
Harnessing Complexity in High Performance Computing Ecosystems: A

Complex Adaptive Systems Framework
Nan-Chen Chen1, Lavanya Ramakrishnan2, Sarah S. Poon2, Cecilia Aragon1

1 Department of Human Centered Design & Engineering, University of Washington, Seattle, WA, USA

 2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA

nanchen@uw.edu, LRamakrishnan@lbl.gov, sspoon@lbl.gov, aragon@uw.edu

Abstract

The use of high performance computing (HPC) has

been generating influential scientific breakthroughs

since the twentieth century. Yet there have been few

studies of the complex socio-technical systems formed

by these supercomputers and the humans who operate

and use them. In this paper, we describe the first

complex adaptive systems (CAS) analysis of the

dynamics of HPC ecosystems. We conducted an 18-

month ethnographic study that included scientific

collaborations that use an HPC research center and

examined the processes in HPC socio-technical

systems via CAS theory to devise organizational

designs and strategies that take advantage of system

complexity. We uncovered several significant

mismatches in the variation and adaptation processes

within subsystems and conclude with three potential

design directions for management and organization of

HPC socio-technical ecosystems.

1. Introduction

Computational science has been producing significant

scientific breakthroughs since the twentieth century.

Numerous fields [1-3] rely on advanced computing

technologies to understand and solve complex

problems. High performance computing (HPC), or

supercomputers, play an important role in scientific

discovery. Incorporating thousands of nodes linked by

powerful networks to support inter-node

communication, HPC systems are capable of running

extremely large-scale simulations and analyses in

parallel. Along with traditional computational science,

data intensive discovery, recently termed the “fourth

paradigm” of scientific discovery [4], is projected to

continue to gain influence as the amount of data in the

world expands exponentially. The necessity of

processing vast and expanding amounts of scientific

data with HPC systems has also been predicted to

expand. However, barriers to HPC efficiency go

beyond computational benchmarks and involve human

interaction, human efficiency, and human-scale time

[5]. Therefore, studies of HPC operators and users

interacting with their supercomputers are critically

needed. Such studies, however, need to take into

account the complexity of the underlying socio-

technical systems comprising multiple large machines

and the interactions of hundreds or thousands of

humans; a reductionist view focused on a single factor

such as efficiency or usability may miss important

details.

HPC machines form a part of a large “socio-

technical ecosystem” where people (e.g. scientists,

engineers, staff) collaboratively interact with the

machines, and structures within the hardware,

software, and the human organization impact how

people, processes, and machines influence each other.

We define the cross-disciplinary term "socio-technical

ecosystem" based on terminology from multiple fields,

originating from “socio-technical system” [6, 7] and

“technological system” [8]. Here we view an

ecosystem as comprising the complex interactions

between people, machines, and their environments.

The term "ecosystem" emphasizes the organic nature

of system components, with a focus on how they

constantly change and evolve. The analogy of a natural

ecosystem has been used in multiple fields, e.g.

business ecosystems and software ecosystems, to

describe how member organisms interact and co-

evolve in their environment [9].

The HPC socio-technical ecosystem (hereafter,

HPC ecosystem) involves complex social and technical

interactions among its participants. For example,

scientific users are focused on their research output. On

the other hand, HPC staff are responsible for the

effective and efficient utilization, maintenance and

evolution of the supercomputing systems that serve

diverse scientific communities, with sometimes

conflicting requirements. Computer engineers work

closely with both these groups to develop software that

serves the needs of the users, while also focusing on

performance gains. Since the HPC ecosystem is an

open ecosystem where people can enter and leave the

ecosystem, the decision-making process and hence, co-

evolution of these parts of the ecosystems, are complex

and dependent on a number of internal and external

factors. As all components in the HPC ecosystem are

highly interdependent, it is not easy to parse and

explain the individual interactions and phenomena.

mailto:nanchen@uw.edu
mailto:LRamakrishnan@lbl.gov
mailto:sspoon@lbl.gov
mailto:aragon@uw.edu

Complex adaptive system (CAS) theory, an

approach that focuses on relationships, patterns, and

processes within a dynamic system, provides a means

to unpack some of the intricacy and interdependency

within the HPC ecosystem.

In this paper, we present the results from an 18-

month ethnographic study that included scientific

collaborations that used HPC resources in the United

States, and develop a framework to examine the HPC

ecosystem from a CAS point of view. We highlight

sets of agents, patterns and interactions we observed in

our field study. Drawing upon the results, we present

potential design directions for the management and

organization of HPC socio-technical ecosystems.

2. Background

2.1. Complex adaptive systems

Complex adaptive system (CAS) theory takes an

evolutionary perspective to the study of systems [10-

12]. Due to the interdependencies and constant changes

in this type of system, a CAS may be difficult to

comprehend and predict. According to Axelrod and

Cohen [13], a CAS “consists of parts which interact in

ways that heavily influence the probabilities of later

events.” The goal of CAS theory is to harness

complexity, not to eliminate it—to provide a

framework to consider the design of organizations and

strategies that takes advantage of this complexity

without needing to fully understand and control each

detail in the entire system.

