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Online supplement: Numerical simulations

For numerical simulations, we take the random variables σi to be logistically distributed.

The logistic distribution has the advantage that one can explicity derive the equilibrium

of the voting subgame. For simplicity, we assume that the proposer is uninformed, that

is, σ0 is constant.

The distribution functions are

F (σ|L) =
Keβσ

1 +Keβσ
,

F (σ|H) =
eβσ

1 + eβσ
.

for some positive constants β and K > 1. The associated density functions are

f (σ|L) =
Kβeβx

(1 +Keβx)2 = F (σ|L) (1 − F (σ|L))

f (σ|H) =
βeβx

(1 + eβx)2 = F (σ|H) (1 − F (σ|H)) .

We use the following ratios repeatedly:

F (σ|H)

F (σ|L)
= K−11 +Keβσ

1 + eβσ

1 − F (σ|H)

1 − F (σ|L)
=

1 +Keβσ

1 + eβσ

f (σ|H)

f (σ|L)
= K−1

(

1 +Keβσ

1 + eβσ

)2

.

Note that the likelihood ratio increases from K−1 to K.

Proposer and voter preferences

We consider a parameterized version of our debt restructuring example. In the

status quo, the voters (creditors) recover 1 in liquidation. The proposer (debtor) offers

a fraction x of future cash flows, which may either be H or L < H . There is no private

values component to either voter or proposer preferences. Thus

∆H (x) = xH − 1
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∆L (x) = xL− 1

V H (x) = (1 − x)H

V L (x) = (1 − x)L

V̄ H = V̄ L = 0.

Voting equilibrium

The equilibrium condition for the voting stage is

xH − 1

1 − xL

pH

pL

f (σ|H)

f (σ|L)

(

1 − F (σ|H)

1 − F (σ|L)

)nα−1(
F (σ|H)

F (σ|L)

)n−1−(nα−1)

= 1.

Substituting in for the distribution and density functions, and writing Q = 1+Keβσ

1+eβσ , we

have

xH − 1

1 − xL

pH

pL
K−(n−nα+1)Qn+1 = 1.

Q varies from 1 to K as σ varies from −∞ to ∞. So this has a solution provided

xH − 1

1 − xL

pH

pL
K−(n−nα+1) < 1 <

xH − 1

1 − xL

pH

pL
K−(n−nα+1)Kn+1,

i.e.,

xH − 1

1 − xL

pH

pL
∈
(

K−nα, Kn−nα+1
)

,

i.e., x ∈ (xn, x̄n), where

xn =
pLK−nα + pH

pLLK−nα + pHH

x̄n =
pLKn−nα+1 + pH

pLLKn−nα+1 + pHH

When it exists, the solution is

Q =

(

xH − 1

1 − xL

pH

pL

)− 1
n+1

K1− n
n+1

α.

Note that eβσ = Q−1
K−Q

, so that the probability that each voter votes to accept is given by

Pr (A|H) = 1 − F (σ|H) =
K −Q

K − 1
.

Pr (A|L) = 1 − F (σ|L) =
1

Q

K −Q

K − 1
.
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The probability that the offer is accepted in ω = H is then

PH
n (x) =

n
∑

j=nα

(

n

j

)

(1 − F (σ|H))j F (σ|H)n−j ,

with a similar expression for ω = L.

In the special case of unanimity (α = 1), this reduces to

PH
n (x) = (1 − F (σ|H))n =

(

K −Q

K − 1

)n

PL
n (x) =

1

Qn
PH

n (x) .

The limit acceptance probabilities (see Lemma 5) are

PH
∞ (x) =

(

xH − 1

1 − xL

pH

pL
K−1

)
K−1

1−K−1

PL
∞ (x) =

(

xH − 1

1 − xL

pH

pL
K−1

)

PH
∞ (x) .

Proposer payoff

The proposer chooses the offer x to maximize

pH (1 − x)HPH
n (x) + pL (1 − x)LPL

n (x) .

Numerical simulation

We are unable to find a convenient closed form solution for the proposer’s equilibrium

offer, or for the equilibrium acceptance probability. Figure 1 displays the result of

numerically simulating the above example for simple majority (α = 1/2) and unanimity,

for both a relatively small number for voters (n = 12) and the limiting case (n = ∞).

We use pH = pL = 1/2, K = 3 and H = 2, and a range of values for L ∈ [.5, 1.8].

As one can see, there is virtually no difference in equilibrium outcomes between the

finite and limit cases for unanimity. For the simple majority case the proposer switches

from offering xH to xL for somewhat lower values of L in the finite case (compared to the

limit case), but the qualitative relation between L and equilibrium outcomes is similar.

