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Abstract

I analyze a setting in which investors sequentially encounter a potentially profitable

investment opportunity, and decide both whether to investigate its quality and whether

to exploit the opportunity. Once exploited, the opportunity is unavailable to future in-

vestors. The key friction is that an investor observes only whether the opportunity

remains available, but is ignorant about the number of investors who have already in-

vestigated the opportunity. The probability that the opportunity is exploited decreases

in the number of investors. Safe opportunities are exploited more often than risky ones,

even controlling for average profitability. Higher exploitation probabilities are generally

associated with lower observed Sharpe ratios.

∗I thank Zhiguo He and Haoxiang Zhu for helpful comments. Any errors are my own.
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...an economics professor [is] walking with a keen-eyed student across the university quad.

“Look”, says the student, pointing at the ground, “a five-pound note”. “It can’t be”, replies

the rational professor. “If it was there, somebody would have picked it up by now.”

From The Economist, October 20, 1984

1 Introduction

The joke in the epigraph is well-known and widely invoked, in large part because it accurately

conveys the economic insight that profitable opportunities tend to be exploited. But the

joke also conveys a potentially important countervailing force that limits such exploitation,

namely that economic agents—henceforth, investors—will be unwilling to incur costs to

examine a potentially attractive opportunity on the grounds that if the opportunity were

indeed profitable then someone else would already have exploited it (“picked it up”).

In this short paper I analyze this setting. Specifically, investors sequentially encounter a

potentially profitable opportunity. Each investor first decides whether to pay an investigation

cost to observe a noisy signal about the opportunity’s profitability; and then decides whether

or not to exploit the opportunity. Once exploited, the opportunity is unavailable to future

investors. Crucially, each investor observes only whether or not the opportunity is available,

but is ignorant about how many other investors have already examined the opportunity and

decided not to exploit it.

In equilibrium, there is a strictly positive probability that all investors pass on the oppor-

tunity. This probability increases in the number of potential investors. Consequently, even

as the investor pool grows arbitrarily large, the probability that the opportunity remains

unexploited remains strictly positive.

Opportunities that generate a high payoff if they are good, but have small probabilities of

being good, are especially affected. Consequently, the set of opportunities that are exploited

is tilted towards “safe” prospects relative to the underlying pool of opportunities. After con-

trolling for the return on bad opportunities, higher exploitation probabilities are associated

with lower observed Sharpe ratios, provided that investigation produces relatively accurate

information.

The analysis gives a parsimonious explanation for why profitable trading opportunities

persist even in the presence of large quantities of arbitrage capital.1 More generally, the

analysis generates an endogenous limit to innovation, especially of high-risk high-reward

projects.

1See the large literature in financial economics on limits to arbitrage, surveyed by, for example, Gromb
and Vayanos (2010).
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I am unaware of a previous analysis of this setting. Perhaps closest is Zhu (2012)’s analysis

of quotes offered by buyers in an OTC market under the assumption that a seller contacts

buyers in a random and unobserved order. If buyers share a common valuation and receive

exogenous noisy signals about this common value then in equilibrium there is a positive

probability of no trade even as the number of buyers grows arbitrarily large. Different from

in Zhu’s analysis, in my setting agents observe information only if they first pay a cost,

and in equilibrium many agents remain uninformed; consequently, endogenous acquisition of

information potentially changes the adverse selection problem faced by buyers.2 Separately,

and again different from Zhu, I derive comparative statics for how equilibrium exploitation

probabilities vary with the number of traders and with project characteristics. Papers such as

Sherman and Willett (1967) and Elberfeld and Wolfsetter (1999) study Bertrand competition

with a pre-stage in which firms simultaneously decided whether or not to pay an entry cost,

and show that entry is decreasing in the potential number of firms. Unlike in the current

setting, there is no learning from the fact that the opportunity still exists. Herrera and

Hörner (2013) and Monzón and Rapp (2014) study social learning settings in which agents

sequentially make a binary decision, as in Banerjee (1992) and Bikhchandani et al (1992) and

a large subsequent literature, but in which individual agents lack information about their

place in the sequence. I share this last assumption, but the setting and results are significantly

different. At a high level, the paradox underlying the sidewalk-dollar joke is related to

the topic examined in Grossman and Stiglitz (1980), viz., if market prices convey accurate

information then no investor acquires information, but if no investor acquires information

then market prices don’t convey information.