While CAS is not a single theory, there are a few

characteristics that are fundamental: First, CAS focuses

on complex systems involving highly interdependent

components, or subsystems, with dynamic connections,

in contrast to simple systems that consist purely of the

sums of their components. Changes within such a

system may also be non-linear and cannot be easily

decomposed. Second, CAS emphasizes the

evolutionary processes of system elements. Third, a

CAS will contain self-organizing and emergent

behavior, involving no direct or central control of its

processes, but the appearance of collectively emergent

order and patterns within the ecosystem.

We define the elements and processes of CAS as

follows, largely based on Axelrod and Cohen [13]: A

CAS consists of multiple subsystems or components

(e.g., [14, 15]). Each subsystem contains agents, or

processes, that create or interact with artifacts. These

agents may be grouped into types possessing shared

properties.

Evolutionary processes of variation, interaction,

and selection are constantly occurring in the

subsystems. Variation can be either exploitative or

explorative. Exploitation refers to a variation that

requires minimal process changes to achieve certain

goals, such as adopting a well-known solution in a

community. Exploration, on the other hand, is a

variation which can be very different from the original

state, and usually has no existing example as reference.

Variations may arise from interaction between

agents (e.g., one agent copies a strategy from another

agent and modifies it), and variations may also create

new possibilities of interaction. The selection process

comes with a set of success criteria to measure and

ultimately change the frequency of types. According to

Axelrod and Cohen [13], when a selection process

leads “to improvement according to some measure of

success,” it is called adaptation.

Agents in one subsystem may interact with agents

in another subsystem, or may also interact with

artifacts created from still another subsystem.

Therefore, a CAS heavily relies on and is impacted by

the co-evolution of subsystems: Each subsystem

evolves not only on its own, but also adapts to changes

in other subsystems. In other words, the variations,

interactions, and selection processes of one subsystem

may be influenced by another system’s processes.

2.1.1. Literature of complex adaptive systems. CAS

theory has been applied successfully across widely

divergent domains, such as healthcare [16, 17], nursing

[5, 31], ecology [18-20], supply networks [10, 21],

languages [22, 23], markets [24, 25], organization

management [11, 26, 27], and software development

[28]. CAS theory has been shown effective across

multiple domains in describing system behavior when

study targets are more than fixed mechanistic and

predictable systems. Namely, agents in the system have

autonomy and are self-organized. Patterns in the

system emerge and are not the result of central

controls. Moreover, these systems evolve to adapt to

constant changes in their environments, or adapt to

change in other agents.

For example, in the healthcare domain, Rouse

pointed out that hierarchical decompositions of

healthcare systems, i.e., describing them as linear and

hierarchical compositions of parts, is ineffective [29].

One key reason is that healthcare systems possess no

single authority or central control. Each stakeholder

behaves according to their own potential interests and

risks.

Like healthcare systems, HPC ecosystems cannot

be completely controlled and centrally determined. The

design of the machines themselves involve complex

trade-offs, and no single authority ends up in charge of

everything about the supercomputer. When a facility

purchases an HPC system, the procurement process

itself involves an intricate set of social and financial

interactions. HPC machines are designed by vendors

based on a set of facility requirements. The vendors

then issue proposals, which are evaluated by a

committee within a lengthy procurement process

involving multiple trade-offs, regulations, and

considerations. The needs of the users are but one

factor in the final design, purchase, and deployment.

When the supercomputer is eventually deployed, the

conflicting and ever-changing needs of its users add to

the complexity of its operation. Clearly, HPC

ecosystems fall into the complex systems category and

cannot be modeled by a simple linear system.

Other research has focused on the co-evolution of

agents and/or subsystems: Kim and Kaplan combine

CAS and actor-network theory [30] to study university

timetables and demonstrate the co-evolution of

different subsystems. Briscoe finds that the language

and language acquisition devices (i.e., brains) co-

evolve [23]. Rammel et al. discuss the occurrence of

co-evolutionary processes in the subsystems of natural

resource networks, which include the resource base,

social institutions, and individual agents [31]. Cherry

examines economic sectors and finds that

policymaking systems are involved in “a

coevolutionary dance with other complex adaptive

systems in society, including business and economic

systems [32].” In this paper, we also focus on co-

evolutionary processes among research, engineering,

and facilities subsystems. Furthermore, we discuss the

challenges of co-evolution, which occurs between the

gaps of these subsystems. CAS theory has been widely

applied across various domains, including

organizational IT, although it has received less

attention in the HPC field. Kaplan and Seebeck [12]

adopted CAS to study 35 years of IT systems in a

university, and drew parallels with computer-supported

cooperative work design as a type of complex adaptive

systems design. They then constructed a taxonomy of

CAS terms as applied to IT.

To our knowledge, our work constitutes the first in-

depth ethnographic study at an HPC research center

that utilizes the CAS model to deliver insights into the

complex human-machine collaboration that

characterizes HPC ecosystems.

2.2. Research site, data collection and analysis
Our ethnographic study was conducted from

September 2014 to March 2016 in the United States

and included scientific collaborations that used

supercomputers available at the National Energy

Research Scientific Computing Center (NERSC). We

interviewed 24 people from both the scientific

collaborations and NERSC. The interviewees included

9 scientists, 8 engineers, and 7 HPC staff members. 22

interviewees were male and two were female.