For both the finite and limit case, the voters prefer unanimity for small values of L, the
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Figure 1: Results of numerical simulation
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proposer prefers unanimity for large values of L, and there is an intermediate range of

values for which unanimity Pareto dominates.
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Online supplement: technical details

Proof of claim in footnote 14

Formally, we show that if n (1 − α) voters always reject, the offer is always rejected

— that is, a non-responsive rejection equilbrium is played. The proof is by contradiction:

suppose to the contary that an equilibrium exists in which n (1 − α) voters always reject,

but the offer is sometimes accepted. Given Duggan and Martinelli’s result, the nα

voters behave symetrically, and vote to accept if and only if they observe a signal above

σ∗ satisfying

∆H

(

1 − F (σ∗|H)

1 − F (σ∗|L)

)nα−1

ℓ (σ∗) + ∆L ≥ 0.

Each of the remaining n (1 − α) voters is happy to reject for all signal realizations if and

only if

∆H

(

1 − F (σ∗|H)

1 − F (σ∗|L)

)nα−1
F (σ∗|H)

F (σ∗|L)
ℓ (σ̄) + ∆L ≤ 0.

Hence

ℓ (σ̄) ≤
ℓ (σ∗)
F (σ∗|H)
F (σ∗|L)

,

which gives the required contradiction since the lefthand side is increasing by assumption,

and equals ℓ (σ̄) at σ∗ = σ̄.

Derivation of consistency bounds on belief

Conditional seeing σ0, the proposer assesses the probability of state H as

Pr (H and σ0)

Pr (σ0)
=

pHf0 (σ0|H)

pHf0 (σ0|H) + pLf0 (σ0|L)
.

Thus consistency implies that

βn (x) ∈

[

pHf0 (σ|H)

pHf0 (σ|H) + pLf0 (σ|L)
,

pHf0 (σ̄|H)

pHf0 (σ̄|H) + pLf0 (σ̄|L)

]

,

and so

βn (x)

1 − βn (x)
∈

[

pHf0 (σ|H)

pLf0 (σ|H)
,
pHf0 (σ̄|H)

pLf0 (σ̄|H)

]

=

[

pH

pL
ℓ0 (σ) ,

pH

pL
ℓ0 (σ̄)

]

.
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Proof of Lemma A-1

Rewriting, we must show that

∫ σ
f (σ̃|L) ℓ(σ̃)dσ̃
∫ σ

f (σ̃|L) dσ̃

is increasing in σ. Differentiating, we must show

f (σ|L) ℓ(σ)

∫ σ

f (σ̃|L) dσ̃ > f (σ|L)

∫ σ

f (σ̃|L) ℓ(σ̃)dσ̃,

which is immediate from MLRP. The proof that (1 − F (σ|L)) / (1 − F (σ|H)) is de-

creasing is exactly parallel; its lower bound follows from l’Hôpital’s rule.

Proof of claim in footnote 19

Lemma C-1 (Rejection equilibrium)

Fix belief b, a voting rule α > 1
2

+ 1
2n

and preferences λ. Let (xn, x̄n) be the interval

defined in Lemma 1. Then if x ≤ xn the only trembling-hand perfect equilibrium is the

non-responsive equilibrium in which each voter always rejects.

Proof : Let Z be as defined in the proof of Lemma 1. Since x ≤ xn, from the proof of

Lemma 1

b∆H (x, σ) ℓ(σ)

(

F (σ|H)

F (σ|L)

)n−nα(
1 − F (σ|H)

1 − F (σ|L)

)nα−1

+ (1 − b) ∆L (x, σ) ≤ 0

for all σ. It follows that

b∆H (x, σ̄) ℓ(σ̄)ℓ(σ̄)nα−1 + (1 − b) ∆L (x, σ̄) ≤ 0.

It then follows that for any σi,

b∆H (x, σi) ℓ(σi)ℓ(σ̄)nα−1 + (1 − b) ∆L (x, σi) ≤ 0

(for this expression could only be strictly positive if ∆H (x, σi) were strictly positive; but

then by MLRP it would be strictly positive at σi = σ̄). Finally, since ℓ(σ̄) > 1, for any

m < nα− 1,

b∆H (x, σi) ℓ(σi)ℓ(σ̄)m + (1 − b) ∆L (x, σi) < 0.
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In words, this last inequality says that voter i, having observed his own signal σi, will

reject the offer x even if he conditions on the event that m < nα−1 other voters observe

the most pro-acceptance signal σ̄. This has two implications.

First, the equilibrium in which all voters reject always is a trembling-hand perfect

equilibrium: for if all voters tremble and accept with probability ε independent of their

own signal, it remains a best response to reject the offer. This follows since it is a best

response to reject the offer given the information that m < nα− 1 voters have observed

σ̄, it is certainly a best response to reject given no information.

