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Abstract— Qualitative coding offers the potential to obtain deep insights into social media, but the technique can be inconsistent and
hard to scale. Researchers using qualitative coding impose structure on unstructured data through “codes” that represent categories
for analysis. Our visual analytics interface, Aeonium, supports human insight in collaborative coding through visual overviews of
codes assigned by multiple researchers and distributions of important keywords and codes. The underlying machine learning model
highlights ambiguity and inconsistency. Our goal was not to reduce qualitative coding to a machine-solvable problem, but rather to
bolster human understanding gained from coding and reinterpreting the data collaboratively. We conducted an experimental study with
39 participants who coded tweets using our interface. In addition to increased understanding of the topic, participants reported that
Aeonium’s collaborative coding functionality helped them reflect on their own interpretations. Feedback from participants demonstrates
that visual analytics can help facilitate rich qualitative analysis and suggests design implications for future exploration.
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1 Introduction

Large-scale computational approaches to social media data collection
and analysis offer researchers broad overviews of vast populations,
but further probing is often necessary to expose nuanced or deeper
relationships and trends in complex, ambiguous human-generated data.
Qualitative approaches to data analysis give researchers the opportunity
to obtain deep insights but often in a limited context or scope. When
researchers qualitatively code data, the humans become the instruments
of analysis, drawing from domain knowledge and subtle contextual
information to apply expressive “codes” as a means to systematize
and interpret unstructured text. Machine learning (ML) techniques
may provide support for scaling up to larger datasets, but off-the-shelf
ML tools are often inadequate for rich exploratory analysis. More-
over, the goals of qualitative coding often conflict with assumptions
of objective ground truth data on which ML classifiers generally rely.
Instead, qualitative analysis often necessitates multiple interpretations
and re-interpretations of data in order to draw out complicated and
sometimes contradictory themes. Rather than attempting only to scale
qualitative analysis through machine classification, our coding inter-
face, Aeonium, facilitates human insight in collaborative coding through
visual overviews of codes assigned by multiple researchers and distribu-
tions of codes associated with important keywords extracted from the
data. We also support evolving code definitions as exploration of the
data shifts code boundaries and reveals new trends. To our knowledge,
it is the first visual analytics tool or qualitative coding interface to prior-
itize drawing attention to potentially ambiguous data for collaborating
qualitative coders.

The primary contributions of this work are threefold: (1) Aeonium
identifies ambiguous data in order to focus human attention on data that
are unclear or merit additional scrutiny; (2) it supports the negotiation
of codes and understanding of the context for coding decisions among
multiple collaborators; and (3) it supports reflection, reinterpretation,
and insight gain in qualitative coding. We conducted formative studies
with qualitative researchers to establish key design objectives, and we
validated the design decisions and performance of Aeonium through an
experimental study and expert review. Aeonium is a novel approach
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that demonstrates the power of visual analytic techniques to support
in-depth qualitative coding by directing human attention toward data
that warrant the most interpretation and analysis.

2 Background
2.1 Overview of Qualitative Coding Techniques
Qualitative coding is a fundamental technique in numerous fields in-
cluding communication, psychology, and other social sciences, and it
has proven useful–in combination with quantitative methods–in social
media research as a means of synthesizing broad overviews and deep
insights about research subjects [1, 10, 23, 32]. Researchers use quali-
tative coding to impose order and help derive meaning from complex
unstructured data generated by humans. The process usually involves
arranging data systematically by segregating, grouping, and linking
it in order to facilitate sensemaking and explanation of phenomena.
Qualitative coding is often used to search for patterns by arranging
similarly coded data into categories based on commonly shared char-
acteristics [30]. Coding is critical in qualitative analysis because the
data has no intrinsic organizational structure by which to explain the
phenomena under study. Researchers must therefore create a structure
and impose it on the data to determine how best to facilitate interpreta-
tion for their purposes [21]. Therefore, the value of qualitative analysis
largely depends on the quality of coding [32].

Although variations of coding methods abound, most of them are
rooted in Grounded Theory. Fundamentally, grounded theory requires
that a theory be developed inductively from data rather than through
existing theoretical frameworks [5]. Typically the process consists of
the following steps: open coding, focused coding, axial coding, se-
lective coding [5, 11, 14, 29, 33]. Often these steps are not carried out
sequentially, since insights or realizations of connections can occur any
time during the process [8]. Memo-writing is another analytical method
that can be used throughout the process of grounded theory exploration
to help articulate implicit or unstated meanings and to construct the-
oretical categories [8]. Aeonium primarily supports focused coding,
the component of the process in which codes that have been articulated
during open coding are applied to new or revisited data [33].

Qualitative coding may be compared to ground truth labeling in ML.
However, their differences can be characterized in three parts. Firstly,
the goals of the two tasks are different. Ground truth labeling presumes
that “correct” labels exist for every data point and the task is to identify
them, whereas qualitative analysis makes use of subjective codes in the
process of meaning-making in a particular context. Secondly, ground



truth categories are typically well-defined before labeling begins, but
grounded theory precludes a priori codes, since the process should be
based on the data. Finally, quantitative metrics for data in qualitative
analysis are not inherently meaningful. In other words, a code that
appears a thousand times may hold similar weight in analysis to other
codes that appear only a few times. In contrast, the number of data
instances for ground truth labels in ML profoundly impacts learning
task performance, since ML is statistical in nature. This is not to say
that ML places more inherent value on frequent labels, but rather that
categories with only few instances may not be learnable by machines,
regardless of their importance for a particular analysis context.

Procedures for qualitative coding vary from project to project. In
solo coding projects, one researcher codes the entirety of the data
independently. Solo coding is common for qualitative studies [15],
and usually the researcher who collects data also codes it. In other
projects, teams of researchers code a dataset collaboratively, which is
referred to as team coding or collaborative coding. In this case, team
members need to coordinate their coding tasks and make sure they are
coding harmoniously [30]. Aeonium’s current design supports focused
coding in collaborative settings, addressing the fundamental challenge
of coding consistency given constrained codes. Future work should
address qualitative coding needs in other contexts.

2.2 Software for Qualitative Coding
Numerous free or commercial tools have been developed to support
qualitative coding. Common tools like ATLAS.ti, QDA Miner, and
NVivo support coding both text and multimedia data, and they also
provide a set of data organization and analysis techniques. Other tools,
such as Dedoose, MAXQDA, and SaturateApp, provide more function-
ality for team coding, but it can be challenging for coders to resolve
inconsistencies within these interfaces. Some of these tools emphasize
visualization or visual interface in their design. For example, Dedoose
includes visualizations of code distribution and correlation, but it pri-
marily facilitates quantitative analysis of qualitative data. Many other
tools, like f4analyse, Annotations, and Quirkos, use colors to represent
codes. Recently, Blascheck et al. proposed to use visual support for
coding interview transcripts and present activity patterns and selected
information through visualization [4]. Like these tools, Aeonium uses
colors to facilitate coding visually. However, Aeonium’s design also ex-
plicitly facilitates evolving code definitions and includes a specialized
interface for code review in order to better support iteration in coding.
Some other tools offer computational tools for inter-coder reliability
to identify inconsistency, but Aeonium presents visual overviews for
classes of disagreement. It also includes mechanisms for feedback, and
its ML model can identify uncoded data for which coders are likely to
disagree.

