Flow Model: Focus on Inventory

Aug 2017 US retail inventory: 625,351 m$
CSCMP’s estimate of inventory carrying cost: 19%

How do we improve inventory performance measures?
Inventory Planning: Nordstrom

1. Create Sales Plans for each channel
2. Determine How Much Inventory is Needed to Support Sales
3. Overestimate Sales: Too much inventory
 Underestimate Sales: Too little inventory
4. Too much inventory: Reprice, Return, Markdown
 Too little inventory: Expedite orders, Move $s elsewhere

Metrics:
Sales, Inventory Turns (YTD Net Sales/Avg Inventory)
Stock to Sales (STS) (Beg. Month Stock/ Month End Sales)

The most important decision is
2. How Much Inventory?
Our Model to Understand and Improve this decision:
Newsvendor Model

Nordstrom invests in supply chain software firm. July 2016. BI
.. to develop new initiatives, like using historical inventory data to predict future stock levels, further reducing the potential for stock shortages.

A Thought Experiment

Demand in a period can be any number between 1 and 6 with equal probability. Buy a unit for $80. If you can sell it, you will get a per unit revenue of $100. If it does not sell in that period, discount it for a salvage value of $30. Each period is independent; no inventory carried between periods.

What order size decision will maximize average profit across periods?

<table>
<thead>
<tr>
<th>Period</th>
<th>Order - Size (a)</th>
<th>Demand (b)</th>
<th>Sold (c)</th>
<th>Excess (d)</th>
<th>Shortage (e)</th>
<th>Cost $80*(a)</th>
<th>Revenue $100*(b)</th>
<th>Salvage $30*(c)</th>
<th>Profit= 100*(b) - 80*(a) + 30 *(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>320</td>
<td>400</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Example</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>320</td>
<td>300</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Developing Newsvendor Model:

Table

<table>
<thead>
<tr>
<th>Decision: How much to order/What is the starting inventory=3</th>
<th>Exp. Values are sum of (probability*value) in each case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible cases of demand values</td>
<td>Exp. Demand = 3.5</td>
</tr>
<tr>
<td>1/6 1/6 1/6 1/6 1/6 1/6</td>
<td>Service Demand is the fraction of cases where all demand is met.</td>
</tr>
<tr>
<td>Probability of each case</td>
<td>1/6</td>
</tr>
<tr>
<td>Meet all demand?</td>
<td>Yes</td>
</tr>
<tr>
<td>How much Sales?</td>
<td>1/6</td>
</tr>
<tr>
<td>How much Shortage?</td>
<td>0/6</td>
</tr>
<tr>
<td>How much Excess?</td>
<td>2/6</td>
</tr>
</tbody>
</table>

Expected Profit

\[
\text{Expected Profit} = 100 \times \text{Exp. Sales} - 80 \times \text{Order Size} + 30 \times \text{Exp. Excess}
\]

\[
= 100 \times 2.5 - 80 \times 3 + 30 \times 0.5 = 25
\]

\[
= (100-80) \times 3.5 - [(100-80) \times 1 + (80-30) \times 0.5]
\]

\[
= \text{Profit without Uncertainty- Mismatch Cost} (see next slide)
\]

Defining Service Level, Mismatch Cost

Newsvendor model: a single-period problem in which demand is uncertain

Decision: How much to order at the beginning of period or equivalently how much inventory to have at the start of the period

Objective: Maximize \(\text{Exp. Profit}\)

Service Level: For a given decision, what is the fraction of possible demand cases in which we can meet all demand.

\[
\text{Exp. Profit} = \text{revenue} \times \text{Exp. Sales} - \text{cost} \times \text{order} + \text{salvage} \times \text{Exp. Excess}
\]

Maximizing Exp. Profit is the same as Minimizing Mismatch cost

\[
\text{Mismatch Cost} = (\text{revenue-cost}) \times \text{Exp. Shortage} + (\text{cost-salvage}) \times \text{Exp. Excess}
\]