Second, we claim that the equilibrium in which all voters accept is not trembling-

hand perfect. Recall that voter i’s vote only matters if exactly nα− 1 other voters vote

to accept. This event only arises if at least n − nα of the n − 1 other voters tremble.

As the probability of trembles converges to zero, voter i’s best response is determined

entirely by the event in which exactly n− nα other voters tremble. But by assumption

n− nα < nα − 1, and so even if voter i infers from n− nα trembles that n− nα voters

have observed σ̄, his best response is to reject. So the equilibrium in which all creditors

accept always cannot be trembling-hand perfect.

Proof of Claim 3 in Lemma 7

Parallel to Claim 1, it suffices to show that lim sup σ∗
n < σL. Suppose to the contrary

that lim sup σ∗
n ≥ σL. So for any δ, there exists a subsequence such that σ∗

n ≥ σL − δ.

By hypothesis, there exists ε such that xn ≥ xL +ε for all n large enough. By definition,

∆L (xL, σL, λ) = 0; so for δ small enough, there exists ε̂ such that ∆L (xn, σ
∗
n, λ) > ε̂.

Moreover, ∆H (xn, σ
∗
n, λ) ≥ ∆L (xn, σ

∗
n, λ). Consequently Z (xn, σ

∗
n) > 0 for n sufficiently

large. So σ∗
n cannot be a responsive equilibrium; and since xn ≥ xn it is not a rejection

equilibrium either. The only remaining possibility is that σ∗
n is an acceptance equilibrium

— but then σ∗
n = σ, which gives a contradiction when δ is chosen small enough.
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Proof of Claim 4 in Lemma 7

Parallel to Claim 1, it suffices to show that lim sup σ∗
n < σH . Suppose to the contrary

that lim sup σ∗
n ≥ σH . So for any δ > 0, there exists a subsequence of σ∗

n such that

σ∗
n ≥ σH − δ. By hypothesis, there exists ε such that xn ≥ xH + ε for all n large

enough. By definition ∆H (xH , σH , λ) = 0; so for δ small enough, there exists ε̂ such that

∆H (xn, σ
∗
n, λ) > ε̂. Next, define

φ = min
σ∈[σH−δ,σ̄]

(1 − F (σ|H))αF (σ|H)1−α

(1 − F (σ|L))αF (σ|L)1−α

Recall that by definition F (σH |H) = 1 − α. By arguments similar to those in Claim 2,

it follows that φ > 1 for δ chosen small enough, and so

(

(1 − F (σ∗|H))αF (σ∗|H)1−α

(1 − F (σ∗|L))αF (σ∗|L)1−α

)n

≥ φn → ∞.

From Lemma A-1, the term 1−F (σ|L)
1−F (σ|H)

lies above ℓ(σ̄). By belief consistency, βn (xn)

is bounded away from zero. Consequently Z (xn, σ
∗
n) > 0 for n sufficiently large. A

contradiction then follows as in Claim 3.

Proof of Lemma A-6, Part 1b

Preliminaries: The first part of the proof consists of defining bounds which we will use

to establish uniform convergence below. Choose µ, δ1 ∈ (0, δ] such that xH +µ < xL−µ,

and for all σ0 for which W (σ0) < −ε,

pH (σ0) (1 − δ1) ∆H
0 (xH + µ, σ0) > δ1 max

ω,σ0,x
∆ω

0 (x, σ0) (C-1)

(1 − δ1)E
[

∆ω
0

(

xL +
µ

2
, σ0

)

|σ0

]

> E [∆ω
0 (xL + µ, σ0) |σ0] (C-2)

(1 − δ1)Eω

[

∆ω
0

(

xL +
µ

2
, σ0

)

|σ0

]

> pH (σ0) ∆H
0 (xH − µ, σ0) + pL (σ0) δ1∆

L
0 (xH − µ, σ0) (C-3)
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(1 − δ1)Eω

[

∆ω
0

(

xL +
µ

2
, σ0

)

|σ0

]

> (1 − δ)Eω [∆ω
0 (xL − µ, σ0) |σ0] (C-4)

To see that such a choice exists, choose µ ≤ δ small enough that

Eω

[

∆ω
0

(

xL +
µ

2
, σ0

)

|σ0

]

> pH (σ0) ∆H
0 (xH − µ, σ0)

(this is possible by W (σ0) < −ε) and

Eω

[

∆ω
0

(

xL +
µ

2
, σ0

)

|σ0

]

> (1 − δ)Eω [∆ω
0 (xL − µ, σ0) |σ0] .

Then choose δ1 small enough that (C-1), (C-2), (C-3), (C-4) hold.

Let b and b̄ respectively denote the most pro-L and pro-H beliefs possible. Fix a

realization of σ0 such that W (σ0) < −ε. Define the following offer sequences, which we

use throughout the proof:

xH+
n ≡ xH + µ, xH−

n ≡ xH − µ, , xL+
n ≡ xL +

µ

2
, xL−

n ≡ xL − µ.

