
Considering Time in Designing Large-Scale Systems
for Scientific Computing

Nan-Chen Chen1, Sarah S. Poon2, Lavanya Ramakrishnan2, Cecilia R. Aragon1,2
1 Department of Human Centered Design & Engineering, University of Washington, Seattle, USA

2 Data Science and Technology, Lawrence Berkeley National Laboratory, Berkeley, USA
nanchen@uw.edu, SSPoon@lbl.gov, LRamakrishnan@lbl.gov, aragon@uw.edu

ABSTRACT
High performance computing (HPC) has driven
collaborative science discovery for decades. Exascale
computing platforms, currently in the design stage, will be
deployed around 2022. The next generation of
supercomputers is expected to utilize radically different
computational paradigms, necessitating fundamental
changes in how the community of scientific users will make
the most efficient use of these powerful machines. However,
there have been few studies of how scientists work with
exascale or close-to-exascale HPC systems. Time as a
metaphor is so pervasive in the discussions and valuation of
computing within the HPC community that it is worthy of
close study. We utilize time as a lens to conduct an
ethnographic study of scientists interacting with HPC
systems. We build upon recent CSCW work to consider
temporal rhythms and collective time within the HPC
sociotechnical ecosystem and provide considerations for
future system design.

Author Keywords
Time; temporality; HPC; high performance computing;
collective time; temporal rhythms; scientific collaboration.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Computation and data have become cornerstones of
scientific discovery [17]. The social and organizational
aspects of building the large-scale, distributed resources
have long been one of the major interests in the field of
computer-supported cooperative work (CSCW). A critical
component of the sociotechnical ecosystem of scientific
discovery is high performance computing (HPC) or
supercomputing. A supercomputer has a very high-level
computational capacity and thousands of nodes with

powerful networks that connect the nodes together allowing
for communication across the nodes.

The next generation of supercomputers, the so-called
exascale computing platforms, is currently being designed
and the first machines are expected to be deployed in 2022.
There are many open questions as to how these machines
will be utilized by teams of scientists in the coming years.

There has been little research that specifically looks at
exascale or close-to-exascale HPC systems and how
scientists work with them today. As these large-scale
machines will support significant scientific work and
collaboration at scale, it is important to examine the
challenges people are encountering that limit the effective
use of these machines. HPC centers have a significant
impact on scientific discoveries. The National Energy
Research Scientific Computing Center (NERSC) is one
such supercomputing center. In the last five years, NERSC
has produced an average of 1,500 journal publications per
year based on computations performed at the center. On
average, NERSC users publish ten journal cover stories per
year in publications such as Nature. Four Nobel prizes have
been awarded for work that used NERSC resources to date
[35].

Time as a metaphor is so pervasive in the discussions and
valuation of computing within the HPC community that it is
worthy of close study. This temporal metaphor is
ubiquitous within the community in multiple ways:
supercomputers use performance as the primary efficiency
metric where performance measures the amount of work
done in unit time. Floating point operations have been
considered to be central to scientific computing; system
performance has historically been measured in 'flops'
(floating point operations per second). The design and
purchase decisions for these multi-million-dollar systems
often revolve around temporal performance metrics such as
the LINPACK Benchmark [50].

Research and discussion into the nature of time and its
perspectives has a decade-long history in CSCW and other
related fields [3, 29-31, 33]. In this paper, we particularly
focus on what has been termed collective time, specifically
as used in collaborative scientific work. [29, 30, 45]. We
consider the positioning of time as a unit of analysis that
extends beyond the individual and includes both users and
the HPC system. In the process, we also build on a large
body of CSCW research into temporal rhythms [7, 9, 18, 19,

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
CSCW '16, February 27-March 02, 2016, San Francisco, CA, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-3592-8/16/02…$15.00
DOI: http://dx.doi.org/10.1145/2818048.2819988

mailto:nanchen@uw.edu
mailto:SSPoon@lbl.gov
mailto:LRamakrishnan@lbl.gov
mailto:aragon@uw.edu

25, 37, 41-43, 48, 51] for, as Jackson et al. [19] have argued,
“distributed collective practices not only have rhythms, but
in some fundamental sense are rhythms.” Thus we seek to
uncover implications for design for the HPC community
that take into account temporal rhythms and collective time.
Finally, we argue that selective transparency of various
rhythms is essential to present an appropriate view of
collective time. In this, we follow Goffman [15] and others
[29, 30, 40] who discuss how the presentation of a front stage
can selectively obscure individual notions of time and focus
attention on collective time.

Lindley [29] has noted the dichotomy of human
understanding of clock time, contrasting Glennie and
Thrift's [14] view of time as "sets of practices, which are
bound up with time-reckoning and time-keeping
technologies, but which vary and are shaped by different
times, places and communities" with the more abstract and
mechanistic view of clock time as depicted by Mumford
[32] and others. We argue that this dichotomy exists within
the HPC community and creates frictions, in the sense that
the overt structure of scheduling is currently based on
mechanistic and inflexible time while the HPC users fluidly
adapt themselves to and repurpose the schedule for their
own temporal rhythms, utilizing the system to most
efficiently produce the results they need for their work. This
can lead to temporal misalignments when an idealized and
rigid view of time and efficiency conflicts with the rhythms
and end goals of the scientific users.

We utilize time as a lens in our ethnographic study of
scientists interacting with HPC systems, a research method
proposed by Ancona et al. in 2001 [4] that suggests, by
focusing on the temporal aspects, it “makes us speak in a
different language, ask different questions, and use a
different framework in the methodological aspects of our
research. (p.17)” A specific focus on the potential value of
considering time as collective rather than individual leads
us to identify several conflicting rhythms that arise between
individual HPC users and the more monochromic [21] or
linear and tightly scheduled view of time imposed upon the
community by management: mismatches in time
expectations, temporal uncertainties, and conflicting views
of optimization.

We unpack the distinctions between mechanistic and rigid
rhythms of compute time and consider how time becomes
mutable as it is processed, lived with, stretched, and utilized
by scientists and software developers who must interact
with HPC machines on a daily basis. We claim that to truly
understand how best to develop interfaces for the next
generation of HPC machines, we need to deeply understand
the mental models of the humans who use them, and that
those mental models are inextricably bound up with human
concepts of time and human concepts of machine time.

The contributions of this work are as follows: via an
ethnographic study in a major supercomputing center
including participant observation and interviews, we

consider and reflect upon the multiplicity of views of time
(including collective time) and temporal rhythms in the
HPC community, and we further utilize time as a lens to
investigate the sociotechnical system of scientific HPC
computing. We conclude with a discussion of an interface
design that may be able to help HPC users visualize and
manage their time collectively based both on previous
research in CSCW and CHI [7] and on work in the HPC
community [5] on the use of visualization to facilitate
situational awareness within technical groups. This leads to
potential implications for design of exascale systems that
these interwoven and conflicting temporal structures and
perceptions have revealed.
RELATED WORK
Time, or temporality—the experience of time and the
temporal organization of activities [43]—has been one of
the essential parts of our everyday experiences and working
environments. Indeed, large computational systems such as
supercomputers were invented to speed up computational
work in order to save very critical and precious time. This
also explains why, historically, performance has been used
as the key evaluation metric. However, as time is a broad
topic, for the purposes of this paper, we wish to delve more
deeply into the concept of collective time for the HPC
ecosystem, and to do so, we must consider three strands of
CSCW and CHI research: temporal rhythms, collective time,
and sociotechnical studies of scientific collaborations.