2.3 Machine Learning to Assist in Qualitative Coding
Some prior works showcase progress toward facilitation of qualita-
tive coding through fully- or semi-automatic methods. For instance,
Crowston et al. compared the use of automated coding between human-
defined rules and machine-learned models [13]. Their results demon-
strated that both methods are promising, but the human-defined rules
outperformed the ML-based approaches. Yan et al. implemented
a system using ML and natural language processing techniques to
generate initial codes and have human coders correct false-negative
instances [36]. Extending this idea, McCracken et al. built an active
learning system that supported an interactive loop between machine
annotation and human correction [25]. These automated approaches
demonstrate potential, but have not yet achieved sufficient accuracy
in label prediction to replace human-defined methods or earn humans’
full trust. Rather than leveraging ML to predict codes directly, our
system adopts ML as a way to surface ambiguous data, preserving the
human-centered nature of qualitative analysis. We do not claim that
our ML models outperform other methods in terms of standard ML per-
formance metrics (e.g., ML accuracy) because qualitative analysis and
machine learning have different objectives. Previous literature suggests
that collaboration between social scientists and computer scientists is
required to scale up qualitative data analysis [35]. Thus, a primary

focus of our work is to better understand the domain and explore the de-
sign space of facilitating qualitative coding through ML-backed visual
analytics.

2.4 Visual Support for Text Classification and Feature
Engineering

While we emphasized the distinctions between qualitative analysis and
ground truth labeling in ML, some ML systems are designed specifi-
cally to facilitate human interaction with ML, which can support insight
gain. These applications for ML and visual analytics are more closely
aligned with our design objectives in Aeonium, but they primarily
support human-computer cooperation to improve ML systems. In con-
trast, we focus on enhancing the human components of analysis with
support from ML. Some existing work includes visual support for la-
beling ground truth or iterating text features. For example, Kulesza
et al. proposed a method called structured labeling to deal with the
issue of concept evolution, a phenomenon in which “people change
their standard of categorizing things on the way they are labeling” [18].
The visual interface for structured labeling enables the categorization
of items into major concept categories (yes-no-could be) and for the
creation of subcategories and tags for fine-grained concepts. Kulesza
et al. also designed a system called AutoCoder to support explana-
tory debugging of text classifiers [19]. They applied the system in
an automatic qualitative coding context, and provided an interface for
users to suggest misclassified text. Outside the realm of ground truth
labeling, Brooks et al. demonstrated that visual support can be useful in
feature ideation [6]. They built a system called FeatureInsight, which
shows how each feature relates to classifier errors. Also in the sphere
of feature engineering, Cheng and Bernstein built a crowd-sourced
feature ideation system called Flock with an interface to show how
user-generated features related to categories [9]. Their study demon-
strated that combining system- and user-generated features can increase
both ML accuracy and interpretability of ML tools. These techniques
have proven useful for drawing out insights (e.g., meaningful features),
facilitating labeling, and understanding the data. We incorporate ideas
from these prior works, but we aim primarily to support the human
qualitative analysis process.

2.5 Inter-rater Reliability Metric for Qualitative Coding
Inter-rater reliability (IRR) is a widely used measure for evaluating con-
sistency between coders. There are various ways to calculate IRR, and
one of the most common methods is Cohen’s Kappa [12]. Although
IRR is not universally considered applicable to qualitative coding [3,27],
since it is rooted in quantitative analysis, some existing literature sug-
gests that IRR can be used to improve coding quality. For example,
Garrison et al. proposed using IRR to measure improvement in consis-
tent application of codes [16]. Hruschka et al. use IRR to determine
whether codebooks need to be further modified [17]. Moreover, Burla
et al. pointed out that codes with low agreement rate may need clarifi-
cation [7]. In our study, we use IRR (specifically Cohen’s Kappa) as a
metric for agreement or consistent application of codes between two
coders in order to measure improvement in consistency under various
conditions.

3 Formative Studies & Design Objectives
In the early stages of designing Aeonium, we conducted semi-structured
interviews with five qualitative researchers to establish and validate our
guiding design principles. One interviewee was a faculty member, and
the remaining four were PhD students. Two of these researchers have a
background in Human-Computer Interaction, while the other three have
backgrounds in Communication. All of the researchers interviewed use
qualitative coding extensively in their research. Each interview lasted
approximately one hour, and members of our research team coded and
analyzed the data from interview notes and audio recordings. Several
of the authors have experience with qualitative coding, but we sought
insight from researchers who rely on qualitative analysis as either a
primary or exclusive method for their research. We asked interviewees
to reflect on their experiences with qualitative coding, and in particular,



to identify key challenges encountered when coding collaboratively. We
also asked our interviewees to describe how they evaluate the quality
of coding and to what extent inconsistency between different coders
and ambiguity in the data impacted their analysis. Time-permitting,
we asked interviewees about the software tools they use for coding
and their perspectives on the application of ML in qualitative analysis.
From our own experiences with qualitative coding and through these
interviews, we distilled three principle design objectives for Aeonium:

Design Objective 1 Draw out ambiguous subsets of data–or data
where coders are likely to code inconsistently–in order to focus human
attention on challenging areas of data.

Design Objective 2 Keep code definitions prominent and facilitate
clarification of the explicit or implicit basis for coding decisions.

Design Objective 3 Support the iterative, reflective work of qualita-
tive analysis.

We elaborate on each design principle in the following sections.

3.1 Design Objective 1: Draw Out Ambiguity
Given that the subject of most qualitative coding is human behavior,
ambiguity is an inherent characteristic of this data. Interviewees empha-
sized that coding is always subjective, so rather than valuing “accuracy”
of codes, it may be more useful to focus on coding in a manner that
helps explain phenomena meaningfully. Some of the qualitative re-
searchers in our interviews were worried that the application of ML
techniques to qualitative analysis may inhibit coders’ ability to see
connections in data because ML models cannot capture implicit knowl-
edge “at the fringes of observation.” They also expressed concern that
ML might oversimplify analysis by implying that an objective label
exists for what is inherently a subjective interpretation. One intervie-
wee stated, “If someone or some program says there is one answer
[in qualitative analysis], that’s the wrong answer.” However, almost
all the researchers expressed interest in ML’s potential to draw out
inconsistencies in coding or identify ambiguous, difficult-to-code data.

