asked participants to provide open-ended feedback about what factors contributed
to the ambiguity of a tweet. Specifically, we asked them to respond to the following prompt: “What
are reasons that some tweets were or might be ambiguous? You may answer N/A if no tweets
were ambiguous.” Two members of our research team then qualitatively coded the open-ended
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feedback to identify factors most frequently identified as relating to ambiguity. One of the authors
open-coded the responses to develop a codebook of reasons for ambiguity, including responses
such as content being unfamiliar to the coder and therefore difficult to evaluate; contradictory
or confusing hashtags; coders perceiving potential sarcasm that rendered the message of a tweet
ambiguous (See Appendix A.3 for a full list of the codes). The developer of the codebook and
another researcher then independently coded each response. We validated our qualitative coding by
measuring percentage agreement (A) between coders for each unique code, and using the Cohen’s
Kappa (κ) measure for Inter-rater Reliability [14]. Many of the factors indicated by participants
as contributing to ambiguity aligned with our conceptualizations of the dimensions of ambiguity.
Almost 60% of participants noted that limited context in some tweets made them ambiguous (A
= 75.6%, κ = 0.517), and around a quarter pointed out that tweets could be interpreted differently
depending on the readers’ experiences and background (A = 85.4%, κ = 0.614). Around half of the
participants also identified semantic ambiguity as a source of confusion, noting that the target of
expressed opinions was unclear (A = 80.5%, κ = 0.616). This feedback suggests that our dimensions
for ambiguity are generalizable at least to some extent, which can help improve feature engineering
and model tuning for ML tools working to identify ambiguity.

3.3.1 Future work on learning disagreement to identify ambiguity. Through our MTurk study, we
demonstrate that both ambiguity and disagreement are predictable between groups of coders, and
that disagreement or inconsistency can be an indicator of ambiguity in coded data. According to
interviewees in our formative studies, ML models that can pinpoint potential ambiguity in a dataset
are valuable for qualitative analysis, so research in this area has the potential to make significant
contributions. Further work is needed to explore the best ways to leverage disagreement as a proxy
for ambiguity in ML models and to create interpretable, human-centered ML tools for qualitative
analysis.

4 FUTURE DIRECTIONS TO ENGAGE MACHINE LEARNING AND SOCIAL SCIENCE
In the previous two sections, we summarized the existing discussions on the gaps between ML
and quantitative methods in social science. Then we described the challenges of applying ML to
qualitative analysis, proposed alternative uses ofML to support qualitative coding, and demonstrated
how ML can be used to address coding ambiguity. In our MTurk study, our findings suggest
ambiguity by one coder under the same coding scheme can be predicted to other coders and
disagreement between master coders can be predicted to other coders. Based on these findings, we
argue for investing greater research efforts in bridging the gaps between ML and social science in
both quantitative and qualitative methods.

Our reasons are three-fold. Firstly, as so-called “big data” is becoming more and more pervasive
in our daily life and changing the ways people interact, we need better tools to facilitate social
science and help understand human relationships and behaviors in such evolving environments.
Secondly, the complexity of social science data provides significant research opportunities for the
ML community, yet research developments with social emphases have largely been limited to
private companies and government agencies [38]. Therefore, we need to encourage academia to
move toward richer collaborations between the disciplines, with improved transparency and rigor.
Last but not least, more studies in the development of ML methods to support social scientists’
deep analyses may address how to generate and communicate results that can stand under careful
scrutiny, as well as helping to identify potential pitfalls of the models in a real world context.
Similar to how making an end-user friendly operating system (Ubuntu) could contribute back to
the development of a comprehensive system (Debian) [70], making ML more applicable to social
science in both quantitative and qualitative ways could bring direct benefits to ML.
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By pursuing these objectives and prioritizing features and methods that can fulfill these goals, ML
can be more human-centered overall. With this goal in mind, we discuss future research directions
to engage ML and social science. We also review some of the works that have begun to define some
of these directions.

4.1 Increase Machine Learning Transparency and Interpretability for Social Science
Analysis

Since social science claims must be grounded in empirical evidence and connected or contrasted
with existing theories, social scientists do not confine their analysis to statistical overviews (e.g.,
frequency of keyword usage during a particular period of time), but rather focus on how and
why phenomena develop [70]. Thus, it is critical to make ML methods and results transparent
and interpretable. As in our case of highlighting ambiguity, disagreement can be a useful and
interpretable proxy for metrics of interest.