Temporal Rhythms in CSCW and HCI
Temporal rhythms in collaborative work have been a
fruitful area of study in CSCW for many years [9, 18, 25,
37, 41-43, 51]. Orlikowski and Yates [38] suggested that
“people in organizations experience time through the shared
temporal structures they enact recurrently in their everyday
practices” (p. 686). Landgren [27] documented the rhythms
present when Swedish fire and rescue workers operate
under time pressure; Nilsson and Hertzum [37] studied
collective rhythms in home care in Denmark, and numerous
studies have analyzed temporal rhythms in health care [6, 9,
12, 41-43]. Bardram drew from his fieldwork in medical
care and developed the concept of temporal coordination,
based on Activity Theory, that emphasizes the temporal
aspect of people coordinating their work [6]. Also in the
medical work context, Reddy and Dourish found three
emergent temporal features—trajectories, rhythms, and
horizons—which affect healthcare providers [43]. In
particular, their definition of temporal rhythms highlights
the recurring patterns of work and how people leverage the
characteristic of reoccurrence to deal with events or
activities.

All these examples demonstrate that people react to and
utilize temporal rhythms in complex ways. People doing
collaborative work have different experiences with such
rhythms, and the design of systems impacts the ways users
interact with the system. Several studies on temporal
artifacts, such as calendars, have shown how people’s

behaviors are influenced by those artifacts [39]. There are
related discussions on how to support the representation of
temporal and social structures in online environments for
everyday collaboration [13], or how to better design time
representation in systems for time-critical medical
teamwork [25]. We now turn to the body of previous work
specifically studying temporal rhythms in scientific
collaboration.

Temporal Rhythms in Scientific Collaboration
Managing and analyzing temporal aspects of scientific
collaboration has long been a fertile area of CSCW research.
Karasti, Baker, and Millerand’s work focused on the short-
term and long-term temporal scales in the collaborative
development of information infrastructure for scientific
collaboration [20]. They identified two temporal
orientations, project time and infrastructure time, and they
suggested paying more attention to studying long-term
development of such collaborations. Jackson et al. extended
this concept and proposed the idea of collaborative rhythm,
describing the temporal dissonance and alignment in
collaborative work [19]. They identified four types of
rhythms in joint scientific work: organizational,
infrastructural, biographical, and phenomenal.
Organizational rhythms include those set by institutions,
such as academic calendars and funding deadlines.
Infrastructural refers to the temporal constraints set by the
equipment and infrastructure of a scientific venture.
Biographical rhythms are determined by human life
circumstances such as family and illness. Finally,
phenomenal rhythms emerge from the objects or
phenomena under study, such as phases of the moon or the
seasonal mating patterns of animals.

More recently, Steinhardt and Jackson considered plans [48]
and anticipation work [47]. They suggested that planning is
an essential part of collaborative scientific work and that
plans align rhythms in local working practice [48]. They
further suggested that the pathways of project development
are guided by anticipation work, which are the practices
that cultivate and channel expectations of the future [47].
These studies focus more on the relationships between
people in the scientific work context, while our work
focuses on the entire ecosystem of users and systems, and
seeks to draw links between temporal rhythms and the
collective temporal experience of the group including their
temporal interactions with their computing systems.

Collective Time
Mazmanian and Erickson [30] and Lindley [29] have
recently studied and called for further examination of
collective time. Mazmanian et al. [31] cite the importance
of politics and power within temporality from Sharma [45],
who takes a political view of time as "tethered and
collective."

Lindley positions time as “collective and entangled,” noting
that the nature of time is inherently multiple and fraught
with contradictions, while Mazmanian and Erickson put

forth a definition and challenge: they suggest a focus on
"the collective, not the individual, level of practice within
an organization" [30] to manage human availability.

We suggest that the imperative to position time as
collective is an outgrowth of many decades of research into
the nature and conflicts of temporality. There are multiple
threads of research into temporal conflicts and dichotomies
[16, 21, 22, 31]. Many researchers, both within CSCW and
outside, have observed fundamental dichotomies in human
understandings of time. We note that most of these have
focused on the individual and individual perceptions, rather
than taking a unit of analysis beyond the individual.

Sociotechnical Studies of Cyberinfrastructure
The historical background of our work includes
sociotechnical studies of cyberinfrastructure, which has
been of major interest in CSCW for decades (e.g., [8, 23, 28,
46]). Starting from systems that support scientific work and
distributed collaboration, researchers have been studying
various social and organizational aspects around
cyberinfrastructure. Ribes and Lee in a special issue of the
Journal of Computer Supported Cooperative Work in 2010
[44] focused on the social aspects of the development of
cyberinfrastructure. Our utilization of a time lens on an
under-studied sociotechnical ecosystem, the HPC
community, enables us to focus on blending several threads
of research as discussed previously. In the next section, we
provide necessary background information on this unique
ecosystem.

BACKGROUND AND METHODS
A HPC system consists of a large group of connected
computers that function as a coherent system. Along with
the people surrounding the machines, a sociotechnical
system with unique characteristics is formed. In this section,
we describe our research site, data collection, and analysis
methods. We also introduce the roles in this ecosystem and
the key characteristics of an HPC system. Finally, we
provide an exemplar workflow to describe the interaction of
various entities in the ecosystem.

Research Site
Our research site is a government-funded research center in
the USA where scientists use shared HPC machines run by
the National Energy Research Scientific Computing Center
(NERSC). NERSC is supported by the Department of
Energy (DOE) and operates multiple HPC systems. These
systems are shared between hundreds of projects.
According to the official website [34], more than 5,000
scientists use NERSC to perform scientific research in
various disciplines such as material sciences, earth sciences,
cosmology, and climate science.

Data Collection
Our fieldwork was conducted under an ongoing research
project to design next-generation scientific computational
environments. The field study focuses primarily on a group
of scientists from a single domain. These domain scientists
belong to a large project in which they conduct research via

simulation and modeling. Other than the core group, we
also interviewed domain scientists from four other
collaborations that use the HPC system to validate common
problems across domains.

During six months of fieldwork, we conducted 26 semi-
structured formal interviews (average length one hour each)
with 15 people involved with the HPC system. We also
engaged in other qualitative ethnographic methods such as
direct observation and shadowing over a period of several
weeks. The interviewees included four domain scientists,
seven computer engineers who support domain scientists,
and four members of the HPC facility staff. 13 interviewees
were male and two female, representative of the gender
distribution of the members of the HPC community.
Interviewees were selected via snowball sampling. Their
experience with HPC systems ranged from 5 to 25 years.
The data collection occurred in two stages. In the first stage,
lasting three months, we entered into the field to familiarize
ourselves with the environment and scientists’ thoughts and
issues about working with HPC systems. We talked to
domain scientists in material science, climate science,
physics, and cosmology. In this stage, we asked them to
describe their scientific work and experiences with HPC
systems. Example interview questions included:
 Can you tell me about the projects you are working

on that involve the use of supercomputing?
 What is the science objective of the project?
 What kinds of data and computational work are

involved?
During this period, time-related comments became more
and more salient, so we narrowed down our investigative
focus to time-related topics. Some example questions in this
stage were:

 When is the last time you felt you spent too much
time on one task? What and why?

 How much compute time allocation do you have from
NERSC?

 How do you decide what types of jobs to spend your
compute time on?

 How do you track the amount of your allocation?
In stage two, we interviewed five domain scientists, five
computer engineers, and four HPC facility staff members.
Three of the five domain scientists and one computer
engineer interacted with us frequently outside of interviews
during the six-month period. We had at least four
interviews with each of the members of the core group.
Data Analysis
We conducted a thematic analysis [10] to analyze the
dataset. The first author reviewed each transcript, and time-
related quotations were pulled out. Subsequently, we coded
the quotes in three passes. We first open-coded the issues
around the quotes. Then, we organized the quotes into
different stages of a job cycle and synthesized the codes

into themes in each stage. Finally, we generated higher-
level themes from the codes for discussion.