Beyond the challenges of particular data, factors such as mood
changes, attention, and memory can impact consistency between dif-
ferent coders, or inter-rater reliability, as well as consistency of the
same coder at different points in time. Saldana urges qualitative coders
to consider throughout the coding process how their personalities, per-
spectives, and subjective decisions impact the analysis [30]. Human
fallibility inevitably leads to some inconsistency , which can delay or
change the overall analysis of the data. ML systems are not susceptible
to such factors , but their application in facilitating qualitative coding
is not straightforward. Complex features that humans can intuitively
identify and interpret are more valuable for rich insights , but their
complexity often results in an insufficient amount of labeled data for
ML algorithms. More importantly, most ML tools function as black
boxes, so their results are not readily interpretable or controllable by
humans. Inversely, humans may not be able to express their ideas to the
ML model in an effective way, or conflicts between coders may impact
the performance of the machine learner.

Aeonium allows coders to explicitly flag ambiguous data through the
interface, and it also infers ambiguity from disagreement between col-
laborators. The combination of explicit ambiguity labeling and implicit
recognition of ambiguity through disagreement supports qualitative
coders’ analysis of challenging data. Aeonium helps draw out ambigu-
ous data that would otherwise require more extensive exploration and
negotiation by humans. Rather than try to predict how humans will
code, Aeonium helps focus coder attention on data that may require
more careful consideration.

3.2 Design Objective 2: Highlight Code Definitions and
Context for Decisions

Along with ambiguous data, researchers identified complex codebooks
(sets of codes) and vague boundaries between codes as challenges
that should be addressed. As they process “chunks” of data, coders

are generally working with multiple codes at the same time, even if
the codes are mutually exclusive or only one may apply to a given
chunk. It can be difficult to remember the intricacies of each code
or the boundaries between codes, so highly visible code definitions
may support more efficient coding. Researchers in our interviews also
pointed out that different perspectives of multiple coders yield different
insights. Particularly for ambiguous data, these different perspectives
may lead to inconsistent coding or decisions that are unclear to other
coders. Coders have to explain the basis of their coding decisions either
through explicit content–such as keywords–or implicit background
knowledge. Similar to how externalization can increase awareness and
lead to new insights [24], identifying features that were the basis of
coding decisions, whether explicit or implicit, may help coders iterate
on coding decisions and find new insights in the data.

This design objective also requires that coders have the ability to
elaborate on code definitions or provide context to explain the basis for
their coding decisions over time. The potential for code definitions to
evolve presents an additional challenge in applying ML to qualitative
coding: conflicting assumptions and objectives for qualitative codes
as opposed to ML labels. In fact, the goals of qualitative coding may
often conflict with the presumption of a singular, ”correct” label. We
heard multiple researchers explain that coding always involves some
analytical “messiness.” “[Codes] are never defined enough.” As one
interviewee described it, coding is not just about figuring out what’s
happening, but rather about figuring out how to tell the story in a
way that helps people understand it meaningfully. Qualitative coders
recognize the subjectivity of decision boundaries of codes and the
exact circumstances in which they apply, so they have to negotiate the
boundaries together.

Emphasizing code definitions and the basis for coding decisions also
helps fulfill design objective 1. In some cases, the definition of codes
can lead to inconsistent application. When definitions are vague, they
may be applied differently by different coders or even be completely
misunderstood. Supporting evolution of definitions over time ensures
that codes adapt to changing data and facilitates coders’ discoveries
of new dimensions in the concept space. Limited context is a frequent
source of inconsistency in coding. The scope of a topic may be unclear,
or it may need to be adjusted over time. In other cases, only partial
data is available, so coders must either guess the missing context or
ignore the data points. Coders can alleviate the risks of inconsistency
by explaining the reasoning behind their coding decisions. Humans
often know or presume context that is external to the data but may affect
analysis. This external context or background knowledge varies from
person to person and changes over time based on experiences. Tools
that enable coders to share the basis for their coding decisions can help
a team take advantage of the wealth of perspectives and knowledge
among researchers to promote deeper understanding of complex data.

Aeonium supports both the evolution of code definitions and im-
proved awareness of definition boundaries with prominent, mutable
code definitions in the coding interface. Coders may also select words in
a given data instance and add them as keywords aligned with particular
codes to explain the basis for the coding decisions. Keyword high-
lighting can mitigate the risks of inattentive coding decisions. These
functionalities also support deeper analysis of emerging concepts from
the data by encouraging coders to explicitly consider code bounds and
context for coding choices.

3.3 Design Objective 3: Support Iteration
Qualitative researchers in our interviews emphasized that the coding
process is iterative, and that tools need to support shifting understand-
ings, broadening of codes, and re-examination of old data and code
decisions. Often throughout the coding process, interviewees informed
us, coders review previously coded data as emerging information casts
it in a new light. Alternatively, conflicting interpretations from various
coders, which differ due to distinct backgrounds or experiences, may
affect review and reinterpretation. According to our interviewees, these
reflections and reinterpretations frequently serve to help coders clar-
ify code definitions and boundaries, which Aeonium supports through
modifiable definitions. Interviewees reported frustration with tools that



did not adequately facilitate exploration of relationships between previ-
ously coded and new data, as well as with those that did not support
evolving codes.

Researchers we interviewed also described the different roles itera-
tion may play in outcomes of qualitative analysis depending on overall
objectives. In some cases, researchers may be interested in precisely
defining the themes observed in a particular context, so evolving code
definitions as described in design objective 2 can become the priority.
In other instances, the objective may be to ensure that researchers have
reached “saturation” in their understanding of the context. In other
words, the priority is on collecting more data and repeatedly reviewing
it until no new concepts emerge. Regardless of the objective for a par-
ticular project, iteration and reflection on the data and codes are critical,
so they must be supported to facilitate qualitative coding appropriately.

Aeonium facilitates various levels of iteration and deliberation on the
data. The coding interface helps link the discovery of new concepts and
ideas to previously coded data through code definitions, example data,
and highlighted keywords. The review interface supports resolution
of disagreements, evaluation of ambiguity, and evolving code defini-
tions. Shifting between the interfaces is also closely aligned with the
qualitative coding practice of alternating between coding and reflecting.