All interviews were transcribed, cleaned, and coded

by the first author. The coding process consisted of

multiple steps. The first author read through the

transcripts in Word, cleaned them up based on the

audio recordings, extracted quotes considered

informative and left comments to highlight or

summarize significant paragraphs. Second, key CAS

terms from Kaplan & Seeback’s taxonomy [12], which

were based on Axelrod and Cohen’s [13], were used to

construct the basic codebook. Then all the quotes and

comments were extracted from Word files to an Excel

spreadsheet, and an existing code from the basic

codebook was applied to each quote or a new code was

created. All quotes ended up with zero to four codes.

Next, we identified the three subsystems in the HPC

ecosystem. Thus, we arranged quotes and listed key

CAS elements of each subsystem and put emphasis on

co-evolution. Finally, we organized the quotes into

themes regarding the challenges and gaps between co-

evolutionary processes of the three subsystems.

2.3. NERSC machines

NERSC currently operates two major HPC

systems: Edison and Cori. NERSC serves about 6,000

users and hundreds of projects. Every few years,

NERSC starts a new procurement process for

purchasing the next generation HPC system. NERSC

generates a list of intended features, and vendors who

design and sell HPC systems will submit proposals for

NERSC to consider. After a proposal has been chosen,

it will take a few years to construct, deliver, and deploy

the machine and for NERSC staff and users to prepare

for the new system to come online.

2.4. Roles and workflows in the HPC ecosystem

In this section, we provide a brief overview of the

roles and workflows in the HPC ecosystem we studied.

There are three primary roles: scientists who do

research, engineers who develop software and help

scientists with code development, and HPC staff

members who maintain HPC systems and support

machine-related issues.

A scientist’s key expertise lies in a particular

domain that they were trained in (e.g., material science,

climate science, physics), and they usually work in

groups under research projects, that are funded through

grants. Engineers or computer scientists are highly

skilled in areas of high performance computing,

software development or other areas of computer

science and usually work on multiple research projects

across scientific domains to support the computing

needs of scientists Their jobs can range from

developing an independent software package to

helping scientists debug software (“codes”). Some

HPC staff members maintain machines, and some are

responsible for supporting users, such as helping users

to set up jobs and install software package

dependencies. Large science projects often consist of

scientists, engineers and sometimes HPC staff

members who build tools and technologies towards a

common goal. Not all scientists in a project may use

HPC systems.

 Allocations of computational time and/or storage

resources at NERSC are awarded to scientists on a

project basis. Scientists wrap their codes into jobs,

specify their requested resource amount, and submit

their jobs to NERSC systems. Once the jobs are

submitted, they are placed in a queue (multiple queues

have different priorities and CPU hour charges) to wait

for execution. As each job arrives at the front of the

queue, the system allocates the resources the user

requested and executes the job.

Each scientific domain is accustomed to their own

set of software packages. Some of these packages are

generic, such as NumPy and SciPy in Python, whereas

some simulation packages or visualization tools are

domain-specific. In order to utilize HPC systems,

scientists may need to parallelize their codes, where

parallelization might include language-dependent

complexities. For example, for C and Fortran users,

libraries like OpenMP [33] support parallelization well.

However, for Python, since the native Python

interpreter is not thread-safe (may produce consistency

errors in shared data structures during parallel

operation), users must use MPI4Py [34] or OpenMP

together with Cython (an optimizing static complier to

enable C-extension in Python) [35], which can bring

extra complexity into workflows of scientists who use

Python.

3. High performance computing ecosystem

as a complex adaptive system

In this section, we identify three essential

subsystems of the HPC ecosystem: the research,

engineering, and facilities subsystems, each of which

has its own CAS elements and separate processes, but

can also interact with and rely on other subsystems. As

a result, the subsystems not only evolve individually,

but also co-evolve and adapt to the changes of other

subsystems. We highlight important elements of the

subsystems and their interactions in Figure 1.

3.1. Research subsystem

The research subsystem includes agents in the HPC

ecosystem whose primary focus is to use

supercomputers for scientific research. Most of these

agents are research scientists, postdocs, and graduate

Figure 1. Summary diagram of the
subsystems. The research subsystem
consists of scientists and the artifacts they
create or use. The engineering subsystem
comprises engineers and the codes and
packages they develop. The facilities
subsystem includes the HPC staff and the
machines. All subsystems interact with each
other and may lead to variations. For example,
a scientist can learn how to write more
efficient codes from engineers.

students (all hereafter referred to as scientists). In

addition to agents, the research subsystem contains

various artifacts such as the research itself, source code

and software packages, HPC machines, as well as the

scientists’ local machines (e.g., laptops and Linux

workstations).

The research subsystem constantly cycles through

the evolutionary processes of variation, interaction, and

selection. The nature of scientific inquiry drives

variation towards innovative research contributions.

This includes both exploitation and exploration. For

example, incremental research can be considered a

case of exploitation of prior work, whereas

introduction of a new technique (e.g., parallel

programming) to a research area for the first time is a

case of exploration. These cases can lead to the

creation of new types of scientists (e.g., scientists who

know parallel programming evolve to be called

computational scientists and often have primary

appointments in computational divisions), strategies

(e.g., ways to deal with data), as well as artifacts (e.g.,

new software packages or hardware).