Nevertheless, ML models are not always interpretable. Complex models such as neural networks
in deep learning are usually difficult to understand. Some recent work (e.g., [28, 54, 76]) has
attempted to explain machine learning model behaviors via visualization. Other researchers have
introduced techniques for interpretation of models that do not require understanding of the
underlying algorithm [31, 49]. Although it is helpful to see how particular inputs are processed
through a model and how varying inputs affects output, many other aspects of model development
remain unclear.

For instance, it is usually an ad-hoc process to choose hyper-parameters of deep learning models
(e.g., learning rate, optimization metrics, and batch size). When it is impossible to exhaustively
experiment with millions of possibilities, it can be challenging to justify the meaning of these
hyper-parameters in the context of the targeted analysis. As social scientists usually have some
theoretical foundations for their analysis, it is still an open research challenge to ensure the model
development process is interpretable and transparent enough to help social scientists to connect the
design back to these theoretical foundations, which helps ensure the validity of derived scientific
understanding [19].
Other previous research has also attempted to address the issue of transparency and inter-

pretability of ML. For instance, Kim et al. proposed a generative approach to select and extract
human interpretable features [36]. Brooks et al. suggested that using interpretable algorithms is
important [10]. Others have introduced techniques for interpreting ML models that are algorithm-
independent [37, 41, 48, 49]. Visualization is another approach that is considered to be helpful
for interpretability [52, 65, 67]. One example of a visualization designed for interpretability is a
self-organizing map to depict the high dimensional feature space of SVM models [71]. Several
visualization methods have also been proposed to help better understand the learning processes
and behaviors of artificial neural networks (ANNs). Darrah surveys techniques to help clarify
ANN behavior, including Hinton diagrams, Bond diagrams, hyperplane diagrams and animators,
Self-organizing Maps (SOMs), and Voronoi diagrams [17]. Smilkov et al. created an interactive
visualization for understanding word-embedding [58]. However, research in the area of visualizing
ML algorithms is still relatively scarce, and further exploration is needed to develop models and
tools that make ML more human-understandable.

4.2 Explore Ways to Make Model Building A Meaningful Task in Social Science
Practices

In addition to making ML more transparent and interpretable, exploring new ways to make model
building a meaningful task in social science practices is an important direction for bridging the gap
between ML and social sciences. In our case study of applying ML to qualitative coding, we found
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that identifying ambiguity in coding can be helpful in addition to existing attempts of automatic or
semi-automatic coding methods [15, 16, 25, 40, 64, 77]. A key reason that this direction is promising
is the alignment of the human effort required in ML (i.e., labeling data for training) with tasks that
are meaningful in social science practices (i.e., qualitative coding). Even though the trained model
may not be very accurate since the amount of the coded data is limited, social scientists can still
gain better understanding of their data.
Such an approach is similar to the “machine teaching” paradigm, in which machines act as

students and humans play the role of teachers in a form of interactive learning. This view has been
suggested in work by Amershi et al. [1]. While we agree that interactive ML can be powerful, we
want to extend the idea to the users’ perspective: the power of interactive learning is not only
in increasing the accuracy of the ML models, but also in providing a way for the users to reflect
on their definitions of concepts, and in suggesting new perspectives from which to examine their
data. This view is indeed similar to teaching experiences, where not only are the students learning,
but the teachers may also learn from the questions students ask. Furthermore, as students usually
have different issues in understanding a concept, teachers must consider different contexts and
constantly refine their ideas and explanations. Although it is possible that a machine teaching
approach may not result in the most accurate model for automated coding, as too little data might
be labeled, the effort the teachers (the social scientists) spend is still be valuable for improving
teachers’ own understanding of the data. In this case, using ML can be seen as part of the coding
process. Specifically, it can serve as a way of pinpointing potential issues in current codes, and we
believe more work should be done to find new ways to think about the use of ML in the coding
practice.

In order to identify other ways in which ML tasks are not merely meaningful for model-building
but also beneficial for social science analysis, we need more studies on the work practice of social
scientists to identify needs and opportunities. Works such as that of Brooks [9] that emphasize a
human-centered design approach in understanding the needs of social scientists or interviews such
as those conducted by Kandel et al. with data analysts [34] are critical for exploring this direction.