By Lemma 7, PL
n

(

xL+
n , b

)

→ 1, PL
n

(

xL−
n , b̄

)

→ 0, PH
n

(

xH+
n , b

)

→ 1 and P ω
n

(

xH−
n , b̄

)

→ 0.

Thus there exists N (ε, δ) such that for n ≥ N (ε, δ), PL
n

(

xL+
n , b

)

≥ 1− δ1, P
L
n

(

xL−
n , b̄

)

≤

δ1, P
H
n

(

xH+
n , b

)

≥ 1 − δ1, and P ω
n

(

xH−
n , b̄

)

≤ δ1 for ω = L,H .

Fix σ0 such that W (σ0) ≥ ε, along with a sequence of equilibrium offers xn associated

with the realization σ0.

Part A: xn ≥ xH − µ for n ≥ N (ε, δ).

Proof: Suppose otherwise, i.e., xn < xH−µ. So PL
n (xn, b) ≤ PH

n (xn, b) ≤ PH
n

(

xH − µ, b̄
)

≤

δ1. So the proposer’s payoff from xn is bounded above by

δ1 max
ω,σ0,x

∆ω
0 (x, σ0) + Eω

[

V̄ ω
0 |σ0

]

.

Consider instead the offer xH +µ. The acceptance probability in state H is at least 1−δ1.

Since (by Assumption 5) the proposer is always better off when his offer is accepted, his

payoff from this offer is bounded below by

pH (σ0) (1 − δ1) ∆H
0 (xH + µ, σ0) + Eω

[

V̄ ω
0 |σ0

]

.
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By (C-1), this exceeds his equilibrium payoff, giving a contradiction.

Part B: |xn − xL| ≤ µ ≤ δ for n ≥ N (ε, δ).

Proof: First, suppose that xn > xL + µ. Since (by Assumption 5) the proposer is

always better off when his offer is accepted, his payoff is bounded above by

E [∆ω
0 (xL + µ, σ0) |σ0] + Eω

[

V̄ ω
0 |σ0

]

.

Consider instead the offer xL + µ

2
. The acceptance probability in state L is at least 1−δ1,

and so his payoff from this offer is bounded below by

(1 − δ1)Eω

[

∆ω
0

(

xL +
µ

2
, σ0

)

|σ0

]

+ Eω

[

V̄ ω
0 |σ0

]

. (C-5)

By (C-2), this exceeds his equilibrium payoff, giving a contradiction.

Second, suppose that xn < xL − µ. The acceptance probability in state L is at most

δ1. From Part A xn ≥ xH − µ, and so the proposer’s payoff is bounded above by

pH (σ0)∆H
0 (xH − µ, σ0) + pL (σ0) δ1∆

L
0 (xH − µ, σ0) + Eω

[

V̄ ω
0 |σ0

]

.

Consider instead the offer xL + µ

2
. The acceptance probability in state L is at least 1−δ1,

and so his payoff from this offer is bounded below by expression (C-5). By (C-3), this

exceeds his equilibrium payoff, giving a contradiction.

Part C: If W (σ0) ≤ −ε and n ≥ N (ε, δ), then PL
n (xn) ≥ 1 − δ. for any equilibrium

offer xn.

Proof: Suppose otherwise, i.e., PL
n (xn) < 1− δ. Given Part B, the proposer’s payoff is

bounded above by

(1 − δ)Eω [∆ω
0 (xL − µ, σ0) |σ0] + Eω

[

V̄ ω
0 |σ0

]

.

As above, the proposer’s payoff from the offer xL + µ

2
is bounded below by expression

(C-5). By (C-4), this exceeds his equilibrium payoff, giving a contradiction.

Proof of claim in footnotes 23 and 33

In footnote 33 we observe that there is no pure strategy separating equilibrium if the

proposer is fully informed.
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To see this, suppose to the contrary that such an equilibrium exists, i.e., that the

proposer offers x∗H when he knows ω = H and x∗L 6= x∗H when he knows ω = L. Since the

offer reveals ω, in any pure strategy equilibrium the acceptance probability associated

with each offer is either 0 or 1. It cannot be the case that both offers are accepted in

equilibrium, since the proposer would always deviate from making the higher offer. The

offer x∗L is only accepted if xL 6= ∞ and x∗L ≥ xL. So if x∗L is accepted then x∗L = xL

(since otherwise the proposer would make a lower offer). But then there can be no

equilibrium in which x∗L is accepted but x∗H is rejected, since the proposer would deviate

in state H . Finally, a similar argument implies that there can be no equilibrium in which

x∗H is accepted but x∗L is rejected.