3.4 Simple Visual Encodings to Support Design
Objectives

Our choice of relatively simple visual encodings in Aeonium was de-
liberate and grounded in the needs of qualitative analysis. Qualitative
coding is a very text-heavy task. From our formative studies and our
own experiences in qualitative coding, we realized that showing raw
text would be desirable. When researchers cannot easily access the text
in a coding tool, they often prefer to “regress” to plain text spreadsheets.
In designing Aeonium, we tried to ensure that researchers could interact
with text easily, which led to simple visual encodings. Many existing
text visualizations with more complex visual encodings focus on word
counts (e.g., Wordle [34]), co-occurrence frequency networks, or top-
ics (e.g., [22]). As we mentioned in Section 2.1, quantitative metrics
are not necessarily valuable in qualitative analysis. Thus, we did not
consider those complex visualization encoding methods in Aeonium’s
design, but rather made efforts to support qualitative analysis of data,
and the resulting visual encodings were simple. Prior work in visual-
ization for decision support [2] has shown simpler visualizations to be
more effective when users need to focus attention on information not
represented in the visualization. Qualitative researchers constantly rely
on background contextual knowledge and information “at the fringes
of observation,” so simple visualizations are well suited to provide
valuable context without distracting attention from other areas of focus.

4 Aeonium System
Aeonium supports qualitative focused coding, facilitating the review
of coded data between coding partners. In its current iteration, codes
are defined by “master coders” who lead the qualitative coding and are
usually researchers with domain expertise. As we describe in Section 7,
more flexible additions and merging of codes will be supported in our
next iteration. However, we presume that coders who wish to define
new codes or hierarchies of coding concepts will have deep familiarity
with the data and research goals. For the purposes of our initial design
and validation studies, master coders were two graduate students with
training in qualitative analysis methods and experienced in qualitatively
coding social media data. The master coders also collaborated with
two undergraduate student members of the research team in the initial
coding and defining of code boundaries. Aeonium may be used for
qualitative coding of any short text documents, but we have conducted
our initial studies with a tweet dataset.

Aeonium trains a support vector machine (SVM) classifier for each
user based on their labels (i.e., coded tweets) and features (or keywords).
Keyword features consist of system keywords (i.e., bag-of-words uni-
gram features) extracted from the data set and user-defined keywords
(i.e., one or more selected words that are not necessarily contiguous)
extracted from coded tweets that are relevant to explicitly explaining the

code decision. The feature value is computed by matching the words in
the tweet to the keywords. The classifiers are used only for the purpose
of determining which tweets to label based on predicted ambiguity.
Aeonium has two interfaces: one for coding data, shown in Figure 1,
and another for reviewing codes, keywords, and definitions, shown
in Figure 2. The coding interface supports efficient coding decisions
by locating the color-coded definitions centrally on the screen and by
showing keywords (if present within a given tweet) highlighted in the
color used to represent the associated code. The coding interface also
affords more in-depth analysis by showing extended definitions and
visual overviews of keywords for a selected code in the lower panel.
The review interface facilitates negotiation of assigned codes between
a pair of coders, as well as reinterpretation of data given evolving code
definitions and new insights from data.

In the following subsections, we describe our system in terms of its
alignment to our design objectives.

4.1 ML Model and Flags to Draw Out Ambiguity
As described in design objective 1, qualitative researchers are interested
in ways to draw out ambiguous data or inconsistent codes in order to
better shape the definitions and negotiate code boundaries. Aeonium
supports this aim in two ways: the ML model predicts tweets for which
partners may disagree, and users may explicitly flag ambiguous tweets
during coding. Showing tweets that are likely to be ambiguous or
inconsistent between coders draws users’ attention to these tweets and
encourages a dialogue between coders to improve mutual understanding
and consistent coding. The ambiguity flag is also useful for exploring
sources of confusion or uncertainty in coding.

From our preliminary interviews with qualitative researchers, we
determined that when coders initially disagree on appropriate codes or
initially identify multiple mutually exclusive codes that may be applica-
ble, these data require additional attention. For our primary evaluation
of Aeonium, the metric we used to predict “ambiguous” data was dis-
agreement between partners on prior coding decisions. Since partners
may change their codes through the feedback dropdown menu in the
review interface, Aeonium’s ML model predicted ambiguity based on
tweets for which partners continued to disagree after reviewing. After
a pair completes the review stage, the system will train a classifier for
each user based on their existing coded tweets after review. Then for
the remaining tweets that have not been coded, the system predicts
labels for both partners. For a stage of coding focused on ambiguous
data, the system will sort uncoded tweets based on level of predicted
disagreement (i.e., tweets for which partners are predicted to disagree
with the highest confidence), and the dataset for the ambiguous stage
will include tweets for which partners are most most strongly predicted
to apply inconsistent codes. In order to better surface ambiguity in the
future, Aeonium’s ML models will soon incorporate as features the
explicit flagging of ambiguous tweets and the “Unsure” responses from
the disagreement feedback dropdown menu, which indicate uncertainty
about the decision.

4.2 Pairwise Comparison and Feedback on Disagreement
In addition to drawing out ambiguity, Aeonium facilitates reviewing and
resolving disagreements. In the review interface, the code comparison
table summarizes how users and their partners agree or disagree with
each other. For instance, in Figure 2.7, the interface shows that among
the tweets coded with the “Support ” label by the current user, his/her
partner has disagreed twice, with one tweet coded as “Rejection” and
another as “Uncodable.” By clicking on each row, users can filter
to tweets that belong to the selected code combination and focus on
analyzing, providing feedback, and resolving inconsistency. Currently,
for each tweet on which partners’ codes disagreed, Aeonium provides
three response options for the disagreement: “My code is correct”, “My
partner’s code is correct”, or “Unsure.” “Unsure” may indicate that
either code might apply or that there is insufficient context to make a
coding judgment. When a user indicates that his/her partner’s original
code is correct, the system will ask that user whether or not to change
the assigned code to match the partner’s code. This feedback loop can
help coders become more consistent with each other over time, and
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Fig. 1. Aeonium’s coding interface consists of two panels: The top panel primarily supports the coding task and displays a single tweet to code
(1) with keywords that the model recognizes highlighted (2), buttons to flag that tweet as ambiguous, save it, or make it an exemplar tweet for the
selected code (3), and a row of color-coded buttons representing codes in the coding schema with the code definition and an exemplar tweet from
master coders (4). The bottom panel enhances the coding task by providing additional information such as the code definitions and examples from
the master, user, and partner (5) to highlight discrepancies, distribution of coded tweets for the system, user, and partner keywords (6), helping to
illustrate keyword relevance. The bottom panel also includes a list of the user’s previously coded tweets (7) for additional context.

it implicitly supports the iterative nature of qualitative coding (design
objective 3). Additionally, since disagreement can be an indication of
ambiguity, having pairwise comparison also contributes to our design
objective 1 to draw out ambiguous data.