Marginal cost of shortage

\[
Cs = \text{revenue-cost}
\]

Marginal cost of excess

\[
Ce = \text{cost-salvage}
\]

Mismatch cost is the total cost of not being able to match demand & supply due to uncertainty
Marginal Costs of Shortage & Excess

Marginal Cost of shortage (understocking)
cost of making a mistake of buying one less than necessary.
\[C_s = \text{revenue } r - \text{cost } c \]

Marginal Cost of excess (overstocking)
cost of making a mistake of buying one more than necessary.
\[C_e = \text{cost } c - \text{salvage } s \]

Definition remains the same but, depending on the context, formulas may change.

Reinforcing Definitions

A publisher’s per-book publishing/delivery cost is $9; sales price is $15. What is \(C_s \)?

A mobile phone’s mfg./delivery cost is $150. If not sold in six months, unsold units are sold in Asia at $110 net. What is \(C_e \)?

A retailer operates at a targeted 98% service level for fresh milk. What is the chance that, on a late night grocery-run, you will find no milk?
Newsvendor model: Service Level Optimization

To Maximize Exp. Profit or To Minimize Mismatch Cost:

Optimal service level = \(\frac{C_s}{C_s + C_e} \)

Optimal inventory level (order size):
(newsvendor decision rule)
Order minimum quantity that matches or exceeds the optimal service level

Trade-off: Shortage Cost vs. Excess Cost

Our Experiment: Optimal Service Level

Per unit: revenue \(r=100 \), cost \(c=80 \), salvage \(s=30 \).

Step 1: Compute \(C_s \), \(C_e \), and optimal service level=
\(C_s=100=80=20 \), \(C_e=80-30=50 \), Optimal S.L. = \(20/(20+50)=0.285 \)

Step 2: (Discrete demand) compute service levels for different order sizes

<table>
<thead>
<tr>
<th>Order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Prob.</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>Service level</td>
<td>1/6 = 0.167</td>
<td>2/6 = 0.33</td>
<td>3/6 = 0.5</td>
<td>4/6 = 0.67</td>
<td>5/6 = 0.83</td>
<td>6/6 = 1</td>
</tr>
</tbody>
</table>

Step 3: Use newsvendor decision rule to find optimal order quantity
2 is the minimum order quantity at which the service level meets or exceeds Optimal S.L. ; therefore buy and stock 2.
A Moment of Reflection

Can you think of a decision you or your company makes in which the outcome is uncertain and cost-implications are asymmetrical?

Introduction to Operations Management
Prof. Apurva Jain
OPMGT 502

Section 3 Contents

Session 11
7. Compute Inventory Performance
 □ 7.1 Newsvendor Model
 Marginal Costs of Shortage/Excess
 Optimal Service Level
 □ 7.2 Mismatch Cost Calculation
Newsvendor model

Demand follows normal distribution

Use spreadsheet to analyze newsvendor model with normal demand.

Start with Inputs:
- Demand Average (Mean), Std. Dev.
- Marginal cost of shortage Cs
- Marginal Cost of Excess Ce

Decisions:
Spreadsheet computes optimal service level and optimal inventory level. You can then input your chosen inventory level.

Outputs:
Spreadsheet computes service level and mismatch cost corresponding to your inventory level.

Practicing Newsvendor Model

A publisher’s per-book publishing/delivery cost is $6; sales price is $12. Unsold books can be salvaged at $3. Demand is normally distributed with mean 6.5 and standard deviation 1.11 What is the optimal inventory level and corresponding mismatch cost? [Decimals ok.]