Taking another view, variation in this subsystem

occurs through interaction within the subsystem as well

as between subsystems. For instance, scientists in the

same research project may form new strategies to

divide work, or a discussion with other scientists may

prompt a new research idea. Scientists may also

improve their research through peer reviews (i.e.,

feedback from other scientists). In addition, a scientist

may learn new programming techniques from

engineers, or learn how to better utilize HPC machines

from the HPC staff. For example, scientists may pick

up computer science skills critical to their subsystem,

as when we witnessed a scientist describing how to

make his Python code accessible to people who use R,

and his longtime engineer collaborator commented,

“You [the scientist] are speaking my language right

now.”

Although numerous cases of variation may occur,

the selection process can limit or even eliminate

variations based on success criteria. In the research

subsystem, the most important success criterion is

scientific discovery, which itself can be measured by

various criteria, such as the quantity and impact of

research publications. Toward this end, scientists may

prioritize research directions based on the possibility of

influential outcomes.

Another common success criterion relies on

resource utilization. Namely, scientists usually have

limited resources, whether human (e.g., working hours,

collaborator availability) or computational (e.g., CPU

hours, memory, storage space). Thus, variation that

exceeds a scientist’s resources is unlikely to be

sustained or even to appear.

3.2. Engineering subsystem

In the engineering subsystem, engineers, whose

primary job is to develop software to support scientists,

are the key agents. As with the research subsystem, the

engineering subsystem also contains many artifacts,

but among the most essential are source code and

software packages.

Variation in the engineering subsystem is largely

driven by scientists’ needs and facility changes. For

example, engineers who develop a software package

may receive new feature requests from scientists, or

engineers may have to help scientists parallelize their

code. In such cases, variations are usually exploitative,

adding changes incrementally following software

development practices. However, in some cases,

variations can also be explorative. For instance,

engineers may develop a new software package from

scratch. They may even completely refactor a software

package to increase the performance and

maintainability of the package. Furthermore, when

HPC facilities change, engineers must modify their

software or upgrade its dependencies to ensure it

continues to function.

Through interaction with scientists, engineers learn

their goals and habits in order to provide better

support. They may also develop different methods of

interaction to better meet scientist needs. One engineer

we interviewed said his group interacted with scientists

on a weekly basis to ensure that new software features

would meet scientists’ immediate needs. Another

engineer pointed out that pair programming (i.e.,

sitting with a scientist to debug code) was routine

practice. In addition to interacting with scientists,

engineers also interact with other engineers, or work

with HPC staff to ensure packages they develop are

compatible with the newest machines.

There are multiple success criteria in this

subsystem. How well engineers support scientists to

enable them to harness scientific discoveries, which

may not be explicitly defined, is one key success

criterion. Often, engineers need to support more than

one group of scientists, and they may be responsible

for both developing software packages and facilitating

scientists’ code-writing processes. Therefore, this

success criterion may be approximated through the

quantity of issues engineers help a specific group of

scientists to resolve. As a result, engineers may

prioritize feature requests from one group over another.

A second success criterion of the engineering

subsystem is the quality of the engineering work, as

defined by recommended engineering practices, for

example code modularization. Hence, engineers may

pursue variations that completely change a software

package’s structure but offer no new features.

Although software quality is important, in the HPC

ecosystem the improvement of scientific quality has

greater weight. One engineer pointed out that

refactoring code to increase the engineering quality

without adding new features does not usually count as

a contribution of engineering work. Thus, the

evolutionary direction of engineering favors better

support of science.

3.3. Facilities subsystem

The facilities subsystem is centered on the HPC

machines themselves. The key agents in this subsystem

include HPC staff, such as people who interact with

supercomputer users, those who maintain HPC

software and hardware, those who interact with HPC

vendors (i.e. procurement), and those who analyze

machine utilization and define policies (for simplicity,

we refer to all these sub-categories as HPC staff).

The variation process in the facilities subsystem

relies not only on the advance of HPC technology, but

also on the needs of scientists in the research

subsystem. For example, HPC staff may install a new

software package due to requests from scientists.

However, due to the extremely high cost of equipment

purchase and operation, the success criteria of the

facilities subsystem must be based on more than the

satisfaction of user needs. Among others, system

utilization, security, cost, and energy consumption are

also important success criteria. Benchmarks are often

used to measure the computational performance of an

HPC system. NERSC evaluates many aspects such as

computational benchmarks and application

performance, cost, and power consumption. HPC staff

must also balance how much they expect users to

change in order to use the machine efficiently versus

increased performance gains from hardware upgrades.

There are trade-offs between doubling the memory

or I/O bandwidth versus having users modify their

codes. It’s about understanding the cost-benefit of

your actions as well as just the pure cost, too,

which again goes back to analyzing the

application to understand what it is that they

really need. Can you push and budget in roughly

the right way amongst the different components in

the machine? [HPC staff member 3]

During our field study, a new HPC system, Cori, was

introduced. Cori possesses a few new features that

differ significantly from its past two generations. One

critical difference is that Cori’s compute nodes are split

into two partitions: data and HPC. The data partition

aims to serve people who need high data throughput

(i.e., heavy I/O), whereas the HPC partition consists of

the traditional compute machines. NERSC staff had to

find a way to serve its diverse users and balance budget

and energy. However, the goal of reducing power

consumption led to each CPU core containing less

memory and instead supporting threading. To take

advantage of the new design, users were expected to

increase parallelism in their code. Thus, evolution in

the facilities subsystem favored user support as well as

innovation in hardware technology within cost

constraints.