4.3 Keyword Highlighting to Provide Context and
Support Iteration

Keyword highlighting works in three ways in Aeonium. During coding,
if a user-extracted keyword exists in the tweet text, it will be highlighted
in the color of its associated code, drawing attention to key informa-
tion and mitigating the risks of inattentive coding. Secondly, when
reviewing coded tweets, a user can add new keywords from a tweet’s
text to explain the context for choosing a particular code. Finally, after
adding a new keyword, users can see how this keyword is distributed
over codes. If a keyword is not very predictive or informative (i.e., it is
not particularly well aligned with a specific code), users will be able
to recognize that it may not be a useful keyword to explain a coding
decision. As outlined in describing design objective 2, researchers
want to understand context around coding decisions, and highlighting
keywords identifies some of the explicit context. In addition, when
keywords are shown highlighted according to code color in the coding
interface, users can assess how well keywords align with their assigned
codes. Since the coding process is iterative as explained in design
objective 3, users can reflect on the association between keywords and
codes. For example, when a user sees a keyword highlighted in green
as “Support” in the text, but he/she thinks the tweet should be coded
“Rejection,” the user can reevaluate how well the keyword aligns with
the “Support” code.

4.4 Code Definitions for Context Awareness and Iterative
Negotiation of Code boundaries

Aeonium’s coding interface shows codes in a given codebook, along
with their definitions and examples just below the tweet. By placing
these definitions centrally within interface, users always have at least
peripheral awareness of the definitions. This functionality serves design
objective 2. Researchers in our interviews indicated that codes tend
have vague boundaries, so centralizing code definitions can help coders
make more efficient, better informed coding decisions. Additionally,
since each user likely has a slightly different understanding of code
meanings, explicit support for negotiation can improve consistency
and facilitate iteration (design objective 3). The review interface in
Aeonium lets users provide expanded definitions based on how code
meanings are evolving, and this information is displayed to collabora-
tors in both the coding and review interfaces, in which users see their
partners’ definitions and their own extended definitions in addition to
the master coder definitions.

5 Validation
5.1 Validation Methods
To validate the contributions presented in this work we relied on Mun-
zner’s nested model [26]. The core components of our validation
methods include: interviews with qualitative researchers (Section 3); a
study of ambiguity and coding confidence with Amazon Mechanical
Turk master workers (Section 5.4); an experimental Aeonium evalua-
tion study with undergraduate and graduate students (Section 5.5); and
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Fig. 2. The review interface supports understanding and negotiation of code boundaries and discrepancies between coders. Its tab-based view
allows for switching between the detail view of each code (1). Each code tab provides comparison and edit capability of code definitions (2-4),
overview of the data distribution (5), and distribution of coded tweets for keywords extracted (6), comparison of codes (7) to summarize agreement or
disagreement between coders, and the list of coded tweets for analysis. Tweets can be filtered with search terms (8) or by selecting a keyword (from
6) or a code pair (from 7). Users can reevaluate codes and provide feedback about a disagreement through a dropdown menu (9) or provide more
context for their decisions by adding keywords extracted directly from the tweets (10).

an expert review of Aeonium with qualitative researchers (Section 5.6).
Our interviews with qualitative researchers were the primary means

of validation for domain characterization, the outermost level of Mun-
zner’s model. These interviews, in addition to helping us shape our
design objectives, supported our articulation of the qualitative coding
tasks that may benefit from visual analytics tools. Some of the tasks
identified were exploring data, identifying areas of disagreement be-
tween coders, and refining coding context and definitions. Also at
the domain characterization level, the Mechanical Turk (MT) study
of ambiguity and coding confidence served to validate our claims that
ambiguous data merits additional human attention. For the second layer
in the nested model, we utilized the experimental evaluation study and
the expert review to validate Aeonium’s support for sorting, filtering,
predicting ambiguous data, and other operation-level (“generic”) tasks.
We used both quantitative and qualitative results from the experimental
study, along with qualitative feedback from the expert review, to vali-
date our visual encodings and interaction techniques in the third level
of Munzner’s model. Techniques evaluated include: color highlighting
of keywords, overviews of code distributions, and functionalities for
negotiation between collaborators.

In addition to Munzner’s model, our studies align with the scenario
of Evaluating Communication through Visualization (CTV) suggested
by Lam et al. [20]. Both of the studies applied quantitative and qualita-
tive methods, and we garnered additional qualitative feedback about
Aeonium from the expert review. Given that the controlled experiments
may not necessarily reflect coding practices well, we placed higher
value on qualitative analysis of insights users gained through coding
with Aeonium. As a component of our evaluation, we qualitatively

coded insights participants reported gaining, as prior work has proposed
for assessing visualizations [28].

5.2 Research Questions and Hypotheses
For our evaluation studies, we first explored the effect ambiguity has on
users’ perceptions of coding quality and metrics for coding consistency.
Thus we first investigated the following research question:

RQ 1 What are the differences in coding confidence and inter-rater
reliability (IRR) when coding ambiguous versus unambiguous data?

We expect that coders labeling ambiguous data would be less certain
of their coding decisions. We expect that if coders are less confident
in applying codes to particular subsets of data that these subsets re-
quire additional attention from coders and probably negotiation among
multiple coders. Specifically, we hypothesize:

Hypothesis 1a Confidence in Coding with Ambiguous Data: Partic-
ipants labeling ambiguous data will have lower confidence in their
labeling accuracy than those labeling unambiguous data.

In order to evaluate how well the ML model in Aeonium identifies
ambiguous data, we measure IRR. We expect that coding ambiguous
data will lead to lower IRR between coders than will coding random
data. Therefore to evaluate how well our ML model could identify data
for which coders were likely to disagree we hypothesize that:

Hypothesis 1b Identification of Ambiguous Data: Coding ML-
predicted ambiguous data will lead to lower IRR between coders than
coding randomly selected data.



We were also interested in investigating how ambiguity affects the
process of formulating code definitions, as well as how it impacts the
updates coders make to the keywords aligned with codes. Accordingly,
we articulated the following research question:

RQ 2 How does ambiguity affect the negotiation and coding consis-
tency between collaborators?

We expected that coders would negotiate more around code definitions
and coding decisions for ambiguous data. Updating code definitions
indicates recognition that evolving definitions are necessary as new
data are explored. Therefore we hypothesize:

Hypothesis 2a Definition Updates: Participants will make more re-
finements to code definitions when data is ambiguous than when data
is random.

We operationalize “more refinements” as updating and saving code
definitions more. Negotiation around coding decisions in Aeonium
is accomplished through modifying keywords. Adding and removing
keywords from explicit tweet content is one way for participants to
explain the basis of their decisions to collaborators. We therefore
hypothesize that:

Hypothesis 2b Keyword Updates: Participants will update more key-
words when data is ambiguous than when data is random.

We operationalize “update more keywords” as either adding or remov-
ing keywords. We further expect that increased negotiation will improve
IRR, as coders will be able to better align their coding strategies. As
explained in hypotheses 2a and 2b, we anticipate that participants who
never coded ambiguous data will negotiate less around code definitions
and the context for coding decisions (through keywords), since they are
not coding targeted ambiguous data. We expect that the more commu-
nication participants have around code definitions and basis for coding
decisions, the more their IRR will improve. We therefore hypothesize:

Hypothesis 2c Negotiation of Ambiguity Improves Inter-rater Reli-
ability: Participants who coded ambiguous data will show greater
improvement in IRR than those who did not code any ambiguous data.