Roles in the HPC Ecosystem
In our field study, the people involved in using
computational cycles on HPC systems fall into the
following key roles1: domain scientists, computer engineers,
and HPC facility staff.

Domain Scientists
Domain scientists are researchers in specific areas of basic
science, such as cosmology, microbial biology, material
science, and climate science. Most domain scientists
conduct their work as part of one or more scientific
collaborations. One or more principal investigators (PI) lead
the collaboration. Team members often include senior
scientists, mid-career scientists, and early-career postdocs
and students. In order to answer fundamental science
questions, they run codes (software) written either by their
scientific community or by their collaborators. The scale of
the codes and/or the data associated with them require these
to be run in computing environments larger than the typical
workstation, such as in cloud, cluster, and HPC
environments. Domain scientists are the primary users of
the HPC system we studied.

Computer Engineers
Computer engineers are members of the scientific
collaboration who help scientists run codes on the HPC
system. This work may involve modifying existing software
or ‘codes’ to utilize the systems, installing community
codes, writing custom codes to aid in the running and
analysis of scientific codes, and developing
cyberinfrastructure to support the scientific workflows.

HPC Facility Staff
HPC staff is comprised of people in various roles
surrounding the acquisition and support of HPC systems.
This includes people who act as liaisons between the users
of the system and the facility to understand users’ needs,
people who manage the allocation of system resources
among its users, and people who work directly with users to
help them troubleshoot their system usage.

Key Characteristics of an HPC System
Since HPC systems comprise a group of interconnected
computers, using an HPC system is different from using a
workstation. Here, we briefly describe a subset of
characteristics related to using these systems.
Programming for HPC
Each of the individual computers in an HPC system, called
nodes, contains several processors (or cores) and some
amount of memory that is shared among the processors. A
serial application is one that executes calculations in a
specific sequence by a single processor. In order to take
advantage of the thousands of processors in these systems,

1 This is not an exhaustive list of roles involved in the entire network but
only the key roles on which we have focused in this paper.

often applications are parallelized—calculations are
executed simultaneously on different processors, allowing
more calculations to be processed in a given timeframe.

These supercomputers usually have a variety of storage
options including large scratch space, which is local to the
system, and global storage for user and project directories.
Additionally, users have access to tape storage for long-
term archival needs. The process of reading and writing
files to these storage systems by an application is generally
referred to as I/O. Applications can generate large amounts
of data, sometimes larger than the amount of disk space a
user can store locally. It may be necessary to move data off
local storage to larger disk and tape storage systems.

Parallelization and data management require additional
coding and understanding of how to utilize the system.
Scientists often consult and work with computer engineers
and facility staff to learn how to write and configure
software for these tasks.

Allocations
In order to use a system such as NERSC, a scientific
collaboration must submit a proposal to DOE to request a
specific amount of computational time for the coming year.
The PI on the proposal will usually be the main point of
contact. Since collaborations often share a single allocation,
the PI will work with the other scientists to determine the
appropriate amount of time to request. The time requested
is in units of compute hours, which is typically an hour of
time for a single processor. Thus, determining the amount
of allocation to request requires estimating how much time
a collaboration will need to conduct specific science goals.
The collaboration will work with computer engineers and
facility staff to make this estimation.

Based on several factors, including the projected impact of
the intended science, the DOE and the facility managers
determine the size of the allocation of compute hours to the
proposing collaboration, which may be less than the amount
requested.

Batch Queues
Once a scientific collaboration has its allocation, scientists
then need to actually schedule time for their application to
run on the supercomputer. The scientist must submit the
application as a job into a queue, requesting the number of
processors to be reserved and the maximum amount of time
requested on the system. The time that a job runs on a
system is called wall time, and an application that exceeds
the requested wall time will be terminated. Based on the
order of job submissions and the priority of the jobs, an
automated scheduler will optimize the utilization of the
system. The goal of the scheduler is to maximize usage, i.e.,
the scheduler tries to allocate processors as much as
possible throughout the day. Most jobs submitted to the
queue will not be able to run immediately on submission.
Typically, the queue wait time increases as more processors
and longer wall times are requested. The number of

processors reserved and the number of hours used to run the
application are two of the main factors that determine how
many compute hours of the total allocation are used by each
job. Another important factor that affects both queue wait
time and allocation charge is the type of queue. For
example, jobs in the priority queue can take priority over
jobs in the standard queue. The facility will charge more
against the allocations to run jobs in the priority queue.
There are several types of queues at a facility, and the
facility staff will often set policies around these queues
based on discussions with various facility users. The
science users, with help from computer engineers and
facility staff, will then decide which queues to use based on
their needs and how their applications run.

Exemplar Workflow in the HPC Ecosystem
Several of the scientific collaboration teams we studied are
composed of both domain scientists and computer
engineers. Running scientific codes at an HPC facility will
involve people in all the roles listed earlier. Here we
describe an exemplar workflow to illustrate the interplay of
these roles in the HPC ecosystem.

Collaborations use models that encapsulate the physics of
natural systems. This process is called simulation. The
output data of these simulations are not in the format
needed to analyze the data, so the collaboration creates
programs to convert it into the desired format (post-
processing). Finally, the data are analyzed using custom-
built analysis tools. Throughout the process, data are moved
through different storage systems. Published data include
data consumed by others in the community (publishing) and
data meant for long-term preservation (archiving).

Getting this workflow to a functional state on an HPC
system is called preparation. For example, codes may need
to be modified so they can be executed in a batch queue
system—required libraries may need to be installed on the
machines and codes may need to be compiled and
parallelized. Computer engineers work with the domain
scientists to accomplish these tasks. User support staff at
the facility provide aid for some of these tasks as well and
also provide additional guidance on how to use the various
components of an HPC system.

System Design Trade-Offs
HPC system design is a complex and often unwieldy
process that includes multiple stakeholders from different
organizations including HPC facility staff, funding agencies,
hardware and software vendors. System design of these
large-scale systems is influenced by various factors
including projected user needs as extrapolated from day-to-
day user support and user requirements workshops,
hardware options available through the vendors, and cost.
However, the vendors who provide the hardware and
software often have limited exposure to the users.
Additionally, performance and utilization are often the
primary metrics of success in these environments; past
design decisions have not focused on usability or the user

perspective. With the move to exascale computing,
however, there has been acknowledgment of the need to
take usability into account due to the potential magnitude of
inefficiencies in system usage.

FINDINGS: TEMPORAL RHYTHMS AND CONFLICTS IN
THE HPC SOCIOTECHNICAL SYSTEM
Time is at the center of interactions within the HPC socio-
technical system. In this section, we report the results from
our study. We consider the various temporal characteristics,
rhythms, and conflicts across the lifecycle of a scientist’s
use of an HPC system. We structure the following section
via areas of scientific use of HPC resources, and identify
three cross-cutting temporal themes: mismatches in time
expectations, temporal uncertainties, and conflicting views
of optimization. In this and the discussion section, we build
on Jackson et al.’s research on collaborative rhythms to call
out commonalities and conflicts.