2 Model

An investment opportunity has quality ω ∈ {g(ood), b(ad)} with probability pω. A total of

n ≥ 2 risk-neutral investors sequentially encounter the opportunity, in random order. When

an investor i encounters the opportunity, it is either unexploited, or already-exploited. If

it is already-exploited then investor i can’t do anything. If the opportunity is unexploited,

investor i chooses (I) whether or not to pay an investigation cost κ > 0 to privately observe

a signal σi of the opportunity’s quality, and (II) whether to exploit the opportunity, yielding

a payoff of πω, where πg > πb.

The critical assumption is that when an investor i encounters the opportunity he/she

doesn’t know how many other investors have already encountered the opportunity (and by

extension, doesn’t know whether other investors have already investigated). Instead, the

2In subsection 4.3 I analyze the effects of exogenous signal acquisition in my setting.
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only information available to the investor is whether the opportunity remains unexploited.3

Conditional on the opportunity’s quality ω, individual investors’ signals σi are indepen-

dent. The signal is binary, with σi ∈ {g, b} and

Pr (σi = g|ω = g) = 1− εg

Pr (σi = b|ω = b) = 1− εb.

That is, εω is the signal’s error rate given project quality ω.

Throughout, I assume that unconditionally exploiting the project is unprofitable,

pgπg + pbπb < 0, (1)

but that the signal is accurate enough that, for a single investor acting in isolation, the

strategy of exploiting following a good signal yields a payoff exceeding the investigation cost,

pg (1− εg) πg + pbεbπb > κ. (2)

The combination of (1) and (2) implies

εg + εb < 1, (3)

which implies that an investor’s posterior assessment that the opportunity is good is increased

by observing a good signal. For use throughout, define

E ≡
εb

1− εg
< 1.

In the main text I generally assume strictly positive error rates εω > 0. But the setting

remains well-behaved if εg = 0 and/or εb = 0; see Appendix B.

3In particular, I assume that calendar time doesn’t provide an individual investor with useful information
about the number of other investors who have already encountered the opportunity. Formally, one can think
of the opportunity as arriving at Poisson rate λ, and then the n investors sequentially encountering the
probability in random order. As λ → 0, calendar time grows arbitrarily uninformative.
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3 Analysis

3.1 Equilibrium

I characterize the symmetric equilibrium. Let α be the probability with which each investor

investigates the opportunity if it remains unexploited. (As standard: Similar results emerge

in a related setting in which each investor’s investigation cost is independently drawn from

some common distribution, and each investor follows a cutoff strategy in this cost.)

As a preliminary step: assumptions (1) and (2) imply that, in equilibrium, investors

exploit an (unexploited) opportunity if and only they investigate and see a good signal.

Lemma 1 In any equilibrium, the investigation probability α is strictly positive and an in-

vestor exploits the opportunity after receiving a good signal and does not exploit after either

receiving a bad signal, or absent investigation.

Given Lemma 4, an investor’s expected payoff from investigating (gross of investigation

cost κ) is

v (α) ≡
∑

ω=g,b

πω Pr (ω|σi = g, opportunity remains) Pr (σi = g|opportunity remains) . (4)

That is: An investor observes that the opportunity remains available, and consequently, that

an uncertain number of previous investors having potentially investigated and drawn bad

signals. Based on this, the investor assesses the probability of observing a signal σi = g; and

then further assesses the probability that the opportunity is good (ω = g) conditional on

the signal σi being good and an uncertain number of previous investors having potentially

investigated and drawn signals b.

The payoff v (α) can be explicitly calculated via repeated application of Bayes’ rule (see

Appendix C). But it is considerably easier to denote by Qω the joint probability that one of

the n investors exploits the probability if the opportunity’s quality is ω,

Qω (α) ≡ Pr (opportunity exploited|ω)

and then note that, by symmetry,

nPr (opportunity remains)αv (α) =
∑

ω=g,b

Qω (α) pωπω. (5)

That is: the expected payoff of each investor is the probability of encountering an unexploited

opportunity times the probability of investigating the opportunity (α) times the expected
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payoff from doing so (v). The sum of these expected payoffs across investors must equal the

aggregate payoff across all investors, which is given by the right hand side (RHS) of (5).