4. Challenges of co-evolution of subsystems

As briefly described in the previous section, the

HPC ecosystem’s three subsystems influence each

other’s directions of evolution, or more accurately, co-

evolve. Nevertheless, co-evolution is not always a

smooth process and conflicts can arise to hinder

collectively emergent orders. Adaptation in co-

evolution requires variation, and selection processes in

subsystems all yield improvements. Nevertheless, in

many cases, we found that when one subsystem

evolves, it may be difficult for other subsystems to

adapt. Highlighting such challenges are like

pinpointing reverse salient [36, 37] in technological

systems where reverse salient refers to a slowly

developed component in the system that prevents the

whole system from achieving its goal. This analytical

approach surfaces the limits of the current system. In

this section, we layout several key challenges of co-

evolution and obstacles to adaptation to highlight

current issues in the HPC ecosystem

4.1. One subsystem must remain in an older

state

Adapting to changes of other subsystems requires

variations in a subsystem, but sometimes one

subsystem must remain in its current state and thus

cannot follow the changes of other subsystems. For

example, when the facilities subsystem deploys a new

generation HPC machine that includes fundamental

differences from previous generations, it requires the

research and engineering subsystems to prepare source

code and software packages that are compatible with

the new machine. Similarly, changes in the codes can

also come from within the subsystem – e.g., bug fixes.

A group of scientists may continue to use an older

version of their simulation models due to a variety of

reasons. It may be due to compatibility with other

subsystems that are outside of the HPC subsystem, or it

may be to ensure fairness in comparisons.

What I would be worried about in terms of

different model versions is what the model

developers do if they bring in a different ... if they

somehow change, which might be including fixing

a bug, the algorithm for figuring <an intermediate

variable> out and if they changed out at a bit.

That can do some rather dramatic things <to the

model results>. The value difference may seem to

be small, but when go over the historical time

period, that matters a lot. [Scientist 2]

Additionally, scientists write papers for submission

to journals and conferences, but the review process can

be lengthy, so much so that the engineering subsystem

may have evolved (e.g., a software package they use

may have a newer version) before they receive

reviews. When they receive comments from reviewers

asking for more analysis, they must run their code

under the same environment again:

It happens a lot when they have some papers

submitted for review, and then the review comes

three or four months later. They want to be able to

run the exact same script at that exact same time.

[Engineer 6]

As a result, even though new versions of software

packages constitute a preferred variation based on the

engineering subsystem success criteria, the research

subsystem may not agree with the variations, let alone

change to adapt to them. Thus, there is a need to evolve

yet maintain strong provenance records that also

capture the connections between the subsystems.

4.2. Subsystems have mismatched evolution

directions

In some cases, two subsystems may evolve in

mismatched directions, forcing people to use

workarounds to connect them. For instance, in the

research subsystem, the programming language Python

is increasingly used for scientific data analysis.

Packages such as NumPy and SciPy provide powerful

utilization functions for scientific data analysis.

However, Python’s modularization design does not fit

well with multicore systems like NERSC machines,

causing issues in the facilities subsystem. For example,

each Python process running on the HPC machines

reads its dependent packages. For a job using 40,000

cores, the dependencies must be loaded 40,000 times,

amounting to excessive I/O overhead.
Another blocking factor was that the compute

nodes, for the sake of flexibility, were designed to

require users to give them all dependent packages;

hence code with no dynamic importing was preferable.

However, Python is designed to dynamically import

packages.

To handle this mismatch, people used various

workarounds, such as wrapping all dependencies into a

.tar file and submitting the “tarball” with the job. One

scientist wrote a tool to cache package locations each

job needed on individual nodes and include this

information along with the job. However, the scientist

told us that when Cori came online, his workaround

did not function with the new job queuing system on

Cori. This involved significant time fixing the

workaround.

Thus, subsystems do not always co-evolve in

aligned directions. Oftentimes, workarounds are

created to compensate for mismatches, but these can

then be vulnerable to changes in either subsystem.

4.3. Limited time and resources block

adaptation

Even if one subsystem were to follow the evolution

of other subsystems, limited time and resources can

block them from creating variations for adaptation. In

the case of the simulation models, for example, the

scientists ran the older version of the models for over

two years, generating more than 3.1 PB of output data

from more than 1,000 simulation runs. If scientists

were to use the latest version of the model with the

same number of simulations, they would need to run

the models for another two years.

On the other hand, the cost of enabling the older

version to run on Cori also exceeded the amount of

time and resources available in the engineering

subsystem. The simulation models were developed

much earlier in older generation machines with

different architectures, and the code was not expected

to run with so many instances at the same time.

Therefore, it was not written in a way that would easily

fit multicore architectures. Furthermore, the models

required specific versions of software dependencies

which were not available on Cori or Edison.