4.3 Developing a Common Ground for Both Social Scientists and The ML community
Building connections between ML and social sciences is not merely to facilitate the analytical
process, but more importantly, to develop a common ground for both social scientists and members
of the ML community. This direction should focus on encouraging publications built upon literature
from both sides (e.g., [6]), as well as on further studying the current status and perspectives on the
use of ML in social sciences. It should also explore how the ML community views ML applications
in social science domains. In addition, efforts should be made to encourage collaborations between
social scientists and the ML community. In this paper, we provided initial explorations of the use
and challenges of ML in qualitative coding for social scientists, and future work should further
investigate the factors that influence the usage and attitudes around ML for social scientists.
Questions such as how ML methods are viewed, used, and applied in publications require a larger
scale study. Additionally, the ways that publication venues evaluate ML work may also impact
whether ML is used in social science. Without linking back to existing theories, methods that
are merely novel may not be acceptable for traditional social science journals. All these factors
may need more attention in order to build a common ground between both domains and establish
communication mechanisms.
Some communities of researchers have begun attempting to create venues for addressing this

issue. For example, in 2016, a number of major ML and HCI conferences held workshops aimed at
making ML more human-centered (e.g., the Human Centered Data Science workshop in CSCW’16,

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39. Publication date: March 2018.



Shifting The Focus of ML for Qualitative Coding to Ambiguity 39:17

Human Centered Machine Learning workshop in CHI’16, Human Interpretability in Machine Learn-
ing workshop in ICML’16, and Interpretable Machine Learning for Complex Systems workshop in
NIPS’16). However, these workshops were held in conjunction with either an HCI or ML conference,
and the interactions between the two communities are still limited. Thus, we envision greater
efforts toward engaging the two communities, such as inviting submissions across communities in
these workshops. In addition, similar efforts should be devoted toward collaboration with other
social science disciplines, rather than focusing exclusively on HCI or CSCW communities. We
encourage future research and discussion focused on resolving the existing tensions and connecting
disciplines.

5 CONCLUSION
As the number of intelligent applications and the amount of collected data increase over time,
managing data and making sense of human behaviors have become much more complex and
require deep, sustained human consideration. Social scientists have considerable training and
insight in the study of human behavior and social interactions, but ML applications for human
data have yet to fully leverage their expertise. To help bridge the gap between these two fields, we
highlighted challenges in applying ML to qualitative coding in social science. We also outlined our
efforts to address these challenges by shifting the focus from building an ML model for automatic
qualitative coding to highlighting ambiguity between qualitative coders. We characterized some
of the dimensions of ambiguity and explored the use of disagreement as a proxy for ambiguity.
Based on the findings from these studies, we proposed three future research directions toward
better connecting ML with social science, especially within qualitative methods. We believe these
research directions have the potential to make ML more tractable for social scientists as well as to
provide a stronger theoretical foundation for the application of ML in social science research. Given
the extensive body of knowledge about humans and society in social science, working to establish a
stronger connection between these two fields will drive more human-centered ML research overall,
supporting more powerful, usable tools that are applicable to a broad range of disciplines and
problems.
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A CODE DEFINITIONS
This appendix contains the code definitions for five mutually exclusive codes. These were the
definitions provided to participants in our MTurk study of ambiguity.

A.1 Category Labels
• Support - Explicit or implicit support for Hillary Clinton (regardless of opinions about other
candidates)

• Rejection/Criticism - Explicit or implicit rejection, criticism, or skepticism about Hillary
Clinton, regardless of opinions about others.

• Neutral - Statement of fact or quotation from a candidate without explicit or implicit expres-
sion of opinion.

• Unrelated - Statements that do not reference Hillary Clinton or do not pertain to the 2016
U.S. election

• Not Understandable - Statements in which meaning cannot be deciphered (e.g., in a lan-
guage other than English, gibberish, etc.)
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A.2 Ambiguity
• Unambiguous - Tweet falls clearly into one and only category for label.
• Ambiguous - Tweet may fall into more than one category or its meaning is otherwise
unclear.

A.3 Codes for Potential Sources of Ambiguity on Open-ended Feedback
• Limited context
• Interpretation may depend on individuals’ perspective/point of view/experiences
• Could be reasonably interpreted in multiple categories
• Content was unfamiliar or not understandable so it was ambiguous
• No clear message or opinion about Clinton
• Potential sarcasm is ambiguous
• Particular phrases are ambiguous
• Url links may have contained more context
• Hashtags seem contradictory or confusing
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