Time Allocation
Access to supercomputers is shared across different user
groups from various science communities, and a project is
allocated compute time and data storage on a yearly basis.
Time becomes a virtual currency in this environment, with
the amount allocated to a project being shared between
project members. Time is deducted from the allocation on
an ongoing basis. Additionally, different queues and
systems have different “costs” and priority access to
machines costs extra as well [36]. The number of nodes and
cores a HPC system has is fixed, putting an upper bound on
the “resources” available in this economic system. It is
important to note that having virtual currency does not
guarantee immediate access to the resource. Even if a
project has a large allocation, project members may still
have to wait in a queue for other jobs to finish on the
machines.

An important question is how do users decide on the
amount of “time” they request? Generally, this is guided by
the scientific goal the scientist wants to achieve. However,
in addition to the obvious “machine time” that will be
needed to run the models and analyses, users might
consider other “human time issues.” For example, scientists
might consider their own time and how much they can
finish in the proposed timeline of the project.

In terms of deciding how many simulations I am going to
run in a given year, my decisions over the past couple of
years have not been governed by how long it takes things to
run on the supercomputer, but rather how much time it
takes me to manage these runs versus giving me time to do
analysis. [Domain Scientist B]

These contradictory views of human and machine time
optimization represent conflicts between what Jackson et al.
[19] term biographical and infrastructural rhythms.
Additionally, the distribution of allocation creates
interesting dynamics in the economic system. For example,
some scientists reported that the allocation was less than

what they asked for and is not sufficient to accomplish their
scientific goals. On the other end of the spectrum, some
projects used less of their allocation than originally
requested.

We asked for 62 million [hours], but only got 50 million hours
in the end. We should have asked for 75 million hours because
we really need 62 million hours. [Domain Scientist A]

This mismatch in time expectations creates stress and a
perception of inefficiency and unfairness, which staff work
hard to address. The virtual aspect of currency allows for
redistributions. Supercomputer staff assess usage and
conduct adjustments quarterly to ensure machines are
heavily utilized. Projects that use less than their predicted
amounts might lose some of their allocation. Partial
amounts of unused allocation will then be redistributed to
other projects. Therefore, some scientists experienced an
increase in their time allocation to compensate for their
heavy use as they used more resources:

I had requested 15 million hours and I had been granted 12
million hours, and at the end I had 15 million ... the quota
was incrementally increased just ahead of us each time.
[Domain Scientist B]

Here, a mismatch in time expectations has been resolved
due to manual intervention. Both initial distribution and
redistribution of “machine time” involves informal
interactions between the HPC center staff and the domain
scientists, and includes a complex manual decision process.
The HPC center staff juggle complex temporal rhythms,
attempting to meet scientists’ needs while maintaining high
system utilization.

Preparation Stage

Human Time to Get Codes Running on the HPC System
Scientists have to invest time to port their work to
supercomputers since HPC machines are substantially
different from traditional workstation environments.
Domain scientists invest time in learning the system and are
usually able to perform this task by themselves using online
tutorials. This time investment is usually expected to pay
dividends, in terms of being able to run codes faster and/or
scale to problem sizes that would not be possible without
access to these supercomputers.

The interactions in the sociotechnical system become more
interesting as the complexity of the codes and/or scale
increases. Scientists need a deep understanding of system
hardware and software to obtain best utilization of HPC
resources. This involves a steeper learning curve and hence
a larger time investment. Scientists optimize the use of their
own time in various ways: some learn parallel programming
in depth while others gain only a surface understanding.
Computer engineers and/or HPC center staff spend time
helping scientists prepare and optimize their codes at
various levels. Time spent improving codes can result in
better performance (i.e., less machine time used).

Data Management Time
HPC environments provide various storage options,
including temporary scratch space, project file systems, and
archival tape storage. The file system space on the HPC
system is limited, so they have to store their data on tapes
and transfer them back to the file system when they want to
conduct analysis on the data. Fetching the data they need
from tape potentially takes a long time. Sometimes, the size
of the data may exceed the amount of project space they
have, so they store their data in the scratch/temporary
directory since it has more space. Periodically, the HPC
facility staff members sweep away all files in the temporary
directory, which has important time implications for the
domain scientists. Scientists need to move the data they
want to save off the temporary space and subsequently
bring back any data they need for future processing.

Computer Engineer: It looks like they are going to clean up
the temporary directory next week. Please backup your
important files.
Domain Scientist A: I wonder how long it takes to read 15
terabytes of data from tape.
Computer Engineer: Probably a long time.
Domain Scientist A: Probably a long time. I bet it takes a
week.
This conflict between organizational and infrastructural
rhythms [19] led to annoyance and the perception of wasted
human time. Thus, we see that domain scientists often
associate “time” estimates to the work items they do with
respect to the HPC system.

Queue Waiting Time

Once a domain scientist has prepared the codes to run on
the HPC machine, they wrap their codes in a script and
submit a “job” to the HPC system.

Queue Waiting Time for Code Development
Scientists understand they have to wait for their jobs to run
on the machine. However, scientists definitely expressed a
level of annoyance at having to wait in the queue for a
quick test during code development or testing. When
scientists are still developing their codes there may be bugs
that cause the program to crash. In order to debug the code,
they will have to go through a long wait in the queue
multiple times. In HPC systems, there is a special queue
called the debug queue — i.e., short jobs with lesser
waiting time — which is reserved for testing.

The turnaround when you are running something through
the queue system, even in the debug queue, can be quite a
while. You don't have the rapid turnaround that you do at a
work station or something like that, where you test
something, change it, test something, and change it.
[Domain Scientist C]

These contradictory views of optimization represent
conflicts between infrastructural and biographical rhythms:

even short jobs in the debug queue have to wait for what is
considered a long time by the scientists.

Uncertain Queue Waiting Time
The domain scientists understand they have to wait to use
the system, but they are troubled by the uncertainty of the
waiting time and unpredictability of when their jobs might
finish. The only feedback the system gives them is the
position in the queue. However, this does not tell the
scientists the time the jobs ahead of them in the queue
might take. The queue number also does not always
indicate the order of execution due to varying priorities and
policies associated with the jobs.

I'll submit a job and it goes in and it is at number 1300 and
it starts an hour later. Then in another case I will have a
job which might be there for a day or half a day and it is
down to 100 in the queue apparently, and the next time I
look it's at 1500, then it starts. [Domain Scientist B]

This temporal uncertainty created by misalignment between
institutional and biographical rhythms leads to frustration
and the perception of inefficiency. Since it is hard to tell
when a job might start, scientists report either spending
many hours babysitting the jobs actively or forgetting the
jobs that were previously submitted.

The HPC queue system provides a “showstart” command to
enable users to estimate the waiting time. The command
displays the earliest possible start time of jobs that request
the same amount of resources. However, this is not a
personalized estimate. The documentation clearly notes that
jobs requesting the same amount of resources will return
the same start time. Thus, only the highest priority job with
the same characteristics will start at the give time. Just like
the queue position indicator, it does not provide accurate
information to tell you how long a job has to wait.

I won’t call it an estimate since estimate is a too strong of a
word. I really do not find it to be successful. It does give
you an idea if a job is going to take a long time. But it
might take 20 minutes or an hour. [Domain Scientist C]

Scheduling Policies
As described in the background section, every job to the
HPC machine is submitted to a queue to wait for its turn for
execution. The scheduler then decides the execution order.
It considers a variety of factors, such as the current load of
the machines, the number of processors the job requests, the
priority of the project, the number of jobs a user has in the
queue at the moment, and the maximum time a job is
allowed to run, (called “wall time”). Typically, jobs are
scheduled in a first come first serve order. However, when
there are holes in the schedule, a lower priority job might
fill the gap. The priority of a job is determined by the
project it belongs to and queue it resides in (e.g. regular
queue vs. high-priority queue.) Like all scheduling
problems in computer science or other domains, scheduling
on the HPC system is an NP-hard problem, which means it
is difficult to compute an optimal solution to the problem.