One of the engineers tackled the issue of the

models only to find there were already too many layers

of previous fixes in the code. Since the models had

existed for many years, various people worked on the

software, sometimes adding code to ensure the models

fit new needs or previous environment changes. A

change in one part would break other workarounds. He

referred to this difficulty as “technical debt,”

explaining that when people resort to hacks to make

technology work without sufficient planning, these

hacks become debts later on, making it increasingly

difficult to make any modifications at all:

The first thing I try to do will be completely buried

in technical debt. I can’t change this because this

and this and this were workarounds that were

designed to work around debts and if I change

that, they all become bad, they all stop working

and there’s just layers and layers of this stuff.

[Engineer 2]

This is an example of where a previous evolution of

one subsystem (research) occurred independently of

other subsystems but caused challenges for future co-

evolution. Such cases are not rare in the HPC

ecosystem. For example, when a new storage

architecture was introduced at NERSC, a scientist

mentioned that it would not be possible for them to

change their software to utilize it because the code was

written in the ‘80s or ‘90s, and it was unlikely that the

code could be updated.

Because a lot of these codes that were written,

they started themselves in the '80s or '90s or

something. There are a couple of ones that started

in the more modern era, but most of them are

fossils. … Maybe some of those fossil codes will be

able to update themselves for this type of

architecture, but I think it is unlikely to happen.

[Scientist 5]

Since rewrites or changes to code are not

recognized in the reward system, it can be too costly in

terms of time and resources to make changes to the

code to adapt to the new facilities subsystem.

4.4. Conflicts between success criteria of

subsystems

Obstacles to adaptation may come from conflicts

between the success criteria of different subsystems.

For instance, the research subsystem values research

contributions (i.e., publications and scientific results).

As a result, scientists are less likely to spend time on

efforts like enhancing the quality of their code. Often,

scientists want code that runs and prefer not to spend a

lot of time tuning performance. If it takes a long time

to receive results, they manually submit jobs to the

HPC systems and switch to other tasks (e.g., writing

papers). An engineer pointed out that people do not

spend the time to automate their workflows until

manually setting up jobs and waiting becomes too

difficult.
However, to the facility subsystem, utilization of

the HPC machines is an important success criterion,

which can be challenging whenever a new

supercomputer is deployed. For example, utilizing Cori

required better-parallelized code. Such constraints may

block scientists from producing research. This tension

could be reduced by improving the usability of existing

software tools and providing tools to help scientists

update their codes more efficiently.

Another conflict happens when the engineering and

facilities subsystems introduce a new version of

software packages or upgrade the operating systems

(OS) of the HPC systems. As mentioned earlier,

scientists may find it difficult to switch to the updated

version. Nevertheless, from the perspective of HPC

staff, keeping software and system OS up-to-date

reduces bugs and improves the security of the systems,

important success criteria for the facilities subsystem.

In the engineering subsystem, engineers may need

to refactor a package to follow better software

engineering practices, or simply to support new

architectures, both of which are part of their success

criteria and necessary but may not be a consideration

for the scientists. For instance, one scientist told us that

a module in a visualization package he used should not

be rewritten because it had been tested for 20 years and

they trusted the quality of the software:

I've been arguing about this with the guys in the

software development group. You don't want to

rewrite this stuff <the module>. This is tested. It's

20 something years old now and bulletproof. It's

good software. [Scientist 4]

5. Discussion: Potential design directions

for HPC ecosystem management and

organization

Although complex adaptive systems cannot be fully

controlled and designed, CAS theory provides a

concrete framework that can provide guiding principles

to promote policies, strategies, and interactions to

shape evolutionary processes [13]. In this section, we

outline three potential design directions for the HPC

ecosystem that we hypothesize will encourage positive

co-evolution and adaptation between subsystems for

emergent order. Further research is needed to test these

directions.

5.1. Defining success criteria for adaptation

between subsystems

Conflicts between success criteria among different

subsystems are a key issue blocking adaptation and

coordination across subsystems. Therefore, we

hypothesize that it is critical to define success criteria

that take into consideration all subsystems. For

instance, currently the research subsystem does not

value time spent on parallelizing codes or improving

software, yet it is an important task to better utilize

HPC machines and ultimately enhance scientific

output. Data and software are increasingly vital to

scientific discoveries, the code often containing

significant intellectual content including highly

specialized scientific knowledge. As such, the

intellectual content of software needs to be recognized

and valued. One way to do this is to stop defining

success metrics for each subsystem separately and

consider the entire ecosystem as a whole. Similarly,

HPC facilities are largely judged by performance

benchmarks. However, in a previous study, Chen et al.

pointed out the importance of collective time in HPC

design [5]. They argued that HPC designers should not

only consider machine time, but also human time

required to set up and use HPC machines. Thus, if ease

of parallelization and usability were to be explicitly

valued across all subsystems, it may encourage

scientists to better parallelize their codes, leading to

more efficient software, less technical debt, and more

human time for scientific insight. Further research into

metrics that take into account the interaction between

subsystems will be needed.

5.2. Managing mismatches and workarounds

There will inevitably be conflict between

subsystem success criteria. If mismatches appear and

people need to create workarounds to connect gaps and

mitigate related issues, it is important to clearly

identify those mismatches and visibly manage

workarounds.