To evaluate (5), note that the opportunity is unexploited only if every investor in the

sequence of n investors doesn’t exploit, which occurs with probability

1−Qω (α) = Pr (opportunity unexploited|ω) = (1− Pr (σi = g|ω)α)n . (6)

Moreover, and similarly,

Pr (opportunity remains)

=
1

n

n
∑

k=1

∑

ω=g,b

pω Pr
(

opportunity remains|investor kth in line,ω
)

=
1

n

∑

ω=g,b

n
∑

k=1

pω (1− Pr (σi = g|ω)α)k→1

=
1

n

∑

ω=g,b

pω
1− (1− Pr (σi = g|ω)α)n

Pr (σi = g|ω)α

=
∑

ω=g,b

Qω (α) pω
Pr (σi = g|ω)nα

. (7)

Hence for α ∈ (0, 1],

v (α) =

∑

ω=g,b Qω (α) pωπω
∑

ω=g,b
Qω(α)pω

Pr(σi=g|ω)

=

Qg(α)
Qb(α)

pgπg + pbπb
Qg(α)
Qb(α)

pg
1→εg

+ pb
εb

. (8)

As (8) makes clear, they key term is the ratio of exploitation probabilities Qg

Qb
. Indeed, this

ratio is a sufficient statistic for equilibrium characterization.

For a low individual investigation probability α the most likely case is a single investiga-

tion, and so the ratio Qg

Qb
simply coincides with the ratio of the conditional probabilities of

seeing a good signal, namely 1→εg
εb

> 1 (by (3)). In contrast, if the individual investigation

probability α is high then it is likely that some investor investigates and draws a good signal,

even in the state ω = b, and so Qg ≈ Qb ≈ 1. The following result formalizes and generalizes

these observations:

Lemma 2 For n ≥ 2, the ratio Qg

Qb
approaches 1→εg

εb
= 1

E as α → 0, equals
1→εng

1→(1→εb)
n at α = 1,

and is monotonically decreasing in α ∈ (0, 1).

Since πg > πb the RHS of (8) is increasing in the ratio Qg

Qb
,4 and hence (by Lemma 2)

4The derivative of the RHS of with respect to Qg

Qb
has the same sign as πg − Eπb.
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v (α) is decreasing in α. In words: As others’ investigation probability α increases, the

observation that the opportunity remains available becomes an increasingly negative signal

of the opportunity’s quality ω, so that the expected payoff from investigation v decreases.

By Lemma 2 and assumption (2)

v (0) = lim
α→0

v (α) = (1− εg) pgπg + εbpbπb > κ.

In words: if no-one else investigates (α = 0) then it is strictly profitable to investigate.

Consequently:

Lemma 3 There is a unique (symmetric) equilibrium given either by the solution to

v (α) = κ,

or by α = 1 if v (1) ≥ κ. The equilibrium is interior for all n sufficiently large.5

3.2 Comparative statics in the number of investors n

As the number of investors n increases, the signal that the opportunity is still available

conveys increasingly negative information. Consequently, as n increases, the probability

that any individual investor investigates falls.

The effect of the number of investors on the equilibrium exploitation probabilities, hence-

forth Q∗
g and Q∗

b , thus depends on the balance between more potential investors, and each

investor investigating less. As an easy example: As n increases from 1 to 2, the investigation

probability generally falls from α1 = 1 to α2 < 1; consequently, if εg = 0, the exploitation

probability Q∗
g falls from 1 to α2 + (1− α2)α2, even though the number of investors has

increased. This observation generalizes to cover Q∗
b as well as Q∗

g, and arbitrary error rates

εω and investor population n:

Proposition 1 The equilibrium exploitation probabilities Q∗
g and Q∗

b are decreasing in the

number of investors n.

An immediate consequence of Proposition 1 is:

Corollary 1 Even as the number of investors n grows arbitrarily large the equilibrium ex-

ploitation probabilities Q∗
g and Q∗

b remain bounded below 1.