Thus, heuristics are used to find a solution. The policies
around scheduling are complex, and even the HPC facility
staff acknowledge that it is hard to predict the scheduling
outcome.

The scheduler’s policies are very complicated. It is very
difficult to figure out when your job is going to run. That's
one thing people always want to know. That is one thing we
can never really tell them. [HPC Facility Staff Member A]

Conflict between infrastructural and biographical rhythms
is perceived by and acknowledged as frustrating by staff
members as well.

The complexity of the scheduling is further increased by
other mechanisms in the system that allow for higher
priority needs. Users can “spend” twice the allocation to get
a higher priority on the machine. Sometimes, a job may be
about to start when another user submits a job to the high
priority queue. Thus, the new job starts before the original
one that was about to run.

HPC facility staff accept special requests to boost priority
of the jobs or even block out a period of time for a certain
project. One of our interviewees, a domain scientist,
reported to us that he got extra help from the HPC facility
staff to speed up his waiting time in the queue:

For the biggest job, the queuing time takes almost a week
because I'm running on about sixty thousand processors.
The facility staff was kind enough to give me a temporary
boost for a couple months, but I don't think they will give
me that again for a while. [Domain Scientist C]

Queue Time vs. the Ways of Working
At first glance, the cost in human time of code running
could be pegged to the amount of wait time and clock time,
which might be seen as pure inefficiency. But is the cost as
high as it appears? Perhaps during this wait time, the
scientist has time to reflect upon a previous run, generate
the type of creative insight that often occurs during
downtime, or accomplish other critical tasks. Thus there
may be unexpected hidden value in this “waiting” time.

While I’m waiting for one, I can be setting up another...if
the queues were faster, then you wouldn’t work that way.
You would actually maybe just work serially instead of
trying to multi-task yourself, which is an efficient way to
use the time, but not necessarily your head. [Domain
Scientist C]

This raises some important issues that need to be
considered in the design of systems. Scientists adapt their
own temporal rhythms (and work methods) to work around
temporal conflicts and inefficiencies in the systems. As is
well known in the field of CSCW [1, 24, 28, 29], this
adaptation may yield unexpected dividends, or may have
hidden costs.

Execution Time
A run might involve various steps from environment
initialization to actual process execution. In this section, we
discuss temporal factors related to the execution phase.

Time Cost in Initialization Stage
Traditional HPC applications used Fortran/C/C++ for their
codes and HPC systems are optimized for these languages.
Increasingly, we see the use of Python for scientific
computing. In our studies, the scientists mentioned
problems with using Python for jobs that required a large
number of nodes. Python imports all the dependent libraries
on each node, and each importing step involves a file
system read. When 4,000 nodes are trying to access the
same set of files, it impacts performance. A number of
participants reported that it took at least an hour each time
just to initialize the environment, before any analysis or
simulation started running. Thus jobs not only take longer
to run, but the users get charged for this initialization time
that is often unaccounted for in allocation requests.

Problems such as these and the resulting frustrations often
drive scientists to find ways to improve the situation. We
observed one scientist who was impacted strongly by this
problem develop workarounds with support from computer
engineers. The solution minimized I/O overhead. The HPC
center staff is also investigating a more permanent solution
to the Python problem in collaboration with the vendors. It
is interesting to note that the temporal rhythms of these
interactions are different. A scientist might be able to come
up with a workaround for a problem specific to their
application in a short time, as in hours or days. However, a
system-wide solution requires systematic design,
implementation and testing. This can take months,
sometimes even years. This conflict between infrastructural
and phenomenal rhythms [19] raises some important
questions for the HPC community to consider in the context
of collaborative work: Would this have been possible
without the timely collaboration between the computer
engineers and the scientists? Is there a way to create an
ecosystem that allows users to share ideas and solutions in a
way that harmonizes these differing temporal rhythms? Can
we establish a synergy between user-specific workarounds
and long-term solutions?

Variability in Running Time
The HPC batch queue system requires users to set “wall
time” as an estimate of the actual running time in terms of
clock hours. If a job runs longer than the preset wall time, it
will be killed by the system. However, the actual running
time is highly dependent on the performance of the
underlying systems and possible load on shared resources.
One typical case is I/O: since filesystems are shared
between nodes, one highly demanding job using the file
system may slow others down considerably.

When I try and run something on the HPC system,
sometimes just even opening a text file can take a really
long time, depending on if someone is overutilizing the

system or really banging on I/O on the system that I'm
trying to run on. So I guess that is a consideration I have
had to keep in mind, or learn to keep in mind in moving
stuff from a desktop to the HPC system. I/O can be really
variable. [Domain Scientist C]

This temporal uncertainty impacts scheduling. Users often
pad their jobs and specify higher wall clock times due to the
uncertainty in running time.

For the low resolution simulations, they typically finish in
about 20 minutes, but because of the volatility of NERSC I
have had them take 45 minutes so I specify an hour. I think
that all of them sit for an hour except for the high resolution
ones which take substantially longer. Those I give three
hours. Because I have seen them take between an hour and
a half and two and a half or something. In order to avoid
failure completely, I am going quite a bit higher than I think
it needs. Because at this point, I don’t have a good system
for dealing with job failure. [Domain Scientist C]

This is a common phenomenon across users of the NERSC
systems. A previous analysis of the workload showed that
60% of the jobs only need half of the wall time they
requested [2]. A higher wall clock time might mean a
longer wait time in the queue, since shorter jobs might be
able to backfill. However, if a job runs over the specified
wall time, it gets killed and results in lost work and lost
time (work time, waiting time and allocation time).

Wasted Time from System Uncertainties
Large-scale systems such as supercomputers often
experience various types of failures. A single failure on one
node can impact the entire application that might be
running on 1000 nodes. It is often hard to tell what actually
happened in one of the computational nodes among 10,000
nodes. Therefore, it is challenging for a scientist to identify
whether the problem is in the code or the system.
Additionally, transient errors might rectify themselves and
the cause of the problem might be unknown. Our
participants mentioned that there were times when a job
failed the first time and then succeeded the second time.

You don't always get the same result when you do
something twice… Sometimes I will run something literally
without changing anything, resubmit the same job again. It
will have failed once. It will run successfully the second
time. [Domain Scientist C]

These types of errors can lead to interesting user behavior.
Scientists might repeatedly try to run the same job to
identify if it was a transient error, effectively wasting
machine time. Alternatively, a user might invest time to
debug and try to understand the problems, which might be a
wasted effort.

Time to Optimize
Scientists often conduct various kinds of optimizations,
from algorithm optimization to performance optimization.
How does a scientist determine where to invest their time

and energy? As one of the scientists pointed out, it is often
not a case of obtaining the best performance but getting
sufficiently good performance:

I am not really interested in making a script that takes an
hour, run in 10 minutes. I am interested in taking a script
that runs three days, and running in one, or less … Where
my interests are, is making the intractable problem,
tractable; not making the tractable problems faster,
because they’re tractable, who cares? [Domain Scientist A]

In another example, the scientist didn’t think it was worth
his time to learn something new to parallelize the code.
Human time investment is often based on what causes them
frustration and/or what is important from a science
perspective, and not necessarily from the system
perspective, as has long been noted in CSCW research [1].