Besides their vulnerability to changes in associated

software, workarounds also have the potential to

evolve into long-term solutions. For example, the

workaround one scientist created to wrap dependencies

into a .tar file to accompany jobs became a package

that is now available to his group. Increasing the

visibility of this type of process may be helpful to other

groups as well. Therefore, we hypothesize that

identifying mismatches and managing workarounds in

the HPC ecosystem may not only help prevent severe

breakdowns, but also help increase chances of

adaptation. For example, one way to manage

workarounds might be to enable a community

repository that allows other subsystems to contribute

patches, scripts that can then be reviewed and approved

for more general use.

5.3. Supporting cross-subsystem

communication and increasing interactions

Support for cross-subsystem communication may

lead to significant amelioration of subsystems’

conflicting goals and assumptions. For example,

scientists may have very good reasons why they don’t

want to upgrade to the latest software version, while

HPC staff may have conflicting but equally valid

reasons to upgrade. Lowering the barrier to interaction

between agents in both subsystems by providing a

means for lightweight, short-timeframe communication

could provide significant mutual benefit by enabling

more frequent interaction and negotiation. Today,

communication between the subsystems occurs

through structured mechanisms (e.g., occasional

requirements workshops), semi-structured (e.g., help

desk) and ad-hoc (e.g., through previously established

relationships). These mechanisms either operate over a

long timeframe or contain sufficient friction to impede

optimal interaction. The HPC facility subsystem should

consider increasing communication of other significant

events (e.g., major system upgrades) and solicit

regular, frequent input from other subsystems; this

could substantially improve the management of

mismatches and workarounds.

We hypothesize that developing affordances to

lower the social barriers that may currently impede

interaction and negotiation could facilitate

communication between subsystems. Previous work

has demonstrated that technological affordances can be

created to achieve this goal [38]. For example, a

communication interface that allows visualization of

both human and machine effectiveness could be

utilized to enable negotiation. This could also increase

people’s situational awareness of their actions and their

effects on other groups.

The end result could lead to better quality

workarounds and more negotiation around mismatches,

with the potential for greater machine efficiency,

increased human satisfaction, and overall improved

effectiveness of the entire HPC ecosystem.

6. Conclusion

This paper presented the first use of CAS to explore

the HPC ecosystem via an in-depth ethnographic study.

The CAS framework enabled us to surface mismatches

and breakdowns that exist in the current variation and

adaptation processes within subsystems. Based on

these insights, we presented three potential design

directions for HPC ecosystems which may provide

important guidelines to participants and stakeholders.

Future work should focus on testing these hypotheses

and developing metrics that take into account

interactions between subsystems, design to mitigate

mismatches via improved affordances for lightweight

and frequent communication, and the reevaluation of

cross-system success criteria. The goal is to help

reduce barriers to variation and enable seamless

adoption of new directions in HPC environments, and

ultimately lead to the acceleration of scientific

discovery across all domains utilizing high

performance computing.

7. References

[1] Exploring the universe with supercomputing. Available:

https://sciencenode.org/feature/exploring-universe-

supercomputing.php

[2] J. R. Collins, R. M. Stephens, B. Gold, B. Long, M. Dean,

and S. K. Burt, "An exhaustive DNA micro-satellite map of

the human genome using high performance computing,"

Genomics, vol. 82, pp. 10-19, 2003.

[3] R. Nemani, P. Votava, A. Michaelis, F. Melton, and C.

Milesi, "Collaborative supercomputing for global change

science," Eos, Transactions American Geophysical Union,

vol. 92, pp. 109-110, 2011.

[4] T. Hey, S. Tansley, and K. M. Tolle, The fourth

paradigm: data-intensive scientific discovery vol. 1:

Microsoft research Redmond, WA, 2009.

[5] N.-C. Chen, S. Poon, L. Ramakrishnan, and C. R.

Aragon, "Considering Time in Designing Large-Scale

Systems for Scientific Computing," in Proceedings of the

19th ACM Conference on Computer-Supported Cooperative

Work & Social Computing, 2016, pp. 1535-1547.

[6] C. P. Lee, P. Dourish, and G. Mark, "The human

infrastructure of cyberinfrastructure," in Proceedings of the

2006 20th anniversary conference on Computer supported

cooperative work, 2006, pp. 483-492.

[7] E. F.E., T. E.L., C. C.W., and V. M.. "Socio-technical

systems," Management Science Models and Techniques, vol.

2, pp. 83-97, 1960.

[8] T. P. Hughes, "The evolution of large technological

systems," The social construction of technological systems:

New directions in the sociology and history of technology,

vol. 82, 1987.

[9] M. Seppänen, S. Hyrynsalmi, K. Manikas, and A.

Suominen, "Yet another ecosystem literature review: 10+ 1

research communities," in 2017 IEEE European Technology

and Engineering Management Summit , 2017, pp. 1-8.

[10] T. Y. Choi, K. J. Dooley, and M. Rungtusanatham,

"Supply networks and complex adaptive systems: control

versus emergence," Journal of operations management, vol.

19, pp. 351-366, 2001 2001.

[11] K. J. Dooley, "A Complex Adaptive Systems Model of

Organization Change," Nonlinear Dynamics, Psychology,

and Life Sciences, vol. 1, pp. 69-97, 1997 1997.

[12] S. Kaplan and L. Seebeck, "Harnessing complexity in

CSCW," in ECSCW 2001, 2001, pp. 359-378.