5This follows from Lemma 2 and assumption (1).
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Indeed, the limiting equilibrium values of Q∗
g and Q∗

b as n grows large can be straightfor-

wardly characterized using the equilibrium condition

Qg

Qb
pgπg + pbπb

Qg

Qb

pg
1→εg

+ pb
εb

= κ (9)

and the fact that for any fixed value of Qg ∈ (0, 1),6

1− lim
n→∞

Qb = (1−Qg)
E . (10)

3.3 Comparative statics in the ratio of good to bad opportunities

As the ratio of good to bad opportunities pg
pb

increases, an investor who observes that an

opportunity remains unexploited attaches a higher probability to the explanation that no

other investor has investigated the opportunity, and attaches a lower probability to the

opportunity remaining available because it is bad, and other investors having observed bad

signals. Consequently, an investor updates less from the observation that the opportunity

remains available. This increases an investor’s willingness to investigate, thereby increasing

the equilibrium probability of exploitation.

An increase in pg
pb

also has the direct effect of increasing expected project profitability,

pushing in the same direction. But even if πg and πb are adjusted so as to leave expected

project profitability unchanged it remains the case that equilibrium exploitation probabilities

rise in pg
pb

.

Proposition 2 If the ratio of good to bad opportunities pg
pb

weakly increases and expected

profitability Q∗
gpgπg +Q∗

bpbπb of the opportunity weakly increases (holding Q∗
g and Q∗

b fixed),

with at least one increase strict, then the equilibrium exploitation probabilities Q∗
g and Q∗

b

strictly increase.

In words: Low-risk opportunities are more likely to be exploited than high-risk ones, even

after controlling for expected profitability.

3.4 The Sharpe ratio of exploited opportunities

The opportunity is exploited with probability Q∗
gpg +Q∗

bpb, and conditional on exploitation

yields πg with probability
Q∗

gpg

Q∗

gpg+Qbpb
and πb with probability

Q∗

b
pb

Q∗

gpg+Q∗

b
pb

. Hence the expected

6See appendix for derivation of (10).
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return and standard deviation of returns are, respectively

Q∗
gpgπg +Q∗

bpbπb
Q∗

gpg +Q∗
bpb

and
√

Q∗
gpgQ

∗
bpb

Q∗
gpg +Q∗

bpb
(πg − πb) ,

implying the associated Sharpe ratio is





(

Q∗
g

Q∗
b

pg
pb

)
1
2

πg +

(

Q∗
g

Q∗
b

pg
pb

)→ 1
2

πb



 (πg − πb)
→1 . (11)

Holding exploitation probabilities Q∗
ω fixed, the Sharpe ratio (11) is increasing in each of

pg and πg,7 as one would expect. However, increases in pg and πg also raise exploitation

probabilities (Proposition 2) and hence decrease the ratio
Q∗

g

Q∗

b
(Lemma 2), pushing the Sharpe

ratio down. I next show that in a wide range of cases the latter effect is at least as strong as

the former, so that the net effect is that better opportunities are associated with (weakly)

lower equilibrium Sharpe ratios.

From the equilibrium condition (9) it is immediate that the equilibrium value of
Q∗

g

Q∗

b

pg
pb

is

invariant to changes in the ratio pg
pb

; consequently, the Sharpe ratio is likewise invariant to

changes in pg
pb

. Increases to πg − πb (holding πb fixed) and to πb (holding πg − πb) generate

conflicting effects. In both cases
Q∗

g

Q∗

b

falls (Proposition 2), pushing the Sharpe ratio down;

but there are also direct effects that potentially offset this effect. The following result gives

simple sufficient conditions for the overall sign:

Proposition 3 The Sharpe ratio (11) is invariant to changes in pg
pb

; is increasing in πg −πb

(holding πb constant) if E < 1
9 ;

8 and is decreasing in πb (holding πg − πb fixed) if pg
pb

≤ 1.

In many cases, one can think of exploitation of the opportunity as entailing some invest-

ment k. Bad opportunities yield nothing, while good opportunities yield a gross expected

return R; hence πb = −k and πg = (R− 1) k. In this case, the combination of Propositions

2 and 3 delivers:

7For any positive constant a, the derivative of aπg+a−1πb

πg−πb
with respect to πg has the same sign as

a (πg − πb)−
(

aπg + a−1πb

)

= −
(

a+ a−1
)

πb,

which is positive by (1).
8In the case of state-invariant error rates εb = εg, the condition E < 1

9
corresponds to ε < 1/10.
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Corollary 2 Controlling for the required investment k, if E < 1
9 then the equilibrium prob-

ability that an opportunity is exploited is negatively correlated with its equilibrium Sharpe

ratio.