This loop could be parallelized. I don't know how to do that
inside a loop. I know how to parallelize over files. I don't
know how to parallelize over loops with the OpenMP calls.
I could learn it but I haven't. [Domain Scientist A]

However, significant waste of system time will often cause
users to consider optimizations. In one particular case, a
scientist reported that he had trouble with configuration
parameters that caused a significant slow-down. The slow-
down in turn had the possibility of draining their allocation
a fair bit. Thus the scientist spent time trying to figure out
the cause of the performance slow-down, and eventually
had to obtain help from collaborators in another institution
to fix the problem.

I could have used the time and just burned a lot of CPU
time, but I was getting a factor of 100 slower performance.
It seemed to me a waste of CPU time to do that. [Domain
Scientist C]

Time to Handle System Upgrades
During the period we conducted the fieldwork, the
operating system on the HPC system was upgraded. The
upgrade broke many software dependencies of our
participants’ existing codes.

Every time there's an operating system upgrade, it hurts us
badly. We haven't gone through any of them without some
kind of scar. Sometimes it's really bad. This one is really
bad. It may be weeks or months before we actually can run
again. [Domain Scientist A]

Even though this strongly impacts the users, this time cost
is also hard to prevent. Usually before the upgrades, the
HPC facility staff will test the base packages extensively.
However, it is hard to guarantee all the software packages
will work because the users often manage some of their
domain specific tools which might have complex
dependencies.

More issues do happen after upgrades, because the systems
and the software are so complicated that it is not
uncommon. There are so many interactions it is not

uncommon for some interactions to have not been fully
tested by somebody somewhere if something happens. [HPC
Facility Staff Member A]

Sometimes, scientists might choose to introduce steps in the
processing that add time to their process in order to deal
with the obstacles they have. For instance, after the OS
upgrade broke the model, the scientists introduced another
step in the computation workflow, thus increasing the
machine time.

To deal with the problem [the OS upgrade], I had to move
my process to another file system so I was not getting this
error. Of course copying the data over and everything takes
a bit of time, and it is also just introducing a new layer, a
new step. [Domain Scientist B]

Humans make their decisions based on perceived time. Will
it cost them more in terms of personal or learning time to
switch to a new model than it does to recompile? People
make their computer usage decisions by framing these
questions within personal time cost and biographical rhythms.

Collaboration Time
Domain scientists are theoretically able to save time by
asking computer engineers for help with programming and
running codes. However, we found from the interviews that
scientists may not necessarily use the help.

One scientist noted that it would take him more time to
explain it to the computer engineers. This is a good
example of the scientist’s perspective of cost versus benefit
and a classic CSCW trade-off. While it would take the
scientist some time and effort to do the work, the process of
seeking help would be more cumbersome.

It is something where I felt I couldn't ask the computer
engineers to do it because of the amount of time it would
take me to explain the details to him. I could just as easily
have written that myself. [Domain Scientist B]

DISCUSSION

The Nature of Sharing
Many aspects of time and temporal rhythms in our
fieldwork are tied to the nature of shared resources, thus
confirming our belief that a unit of temporal analysis
beyond the individual makes sense in this domain. For
example, because the system is shared between users and
the demands from users are more than what the system can
supply at a time, jobs have to sit in queue to wait for others.
Resources such as storage are also shared and, hence, have
quotas associated with them. Sharing is integral to the
system due to the costs associated with it. To shape a
group’s perception of resources as a common good, past
research has demonstrated that understanding time as
collective could lead to a more effective mental model of
both human and machine time [5, 7, 13].

Temporal Rhythms
A recurring theme we identified was the conflict between
various temporal rhythms, as has been noted by Jackson et
al. [19] within other scientific collaborations. For example,
in order to make the code run faster, the scientists may have
to spend time on improving it through the use of new
libraries or techniques. When human time is required to
save machine time, this conflict between biographical and
infrastructural rhythms requires trade-offs. Improved run
time may lead to benefits for the scientists in the long term.
But these benefits may not be obvious or what the scientists
are interested in as we saw earlier. If the problem is already
tractable, scientists have little interest in speeding it up.

A more complex example is when a scientist spends time in
order to optimize the configurations of the job for queuing
time and running time. This effort can be tedious due to the
complexity of the codes and delays in the queuing system.
Therefore, scientists tend not to invest time on it unless the
issues become a source of difficulty for them. In some cases,
they may turn to find external help from computer
engineers or HPC center staff. This introduces an
interaction between scientists’ time and computer engineers’
time to save machine time. According to the interviews,
sometimes this interaction is critical and helpful, as
computer engineers may be able to solve scientists’ issues
in a short time. However, sometimes scientists feel that the
overhead of explaining the details to someone else is not
worth it. Then, they prefer to solve the problems by
themselves or just do the tasks manually. This classic
CSCW problem has been addressed by multiple researchers
over decades. The trade-off between individual vs.
collective needs has been addressed at length in the field
(e.g. [1, 24, 49]). Based on previous work, we suggest that a
consideration of collective time may prove useful in
addressing this complex and nuanced problem.

Challenges in Communication
We found that some issues in time arise when members of
the ecosystem face challenges in communicating their state
or intentions. The system does not always provide useful
accounts or explanations, of its activities. For example,
scientists felt that the queue order appeared uncorrelated to
the queue wait time. The opaqueness of the system caused
the scientists to spend time babysitting the job. If the queue
wait time could more predictably be determined, scientists
may take other actions instead, such as deciding to go home
or wait for the results. Yet, as the facility staff explained to
us, even if the system was completely transparent, accurate
queue wait times are difficult to determine, due to factors
such as the policies around queues and how users use the
system.

Challenges in communication were observed not just
between the system and people but also between people.
For example, as seen earlier, the scientists described the
time overheads in back and forth conversation with the
computer engineer explaining the details of their work and

scripts. All these examples show that communicating state
and intentions is challenging and complex, as previous
work has demonstrated [1, 5-7, 11, 25, 27, 30, 31]. This
body of research has also shown that increased visibility of
state and intentions, especially if focused collectively, is
likely to be beneficial.

Misaligned Objectives
Different members of the HPC ecosystem have different
objectives. This misalignment can lead to conflicts in
temporal rhythms. We have found that facility staff and
computer engineers often have a strong interest in the most
efficient use of the system. However, the main objective of
scientists is to get their work done, and this does not always
result in efficient system use. For example, we saw earlier
that users often pad their wall times. Facility staff strongly
encourage their users to provide accurate wall times, as this
results in better scheduling of jobs and presumably better
user experience. However, for some users, crossing the wall
time and having their job terminated early can lead to
significant time and effort trying to restart their job. Even
when they generally know how long their application will
run, unpredictable system state can lead to much variability
in the run time, leading to even larger wall time padding.

Given how Lindley and other CSCW researchers [1, 29, 38]
have noted that technology can give shape to the ways in
which time is organized, some of the frictions and
conflicting rhythms surfaced by our study may be addressed
through technological affordances, for example,
visualizations of the collective rhythms of HPC user and
compute time, that provide a selective transparency into
collective scheduling of time.

Developing a Scheduling Interface for Collective Time
Historically, system performance is the most commonly
used design guideline for HPC systems. Yet, when
considering the ecosystem as a whole, there exist
opportunities for developing new types of metrics for HPC
systems. Our ethnographic time lens revealed that system
performance is only one of several ways that time affects
both the machines and the humans in the HPC ecosystem.
We suggest the possibility of developing a set of metrics
based on collective time. In this, we build on the foundation
laid by Lindley [29] and Mazmanian and Erickson [30] in
their qualitative discussions of collective time. For example,
optimizing code for HPC may save machine time in terms
of run time but comes at a cost to domain scientists in terms
of education and implementation time. Other time costs
may come in the form of communication with computer
engineers and facility staff. This example illustrates how
time shapes the experiences within the ecosystem and
uncovers the possibility of considering collective time as a
design guideline for HPC interfaces.