We further expect that the earlier the participants negotiate code bound-
aries and context for coding decisions, the more improvement they will
have in IRR later. We therefore hypothesize that:

Hypothesis 2d Earlier Negotiation of Ambiguity Improves Inter-
rater Reliability More: The participants who negotiate code bound-
aries earlier (encounter ambiguous data earlier) will show greater
improvement in IRR than those who negotiate code boundaries later
(encounter ambiguous data later).

5.3 Data and Codes
Aeonium’s visual coding interface supports labeling of tweets with
codes defined by master coders. For the validation studies, tweets
were collected from twitter’s streaming API for a period of a week
in February 2016 and filtered for references to the 2016 election. A
subset of election-related tweets, those which reference Hillary Clinton
and the Democratic Debate, were selected as the dataset for our study.
Master coders identified the following five mutually exclusive codes:

• Support: Explicit or implicit support for Hillary Clinton (regard-
less of opinions about other candidates)

• Rejection: Explicit or implicit rejection, criticism, or skepticism
about Hillary Clinton, regardless of opinions about others.

• Neutral: Statement of fact or quotation from a candidate without
explicit or implicit expression of opinion.

• Unrelated: Statements that do not reference Hillary Clinton or do
not pertain to the 2016 U.S. election (Note: Although all tweets
in the dataset referenced Clinton and the election in the tweet text
or metadata, not all of the tweets actually pertained to this topic,
so the unrelated code was used to identify such tweets.)

• Uncodable: Statements in which meaning cannot be deciphered
(e.g., in a language other than English, gibberish, etc.)

5.4 Study of Ambiguity and Coding Confidence
Our first study was designed to further validate our claim at the domain
characterization level that ambiguous data merits extra human attention.

5.4.1 Pre-test of Ambiguity
Prior to the study itself, we conducted a pre-study to confirm distinc-
tions between ambiguous and unambiguous tweets. We pre-tested 116
tweets from the full dataset. Approximately half of the pre-tested tweets
had been labeled ambiguous by master coders, and the distribution of
tweets among the five mutually exclusive codes described in Section 5.3
was proportional to the distribution coders had seen in the data analyzed
up to that point. Two Amazon Mechanical Turk (MT) master workers
were asked to categorize the tweets as “ambiguous” if multiple of the
five mutually exclusive codes could potentially apply. The workers
were to label the tweets as “unambiguous” and apply one of the five
codes if they believed that the statement clearly belonged in one code
category.

Of the data categorized in this pre-test, master workers agreed on
categories (and sub-categories if applicable) for only 44 items, un-
derscoring the highly subjective nature of qualitative coding. For the
ambiguity study, we selected 20 tweets determined to be ambiguous
and 20 determined to be unambiguous by the pre-test. These tweets
became the dataset for the study of ambiguity. They were distributed
primarily among support and rejection codes, but some neutral and
unrelated tweets were also included.

5.4.2 Confidence in Coding with Ambiguous Data
This study was designed to validate our initial understanding that coding
ambiguous data requires more human attention than unambiguous
data, in order to support our design choices for drawing out ambiguity
in design objective 1. As in the pre-test, participants in the coding
ambiguous data study were MT master workers. The study was between
two groups, each of which contained 15 participants. Participants in
the ambiguous condition coded tweets determined to be ambiguous
in the pre-test, and participants in the unambiguous condition coded
tweets determined to be unambiguous in the pre-test. All participants
completed a survey in which they labeled 20 tweets. Participants were
provided the definitions for the codes given in Section 5.3, and they
were required to provide a code for each tweet without the option to
label tweets as ambiguous. After labeling the tweets in the survey,
participants were asked to rate their confidence in the codes they had
applied to the tweets on a scale of 1 to 5.

5.5 Aeonium Evaluation Study
We designed the Aeonium evaluation study to validate our operation-
level abstractions for domain tasks (including sorting, filtering, pre-
dicting ambiguity) and to evaluate the visual encoding and interaction
techniques (such as color keyword highlighting, overviews of code
distributions, and mechanisms for negotiation between collaborating
coders). We collected quantitative and qualitative metrics from this
study, and our qualitative results particularly highlight Aeonium’s con-
tributions toward facilitating qualitative coding.

5.5.1 Participants
39 participants for this study were recruited from undergraduate and
graduate students. Of those who chose to disclose demographic data,
14 identified as female and 21 as male. Eight were adults under age 20,
23 were in the age range 21-30, and 4 in the range 31-40. The highest
completed educational degrees reported were: high school diploma



Table 1. Table of Experimental Conditions for Aeonium Evaluation Study.
Random tweets may be any tweets in the dataset not already labeled
by a coding pair. Ambiguous tweets are those for which the ML model
predicts partners will disagree based on their previously coded tweets.

Stage 1 Stage 2 Stage 3 Stage 4
Condition 1 Random Random Random Random
Condition 2 Random Ambiguous Random Random
Condition 3 Random Random Ambiguous Random

(11), associate’s degree (3), bachelor’s degree (8), or master’s degree
(10). Participants also reported their prior experience with qualitative
coding through a self-reported Likert scale measure in a survey after
our experiment. In a range of 0 to 5 with 0 representing no experience
with qualitative coding and 5 representing regular use of qualitative
coding in their research, 14 marked 0 experience, while the remainder
indicated the following levels of qualitative coding experience: 1 (6), 2
(6), 3 (8), 4 (5), and 5 (2).

5.5.2 Study Design
In this study, participants coded tweets using Aeonium in collabora-
tion with remote partners. Remote partners and master coders were
members of our research team who were familiar with the dataset and
utilized collaborative functionalities of the tool to communicate insights
with participant partners. We adopted a between-group study design
in which participants were assigned randomly to one of three condi-
tions. Within-group measures comparing ambiguous stages to random
stages were also collected. Our experiment consisted of four stages
and usually lasted around 90 minutes. For each condition, the first
stage was a baseline stage in which data was randomly selected from
the dataset, while the remaining stages could include either random or
ML-predicted ambiguous data.

Aeonium functionalities and code definitions were explained in a
tutorial at the beginning of the study, and definitions were available
throughout the experiment via the definition panel. When explaining
code definitions, researchers also informed participants explicitly that
they would have the opportunity to elaborate on code definitions if they
thought it appropriate. Exemplar “gold standard” tweets were provided
as guidance for application of codes. This process simulates qualitative
focused coding, in which codes have already been defined. In our
version of focused coding, code definitions could evolve as coders
explored the data, but the codes themselves could not be modified, and
new codes could not be added. Coders could communicate emerging
definitions of codes explicitly in the code definition panel. For this
experiment, codes were mutually exclusive, so coders could only label
a tweet with one code.