Determine Inputs for spreadsheet:

<table>
<thead>
<tr>
<th>Demand Average</th>
<th>Demand Std. Dev.</th>
<th>Marginal Cost Cs</th>
<th>Marginal Cost Ce</th>
</tr>
</thead>
</table>

Decisions:

<table>
<thead>
<tr>
<th>Optimal Order Quantity</th>
<th>Optimal Service Level Inventory</th>
</tr>
</thead>
</table>

Read Outputs:

<table>
<thead>
<tr>
<th>Service Level</th>
<th>Exp. Exp. Mismatch Exp. Mismatch Cost Profit</th>
</tr>
</thead>
</table>

What is the effect of reducing demand standard deviation on mismatch cost?
Estimating Inputs in Practice:

Estimating Demand Standard Deviation:

- When it is a new product, the variation in experts’ opinions is a great predictor of demand variability.
- When it is an old product, then the historical forecast error (actual – forecast) is a great predictor of demand variability.

Estimating Marginal Costs of Shortage Cs and Excess Ce:

- Depending on the context, the basic definitions may change.
- For example, if there is a possible cost of losing a dissatisfied customer’s future business, Cs will increase. If there is sales commission, Cs will decrease.

Sport Obermeyer
Improvement Idea: Quick Response:
Reduce Leadtime → Reduce demand variability → Reduce Mismatch cost

Introduction to Operations Management
Prof. Apurva Jain
OPMGT 502

Understand the fundamental trade-off in inventory: too much vs. too little and how optimal service level resolves it. Many other contexts and decisions under uncertainty have similar structure.

Section 3 Contents

Session 11
7. Compute Inventory Performance
 □ 7.1 Newsvendor Model
 Marginal Costs of Shortage/Excess
 Optimal Service Level
 □ 7.2 Mismatch Cost Calculation
 Spreadsheet
 Sport Obermeyer Introduction

Next: Spreadsheet, Survey, Practice
7.3 Types of Stocks
7.4 Improvement Ideas

Experience Inventory Flow in a Supply chain
8. Generate Supply Chain Improvements
Examples

- Publishing, Electronics
- Overbooking in Airlines
- Blood Bank Stock
- NFL Merchandise
- Fast Fashion: Zara
- ….

Matching Supply with Demand in an Uncertain World: Newsvendor Model

iPhone X supply crunch mean you may wait till February to get one... Sep 2017

A mammoth first printing of 1.5 million copies has been ordered.
Overbooking in Airlines:
Improvement Idea: Optimize overbooking level

Blood Bank Stock:
Improvement idea: Optimize collection levels
NFL Merchandise Supply Chain

How much inventory?

Superbowl Merchandise:
Improvement idea: Increase Salvage Value

The NFL used to destroy all the loser merchandise, but thanks to a partnership with Federal Way-based World Vision it now goes to needy people all over the world.

This reduces Ce and Mismatch cost. Also increases the optimal service level.
Overproduce? Mark-Down Pricing
Improvement idea: Ask Customer for Salvage Value

Examples: Quick Response at Zara
Practicing Newsvendor Model

A publisher’s per-book publishing/delivery cost is $6; sales price is $12. Unsold books can be salvaged at $3. Demand is normally distributed with mean 6.5 and standard deviation 1.11. What is the optimal order quantity and corresponding mismatch cost? [Decimals ok.]

<table>
<thead>
<tr>
<th>Demand Average</th>
<th>Demand Std.Dev.</th>
<th>Marginal Shortage Cost Cs</th>
<th>Marginal Excess Cost Ce</th>
<th>Optimal Service level $Cs/(Cs + Quantity)</th>
<th>Optimal Order Quantity</th>
<th>Your Order Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>1.11</td>
<td>6</td>
<td>3</td>
<td>0.666667</td>
<td>6.978107</td>
<td>6.978107</td>
</tr>
</tbody>
</table>

Outputs: (performance of your order quantity)

<table>
<thead>
<tr>
<th>Service Level</th>
<th>Exp. Shortage Cost $</th>
<th>Exp. Excess Cost $</th>
<th>Mismatch Cost $</th>
<th>Exp. Profit $</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.666667</td>
<td>0.244227</td>
<td>0.722334</td>
<td>3.632362</td>
<td>35.36764</td>
</tr>
</tbody>
</table>