We follow Jackson [19] in that designing for collective time
requires designing for temporal rhythms. Similarly, as
Kuutti and Bannon remark in their view on the practice turn
in HCI, "Practices are wholes, whose existence is

dependent on the temporal interconnection of all these
elements, and cannot be reduced to, or explained by, any
one single element." Further, "the individual user cannot be
the unit of analysis... Practices are a shared resource among
a community of people." [26]

To address the issue of collective time in the HPC
community, we turn to previous CSCW and CHI research.
In 2002, Begole et al. [7] described a system that provides
visualizations of patterns of users' computer activity data in
the form of a set of stacked activity plots which are aligned
vertically in a series of horizontal bar graphs.

Figure 1. Begole’s visualization of human activity on

computers in a collaborative group [7].

This technique was successfully used for group
coordination, as a way to maintain awareness of other
people’s activity patterns and work rhythms. We suggest a
similar collective visualization of both human activity and
the HPC schedule/allocation data, color-coded by user
group, might serve to highlight these work rhythms and
enable collective efficiency. Creating such a visualization
of HPC allocations along with its users could enable more
efficient use of the system, as Begole showed their
visualization was helpful in predicting availability and
inactivity for human work rhythms and it may apply also to
the sociotechnical applications of collective time that
include a shared resource and human time constraints.
Selective disclosure and transparency of information would
be necessary (due to privacy concerns). Begole suggests
that visualizing work rhythms could lead to a means of
creating a shared sense of time within a workgroup.

Other lines of research indicate this approach could be
effective. Aragon et al. [5] found that collaborative
visualizations contributed to a shared sense of awareness
and alignment of temporal rhythms within a scientific group
operating under time pressure. Fisher et al. [13] noted that
making temporal structure visible led to increased
coordination within a work group, and that visualizing
temporal patterns was especially helpful. They warned
about the potential risk of loss of privacy, which is why we
emphasize selective transparency of individual rhythms and
a focus on visualizing collective time, in other words
utilizing metrics based on a unit of analysis beyond the
individual to create such a visualization. Further work is
needed to refine and validate such metrics, and this

proposed design obviously needs a significant amount of
study before it can be realized. Nevertheless, we suggest
that multiple lines of research are converging in this area
and thus we echo Lindley’s [29] and Mazmanian and
Erickson’s [30] call for more research into collective time.
We further suggest that HPC and exascale environments
may be excellent venues for studies of such designs, as the
stakes are very high, as are the potential rewards. Given the
tremendous impact of centers such as NERSC on
worldwide scientific discovery, the impending risks and
benefits of the move to exascale computing, and the
potential of CSCW research to deliver useful knowledge to
collaborative HPC ecosystems, these converging lines of
research hold significant potential.

CONCLUSION
Via a qualitative study of users of HPC systems and the
application of a time lens to identify issues surrounding
these large, sociotechnical ecosystems, we built on previous
research on temporal rhythms in collaborative scientific
work and the emerging concept of collective time to
suggest design implications for HPC and potential
directions for future work. We found that time and temporal
rhythms play an important role at every stage of
computational work. Time is not simply passively
experienced, but rather actively shapes the dynamics in this
sociotechnical system. We discussed how the essence of a
shared system imposes both support and limitations on
resources, leading to a complicated balancing act between
supply and demand. We examined the trade-offs between
various types of temporal rhythms in the context of Jackson
et al.’s [19] work, and identified three sources of temporal
conflict: mismatches in time expectations, temporal
uncertainties, and conflicting views of optimization.

We illustrated how the misaligned objectives and rhythms
and the challenges of communication between people and
machines and people with each other might be resolved
through consideration of collective time. We have identified
some areas to be considered when systems are designed.
We suggest that effort be devoted to foregrounding
collective time, not just traditional performance
benchmarks, and to developing visualizations that allow
selective transparency of human and machine time within a
collective framework. HPC has enabled many scientific
discoveries, but understanding how its community of users
interacts with its mechanisms from a sociotechnical and
temporal perspective will be essential for the next
generation of scientific breakthroughs.

ACKNOWLEDGMENTS
This work was funded by the Office of Science, Office of
Advanced Scientific Computing Research (ASCR) of the
U.S. Department of Energy under Contract Number DE-
AC02-05CH11231 and award number DE-SC0012474.

REFERENCES
1. Mark S. Ackerman. 2000. The intellectual challenge of

CSCW: the gap between social requirements and

technical feasibility. Hum.-Comput. Interact., 15, 2:
179-203.

2. Gonzalo Pedro Rodrigo Alvarez, Erik Elmroth, P-O
Ostberg, Katie Antypas, Richard Gerber and Lavanya
Ramakrishnan. in press. HPC System Lifetime Story:
Workload Characterization and Evolutionary Analyses
on NERSC Systems. In Proc. of HPDC 2015.

3. Morgan G. Ames. 2013. Managing mobile
multitasking: the culture of iPhones on stanford
campus. In Proc. of CSCW 2013, 1487-1498.

4. Deborah G. Ancona, Paul S. Goodman, Barbara S.
Lawrence and Michael L. Tushman. 2001. Time: A
New Research Lens. The Academy of Management
Review, 26, 4.

5. Cecilia Aragon, Sarah Poon, Gregory Aldering, Rollin
Thomas and Robert Quimby. 2008. Using visual
analytics to maintain situation awareness in
astrophysics. In IEEE VAST 2008, 27-34.

6. Jakob E Bardram. 2000. Temporal Coordination –On
Time and Coordination of CollaborativeActivities at a
Surgical Department. CSCW, 9, 2: 157-187.

7. James "Bo" Begole, John C. Tang, Randall B. Smith
and Nicole Yankelovich. 2002. Work rhythms:
analyzing visualizations of awareness histories of
distributed groups. In Proc. of CSCW 2002, 334-343.

8. Matthew J Bietz, Eric PS Baumer and Charlotte P Lee.
2010. Synergizing in cyberinfrastructure development.
CSCW, 19, 3-4: 245-281.

9. Claus Bossen and Lotte Groth Jensen. 2014. How
physicians 'achieve overview': a case-based study in a
hospital ward. In Proc. of CSCW 2014, 257-268.

10. Virginia Braun and Victoria Clarke. 2006. Using
thematic analysis in psychology. Qualitative research
in psychology, 3, 2: 77-101.

11. Paul Dourish and Graham Button. 1998. On"
technomethodology": Foundational relationships
between ethnomethodology and system design.
Human-computer interaction, 13, 4: 395-432.

12. Edeltraud Egger and Ina Wagner. 1992. Time-
management: a case for CSCW. In Proc. of CSCW
1992, 249-256.

13. Danyel Fisher and Paul Dourish. 2004. Social and
temporal structures in everyday collaboration. In Proc.
of CHI 2004, 551-558.

14. Paul Glennie and Nigel Thrift. 2009. Shaping the day:
a history of timekeeping in England and Wales 1300-
1800. Oxford University Press.

15. Erving Goffman. 1959. The presentation of self in
everyday life. Doubleday, Garden City, N.Y.

16. Edward T. Hall. 1959. The silent language.
Doubleday, Garden City, N.Y.

17. Anthony JG Hey, Stewart Tansley and Kristin Michele
Tolle. 2009. The fourth paradigm: data-intensive
scientific discovery. Microsoft Research Redmond.