5.5.3 Procedure
Each stage is composed of two sub-stages: first coding (using the
coding interface shown in Figure 1) and then review (interface shown
in Figure 2). In the coding stage, participants received 20 tweets to label
with the specified codes. Participants additionally had the ability to
explicitly mark tweets as ambiguous or as exemplar tweets for the code.
After both partners finished coding the set of tweets, they began the
review sub-stage, in which they could view the coded tweets with both
partners’ labels. Participants and remote partners could review codes
and provide feedback about a disagreement, including highlighting
keywords to explain a coding decision and explicitly updating the code
definitions to include emerging phenomena. Researchers conducting
the study instructed participants explicitly “not to worry about accuracy”
in coding, but rather to simply choose the code they thought most
appropriate. For additional guidance, we provided for reference (at any
point) exemplar “gold standard” tweets as defined by master coders. To
view other tweets in the dataset, participants could filter tweets by code
(or filter for unlabeled tweets), and they could search by keyword.

The four stages of our experiment were distinct in only a few ways.
Stage 1 (S1) was a baseline stage, establishing how participants coded
in general, as well as how consistent they were with gold standard and

partner codes. Additionally, we gathered baseline measures from the
review portion of S1. Stages 2 (S2), 3 (S3) & 4 (S4) were identical to
each other except in the data. The conditions for the data available in
each stage are shown in Table 1. For the ambiguous stage, pairs coded
and reviewed tweets for which the ML model predicts that the pair
will disagree, based on disagreement in the stage immediately prior to
the ambiguous stage. In stages S2, S3, and S4, users also had visual
overviews of code distributions, keywords, and definitions, as described
in Section 4.

Following the coding and review tasks, participants completed a
brief survey including demographic information and Likert score mea-
sures of experience with qualitative coding and of knowledge about
Hillary Clinton and the 2016 election before and after the coding ex-
ercise. The survey also included open-ended questions about insights
gained through the process and tool functionalities that supported in-
sight gain. Three of the authors qualitatively coded responses to these
open-ended questions. Average pairwise inter-rater agreement between
the three coders ranged from 82.02 to 91.65%, and we resolved coding
disagreements using the majority opinion of all three.

5.6 Expert Evaluation
In order to get more targeted feedback from qualitative researchers,
we ran an abbreviated version of the Aeonium evaluation study with
four graduate-level qualitative researchers who had not participated in
our formative studies. This evaluation included a brief initial interview
about the researcher’s collaborative coding process and challenges en-
countered. Then we proceeded through two stages of coding tweets. As
with the Aeonium evaluation study, stage 1 was a baseline and learning
period for the tool, and participants coded random tweets. For stage 2
in the expert evaluation, participants coded tweets predicted to be am-
biguous. In the last stage, we asked participants to think aloud while
coding and reviewing. Afterwards, we asked participants to provide
feedback about qualitative coding challenges, Aeonium functionalities,
and the application of ML in qualitative analysis. Following the study,
we open-coded our notes and audio from the expert evaluation, captur-
ing feedback from the participants about general issues with qualitative
coding, helpful or valuable functionalities of Aeonium, limitations
and suggestions for future work, and perspectives on the utility of ML
support for qualitative coding.

5.7 Potential Threats to Validity
For our MT study, there were potential threats to internal validity such
as selection bias since we did not have background information for the
MT workers. Similarly, since the results were drawn from a small group
of MT workers, they may not be generalizable to other populations. As
for the potential threats to the internal validity of Aeonium’s evaluation
study, first, since participants were paired with a random master coder,
there may be differences between master coders that lead to issues
such as maturation effect and instrumentation errors. In addition, since
participants were told they would be testing a tool, this knowledge
might have affected their behavior, perhaps encouraging them to use all
the functionality we provided. In terms of threats to external validity,
since our participants were mostly students at a university, our results
might be biased towards a limited population.

6 Results
6.1 Drawing Out Ambiguous Data
One of our highest priorities in designing Aeonium was to draw out
ambiguous data as described in design objective 1 in order to focus
human resources on the most challenging work. To justify this de-
sign priority, we first had to validate our premise that ambiguous data
requires additional human effort. Results from multiple components
of our study supported this proposition. In our study of ambiguity
with MT workers, participants’ responses to the follow-up question
indicated that coders had lower confidence in their coding decisions for
ambiguous data. Levene’s test showed that the equality of variances
held between two groups (F(1,13) = 0.65, p = 0.43). A one-tailed



independent-samples t-test of coding confidence indicated a significant
difference (t =−2.977, p< 0.01) between the group coding ambiguous
data (M = 3.93, SD = 0.7) and the group coding unambiguous data (M =
4.6, SD = 0.51), so hypothesis 1a was supported. Qualitative analysis
reinforced this finding as well. In the feedback from the Aeonium
evaluation study, a majority of participants cited ambiguity or uncer-
tainty as a meaningful challenge in their coding experience. Feedback
from qualitative researchers in the pre-interviews and expert evaluation
confirmed that ambiguous data and lack of context are significant issues
in the coding process in general.

Disagreement between collaborating coders is a strong indicator of
ambiguous data. In hypothesis 1b, we proposed that disagreement
in the ML-predicted ambiguous data stage could be used to evaluate
how well Aeonium identified ambiguous data points. We performed
one-tailed paired-samples t-test on the difference in IRR for partici-
pants in both conditions 2 and 3 between the random and ambiguous
stages 2 and 3, ordered according to Table 1. As we expected, IRR
was lower for the ambiguous stage (M = 0.73,SD = 0.16) than the
random stage (M = 0.77,SD = 0.12), though the difference was not
statistically significant (t =−1.115, p = 0.138). Cohen’s d showed ef-
fect size to be low (d = 0.255), which may indicate insufficient power.
We anticipate that expanding the metric of ambiguity to include user-
flagged ambiguous tweets and feedback about partner disagreement
could further widen the gap between ambiguous and random data. The
model may also require more training data from participants, since in
this case predictions were based on disagreement during a single stage
(20 tweets). Both experts and participants in the Aeonium evaluation
study stated that they value being able to label ambiguity explicitly,
and experts said they appreciated the ML predictions of ambiguity.
Given the broad acknowledgement that ambiguous data is particularly
difficult to code qualitatively, we expected that coders would make
more effort to negotiate code definitions and explain the basis for their
coding decisions when they coded ambiguous data. Results for defi-
nition updating in the Aeonium base evaluation study trended in the
direction of hypothesis 2a, but differences between the number of defi-
nition refinements in random (M = 0.33,SD = 0.83) versus ambiguous
data stages (M = 0.17,SD = 0.58) were not statistically significant
(t = 1.112, p = 0.136) in a paired-samples t-test. Counter to our propo-
sition in hypothesis 2b, participants updated keywords more during
the random data stage (M = 1.71,SD = 2.67) than the ambiguous stage
(M = 1.67,SD = 2.33). Although the difference was not significant
under an one-tailed paired-samples t-test (t = 0.103, p = 0.46), this
result suggests that ambiguity may be related to missing context from
the tweet, requiring coders to use implicit knowledge to make a coding
decision. We describe Aeonium’s support for elaborating on the context
of coding decisions in the following section.