[13] R. Axelrod and M. D. Cohen, Harnessing complexity:

Organizational implications of a scientific frontier: Basic

Books, 2000.

[14] M. K. Richard and M. K. Simon, "Interpreting

socio‐technical co‐evolution: Applying complex adaptive

systems to IS engagement," Information Technology &

People, vol. 19, pp. 35-54, 2006.

[15] K. Shafi and H. A. Abbass, "Biologically-inspired

complex adaptive systems approaches to network intrusion

detection," Information Security Technical Report, vol. 12,

pp. 209-217, 2007.

[16] J. W. Begun, B. Zimmerman, and K. Dooley, "Health

care organizations as complex adaptive systems," Advances

in health care organization theory, vol. 253, p. 288, 2003.

[17] P. Nugus, K. Carroll, D. G. Hewett, A. Short, R. Forero,

and J. Braithwaite, "Integrated care in the emergency

department: A complex adaptive systems perspective," Social

Science & Medicine, vol. 71, pp. 1997-2004, 2010.

[18] M. Janssen, "Use of Complex Adaptive Systems for

Modeling Global Change," Ecosystems, vol. 1, pp. 457-463,

1998.

[19] M. A. Janssen, B. H. Walker, J. Langridge, and N. Abel,

"An adaptive agent model for analysing co-evolution of

management and policies in a complex rangeland system,"

Ecological Modelling, vol. 131, pp. 249-268, 2000.

[20] J. Norberg, "Biodiversity and ecosystem functioning: A

complex adaptive systems approach," Limnology and

Oceanography, vol. 49, pp. 1269-1277, 2004.

[21] C. Wycisk, B. McKelvey, and M. Hülsmann, "“Smart

parts” supply networks as complex adaptive systems:

analysis and implications," International Journal of Physical

Distribution & Logistics Management, vol. 38, pp. 108-125,

2008.

[22] C. Beckner, R. Blythe, J. Bybee, M. H. Christiansen, W.

Croft, N. C. Ellis, J. Holland, J. Ke, D. Larsen-Freeman, and

T. Schoenemann, "Language is a complex adaptive system:

Position paper," Language learning, vol. 59, pp. 1-26, 2009 .

[23] E. J. Briscoe, "Language as a complex adaptive system:

co-evolution of language and of the language acquisition

device," 1998.

[24] S. M. Markose, "Computability and Evolutionary

Complexity: Markets as Complex Adaptive Systems*," The

Economic Journal, vol. 115, pp. F159-F192, 2005.

[25] M. J. Mauboussin, "Revisiting market efficiency: The

stock market as a complex adaptive system," Journal of

Applied Corporate Finance, vol. 14, pp. 47-55, 2002.

[26] B. B. Lichtenstein, M. Uhl-Bien, R. Marion, A. Seers, J.

D. Orton, and C. Schreiber, "Complexity leadership theory:

An interactive perspective on leading in complex adaptive

systems," Emergence: Complexity and Organization, 2006

2006.

[27] M. Tilebein, "A complex adaptive systems approach to

efficiency and innovation," Kybernetes, vol. 35, pp. 1087-

1099, 2006.

[28] R. Vidgen and X. Wang, "Organizing for agility: a

complex adaptive systems perspective on agile software

development process," 2006.

[29] W. B. Rouse, "Health care as a complex adaptive

system: implications for design and management," Bridge-

Washington-National Academy of Engineering-, vol. 38, p.

17, 2008.

[30] R. M. Kim and S. M. Kaplan, "Interpreting socio-

technical co-evolution: Applying complex adaptive systems

to IS engagement," Information Technology & People, vol.

19, pp. 35-54, 2006.

[31] C. Rammel, S. Stagl, and H. Wilfing, "Managing

complex adaptive systems — A co-evolutionary perspective

on natural resource management," Ecological Economics,

vol. 63, pp. 9-21, 2007.

[32] B. A. Cherry, "The Telecommunications Economy and

Regulation as Coevolving Complex Adaptive Systems:

Implications for Federalism," Federal Communications Law

Journal, vol. 59, pp. 369-402, 2006.

[33] L. Dagum and R. Menon, "OpenMP: an industry

standard API for shared-memory programming," IEEE

computational science and engineering, vol. 5, pp. 46-55,

1998.

[34] L. Dalcín, R. Paz, and M. Storti, "MPI for Python,"

Journal of Parallel and Distributed Computing, vol. 65, pp.

1108-1115, 2005.

[35] Parallel Processing with Python and OpenMP - Go

Parallel. Available:

https://goparallel.sourceforge.net/parallel-processing-with-

python-and-openmp/

[36] O. Dedehayir and S. J. Mäkinen, "Determining reverse

salient types and evolutionary dynamics of technology

systems with performance disparities," Technology Analysis

& Strategic Management, vol. 23, pp. 1095-1114, 2011.

[37] T. P. Hughes, Networks of power: electrification in

Western society, 1880-1930: JHU Press, 1993.

[38] S. S. Poon, R. C. Thomas, C. R. Aragon, and B. Lee,

"Context-linked virtual assistants for distributed teams: an

astrophysics case study," presented at the Proceedings of the

2008 ACM conference on Computer supported cooperative

work, San Diego, CA, USA, 2008.