18. Hyun-Gyung Im, JoAnne Yates and Wanda
Orlikowski. 2005. Temporal coordination through

communication: using genres in a virtual start-up
organization. Information Technology & People, 18, 2:
89-119.

19. Steven J. Jackson, David Ribes, Ayse Buyuktur and
Geoffrey C. Bowker. 2011. Collaborative rhythm:
temporal dissonance and alignment in collaborative
scientific work. In Proc. of CSCW 2011, 245-254.

20. Helena Karasti, Karen S. Baker and Florence
Millerand. 2010. Infrastructure Time: Long-term
Matters in Collaborative Development. Computer
Supported Cooperative Work, 19, 3-4: 377-415.

21. Carol Kaufman‐Scarborough and Jay D. Lindquist.
1999. Time management and polychronicity. Journal
of Managerial Psychology, 14, 3/4: 288-312.

22. Carol Felker Kaufman, Paul M. Lane and Jay D.
Lindquist. 1991. Exploring More than 24 Hours a Day:
A Preliminary Investigation of Polychronic Time Use.
Journal of Consumer Research, 18, 3: 392-401.

23. Kerk F Kee and Larry D Browning. 2010. The
dialectical tensions in the funding infrastructure of
cyberinfrastructure. CSCW, 19, 3-4: 283-308.

24. Rob Kling. 1991. Cooperation, coordination and
control in computer-supported work. Commun. ACM,
34, 12: 83-88.

25. Diana S. Kusunoki and Aleksandra Sarcevic. 2015.
Designing for Temporal Awareness: The Role of
Temporality in Time-Critical Medical Teamwork. In
Proc. of CSCW 2015, 1465-1476.

26. Kari Kuutti and Liam J. Bannon. 2014. The turn to
practice in HCI: towards a research agenda. In Proc. of
CHI 2014, 3543-3552.

27. Jonas Landgren. 2006. Making action visible in time-
critical work. In Proc. of CHI 2006, 201-210.

28. Charlotte P Lee, Paul Dourish and Gloria Mark. 2006.
The human infrastructure of cyberinfrastructure. In
Proc. of CSCW 2006, 483-492.

29. Siân E. Lindley. 2015. Making Time. In Proc. of
CSCW 2015, 1442-1452.

30. Melissa Mazmanian and Ingrid Erickson. 2014. The
product of availability: understanding the economic
underpinnings of constant connectivity. In Proc. of
CHI 2014, 763-772.

31. Melissa Mazmanian, Ingrid Erickson and Ellie
Harmon. 2015. Circumscribed Time and Porous Time:
Logics As a Way of Studying Temporality. In Proc. of
CHI 2015, 1453-1464.

32. Lewis Mumford. 2010. Technics and civilization.
University of Chicago Press.

33. Bonnie A. Nardi, Steve Whittaker and Erin Bradner.
2000. Interaction and outeraction: instant messaging in
action. In Proc. of CSCW 2000, 79-88.

34. NERSC. About NERSC. Retrieved May 21, 2015 from
https://www.nersc.gov/about

35. NERSC. NERSC Marks 40th Anniversary with Series
of Lectures on Nobel Prize-Winning Science.
Retrieved May 22, 2015 from

https://www.nersc.gov/news-publications/nersc-
news/nersc-center-news/2014/nersc-marks-40th-
anniversary-with-series-of-lectures-on-nobel-prize-
winning-science/

36. NERSC. Queues and Scheduling Policies. Retrieved
May 20, 2015 from
https://www.nersc.gov/users/computational-
systems/hopper/running-jobs/queues-and-policies/

37. Magnus Nilsson and Morten Hertzum. 2005.
Negotiated rhythms of mobile work: time, place, and
work schedules. In Proc. of the international ACM
conference on Supporting group work, 148-157.

38. Wanda J. Orlikowski and JoAnne Yates. 2002. It's
About Time: Temporal Structuring in Organizations.
Organization Science, 13, 6: 684-700.

39. Leysia Palen. 1999. Social, individual and
technological issues for groupware calendar systems.
In Proc. of the CHI 1999, 17-24.

40. Leslie A. Perlow. 1999. The time famine: Toward a
sociology of work time. Administrative science
quarterly, 44, 1: 57-81.

41. Madhu Reddy and Paul Dourish. 2002. A finger on the
pulse: temporal rhythms and information seeking in
medical work. In Proc. of CSCW 2002, 344-353.

42. Madhu Reddy, Paul Dourish and Wanda Pratt. 2001.
Coordinating Heterogeneous Work: Information and
Representation in Medical Care. In Proc. of ECSCW
2001, 239-258.

43. Madhu Reddy, Paul Dourish and Wanda Pratt. 2006.
Temporality in Medical Work: Time also Matters.
CSCW, 15, 1: 29-53.

44. David Ribes and Charlotte P Lee. 2010. Sociotechnical
studies of cyberinfrastructure and e-research: current
themes and future trajectories. CSCW, 19, 3-4: 231-
244.

45. Sarah Sharma. 2014. In the meantime: Temporality
and cultural politics. Duke University Press.

46. Susan Leigh Star. 1999. The ethnography of
infrastructure. American behavioral scientist, 43, 3:
377-391.

47. Stephanie B. Steinhardt and Steven J. Jackson. 2015.
Anticipation Work: Cultivating Vision in Collective
Practice. In Proc. of CSCW 2015, 443-453.

48. Stephanie B. Steinhardt and Steven J. Jackson. 2014.
Reconciling rhythms: plans and temporal alignment in
collaborative scientific work. In Proc. of CSCW 2014,
134-145.

49. Lucy A. Suchman. 1987. Plans and situated actions:
the problem of human-machine communication.
Cambridge University Press.

50. TOP500. The Linpack Benchmark. Retrieved May 22,
2015 from http://www.top500.org/project/linpack/

51. Eviatar Zerubavel. 1985. Hidden rhythms: Schedules
and calendars in social life. Univ of California Press.

http://www.nersc.gov/
http://www.nersc.gov/users/computational-systems/hopper/running-jobs/queues-and-policies/
http://www.nersc.gov/users/computational-systems/hopper/running-jobs/queues-and-policies/
http://www.top500.org/project/linpack/

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Temporal Rhythms in CSCW and HCI
	Temporal Rhythms in Scientific Collaboration

	Collective Time
	Sociotechnical Studies of Cyberinfrastructure

	BACKGROUND AND METHODS
	Research Site
	Data Collection
	Data Analysis
	Roles in the HPC Ecosystem
	Domain Scientists
	Computer Engineers
	HPC Facility Staff

	Key Characteristics of an HPC System
	Programming for HPC
	Allocations
	Batch Queues

	Exemplar Workflow in the HPC Ecosystem
	System Design Trade-Offs

	FINDINGS: TEMPORAL RHYTHMS AND CONFLICTS IN THE HPC SOCIOTECHNICAL SYSTEM
	Time Allocation
	Preparation Stage
	Human Time to Get Codes Running on the HPC System
	Data Management Time

	Queue Waiting Time
	Once a domain scientist has prepared the codes to run on the HPC machine, they wrap their codes in a script and submit a “job” to the HPC system.
	Queue Waiting Time for Code Development
	Uncertain Queue Waiting Time
	Scheduling Policies
	Queue Time vs. the Ways of Working

	Execution Time
	Time Cost in Initialization Stage
	Variability in Running Time
	Wasted Time from System Uncertainties

	Time to Optimize
	Time to Handle System Upgrades
	Collaboration Time

	DISCUSSION
	The Nature of Sharing
	Temporal Rhythms
	Challenges in Communication
	Misaligned Objectives
	Developing a Scheduling Interface for Collective Time

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