6.2 Support for Negotiating of Code Definitions and
Context around Coding Decisions

In service of design objectives 2 and 3, Aeonium supports negotiation
of code definitions and communication around the context for coding
decisions. In particular, the prominent, modifiable code definitions,
color highlighting of user-specified keywords, and flags for ambiguity
serve to facilitate this communication. Participants cited the keyword
highlighting as one of the most valuable functionalities of Aeonium.
Many participants described adding keywords to clarify their reasoning
around coding decisions and code boundaries.

Experts and participants in the evaluation study reported that they
valued the view of the partner’s updated definitions as it helped them
better understand the code boundaries, but they were reluctant to modify
the definitions themselves. Participants stated that they preferred to
defer to the definitions provided by the master coders because they felt
that the master coders were more familiar with the data and project
goals. Experts explained, however, that they would want to evolve
code definitions over time for their own research. In order to better
evaluate the support for updating code definitions, in future work we
will conduct longitudinal studies with qualitative researchers coding
their own data.

Regardless of the dataset, we expected that ambiguous data would
elicit more explanation and negotiation of code boundaries and de-
cisions. In hypothesis 2c, we reasoned that ambiguous data would
encourage the negotiation process since it necessitates added human
effort. We hypothesized that the increased communication would result
in greater improvements of inter-rater reliability for participants who
coded ambiguous data than for those who did not. We further proposed
in hypothesis 2d that the earlier the coders initiated the discussion
around code definitions and context, the more they could improve IRR.
Levene’s Test for homogeneity of variance indicated no significant
difference between groups (F = 0.166, p = 0.847). One-way ANOVA
analysis showed a significant difference (F = 3.794, p < 0.05,η2 =
0.174) between the conditions, but the post-hoc two-tailed t-tests with
Bonferroni correction (p < 0.167 to be significant) did not show a sig-
nificant difference (t12 = 0.305, p12 = 0.763; t13 = 2.365, p13 = 0.026;
t23 = 2.098, p23 = 0.047). The observed power from power analysis
is 0.654, indicating that our results may be impacted by inadequate
sample size. As we discussed in Section 6.1, it is also possible that
collaborators may need to code more data together to train a satisfactory
ML model for ambiguity.

In the context of negotiation, another key finding that emerged from
qualitative feedback is that coders wished to provide explanations for
coding decisions based on implicit knowledge. Three of the expert
evaluators indicated that they need functionality to provide explanations
about implicit context to adequately explain the basis of coding deci-
sions. All of the experts agreed that missing context is a fundamental
source of ambiguity, so explanations of implicit knowledge or decisions
based on what is not in the text may be particularly meaningful for
ambiguous data. Future iterations of Aeonium will provide extended
functionality for explaining coding decisions in order to capture implicit
context.

6.3 Support for Reflection, Reinterpretation, and Insight
Gain

Aeonium’s design prioritizes one of the most profound goals in qualita-
tive coding: facilitating the expansion of understanding and reflection.
As outlined in our description of design objective 3, qualitative coding
is intended to iteratively build up insight about the coding context.
Different Aeonium functionalities supported insight gain for different
participants. Many participants identified code and keyword distri-
bution visual overviews as helping them get a bigger picture view of
the data. Expert evaluators cited central views of code definitions and
overviews of user and system keywords as useful for supporting their
understanding of the codes. Most participants relied heavily on the
visual overview and filtering using the code comparison table to resolve
inconsistencies, with many stating that these functionalities stimulated
reflection and deeper thought about the data and the codes. Experts
also indicated that the highlighting of inconsistency through the code
comparison table and feedback to partners could help resolve “infor-
mation asymmetry” in order to build knowledge and reach consensus
among collaborators with different perspectives and backgrounds.

7 Limitations and Future Work
In this work, we have focused on ambiguity in coding informal text
such as tweets, and we used ML prediction of ambiguity to direct
coders to data that may require more human attention. Although the
current interface design only supports a limited number of codes and
pairs of coders, the design simplicity helped us evaluate the concept
of drawing out ambiguous data in qualitative coding. As we evolve
Aeonium, we are exploring ways to extend the interface to include
additional codes and ways to support an arbitrary number of coders
who code and review results collaboratively. We are also working to
conduct a longitudinal study with qualitative researchers using their
own data to explore more realistic usage scenarios, especially collab-
oration cases such as sharing the work. The current Aeonium system
supports iteration through functionalities for updating definitions, iden-
tifying keywords, and providing feedback on disagreement. In addition
to these mechanisms for negotiation, we are adding functionality for



per-instance comments to allow explanation of implicit context and
to support in-place memoing. We are also working to support more
flexible codebook iterations (e.g., adding or merging codes; hierarchical
codes). Finally, though the current ML methods supporting Aeonium
are preliminary and results may be limited due to the small number of
coded items, we view our planned longitudinal study as an opportunity
to incorporate other methods of exploration such as active learning [31].
We are also working to improve our ML models by exploring different
featuring and sampling methods for drawing out potentially ambiguous
data points. Our tool may be extended to support coding interview
scripts or other types of textual media, but since our focus is ambigu-
ity, informal short text with inherently limited context is of particular
interest to us.

8 Conclusion
We designed Aeonium to support the collaborative, iterative process of
qualitative coding by highlighting ambiguity and facilitating the evolu-
tion of code definitions, as well as supporting explanations of the basis
for coding decisions. Through interviews with qualitative researchers
and three studies, we validated and demonstrated how Aeonium fulfills
our three design objectives. Participants in our evaluation studies re-
ported that the collaborative coding functionalities for communicating
between partners gave them new insight about the topic and helped
them reflect on their own interpretations of the tweets. Unprompted,
two of the expert evaluators stated that they would like to use Aeonium
in their own research.

We believe that this approach for ML-supported visual analytics
can facilitate qualitative coding by improving consistency and acceler-
ating exploration of large text datasets. Our interface provides clean,
intuitive interactions that allow coders to enhance their analysis by iden-
tifying keywords they consider significant when applying codes and
broadening code definitions as new understandings emerge. This work
demonstrates the potential of visual analytics techniques to support
drawing coders’ attention to issues that most depend on human insight
and interpretation.
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