4 Comparisons to benchmark cases

4.1 Investors know their place in the sequence

A first benchmark is the case in which investors know their place in the sequence. The

equilibrium outcome is almost immediate: By assumption (2) the first investor investigates

the opportunity, and exploits if a good signal is observed. If the opportunity remains available

then investor i > 1 similarly investigates if the expected payoff form doing so exceeds the

investigation cost κ,

(1− εg) Pr (ω = g|σ1 = . . . = σi→1 = b) πg + εb Pr (ω = b|σ1 = . . . = σi→1 = b) πb ≥ κ.

Consequently, the first m ≥ 1 investors investigate if the opportunity is available, while

no agent i > m investigates. Investigations cease because the information-cascade effect

(Banerjee 1992 and Bikhchandani et al 1992) means that after a sequence of bad signals,

which can be inferred from the opportunity remaining available, an investor would ignore

even good signal, and so prefers to simply the save the cost of an investigation and do

nothing.

Evaluating,

Pr (ω = g|σ1 = . . . = σi→1 = b) =
pgεi→1

g

pgεi→1
g + pb (1− εb)

i→1

and so the equilibrium m is the largest m such that

(1− εg) εm→1
g pgπg + εb (1− εb)

m→1 pbπb

(1− εg) εm→1
g

pg
1→εg

+ εb (1− εb)
m→1 pb

εb

≥ κ.

Equilibrium exploitation probabilities are then

Q̃g = 1− εmg

Q̃b = 1− (1− εb)
m .

The comparison of investor welfare relative to the case in which investors don’t know their
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place in the sequence is immediate from the fact that, in this case, each investor has a zero

expected payoff once investigation costs are accounted for:

Corollary 3 Let n be sufficiently large that the equilibrium in the unknown-place-in-sequence

is interior. Investor welfare is strictly raised if investors observe their place in the sequence.

While the welfare comparison is straightforward, the comparison of exploitation proba-

bilities is ambiguous.

For conciseness, for the remainder of this subsection I focus on the leading case in which

the signal error rate is independent of the opportunity’s quality ω, i.e.,

εg = εb = ε. (12)

In this case, only the first investor investigates (m = 1); and either that investor observes

a positive signal and exploits the opportunity, or observes a negative signal and no future

investor finds it worthwhile to investigate. Exploitation probabilities are simply

Q̃g = 1− ε and Q̃b = ε.

The reason is that, under (12), observing a negative signal and then a positive signal leaves

an investor with posterior beliefs that match the prior belief pg, which by assumption (1)

leads to no-investment.

On the one hand, if the common error rate ε is sufficiently small, the probability that a

good project is exploited is raised if investors know their place in the sequence:

Lemma 4 If εg = εb = ε is sufficiently small and n is sufficiently large then

Q̃b < Q∗
g < Q̃g.

Moreover, Q̃b < Q∗
b if and only if

(1− exp (−1)) pg
(1− exp (−1)) pg + pb

πg > κ, (13)

which holds if a single investor’s return to investigation, pgπg
κ

, is sufficiently large.

The ordering of exploitation probabilities in Lemma 4 isn’t universal, as illustrated in

the following example:
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Example: Let pg = .2, πg = 1, 000, πb = −300, κ = 6, εg = εb = .4. If investors know

their place in the sequence then Q̃g = .6 and Q̃b = .4. But if investors don’t know their place

in the sequence then the equilibrium as n → ∞ is Q∗
g → .691 > Q̃g and Q∗

b → .543 > Q̃b.9

In the example, if investors know their place in the sequence then, as discussed, only

the first investor investigates; and because the error rate is high (εg = .4) the exploitation

probability is low. In contrast, if investors don’t know their place in the sequence then the

expected number of investigations rises, raising the exploitation probability.

Lemma 4 identifies conditions under which investors knowing their place in the sequence

leads to better exploitation outcomes, in the sense that good opportunities are more likely

to be exploited and worse projects are less likely to be exploited, relative to the case of

unknown-place-in-sequence. This begs the question of whether the reverse is possible, viz.,

are there circumstances under which investors knowing their place in the sequence leads to

unambiguously worse exploitation outcomes? The answer is negative:

Corollary 4 If Q∗
g > Q̃g then Q∗

b > Q̃b .

Corollary 4 is immediate from the fact that (Lemma 2)

Q∗
g

Q∗
b

<
1− ε

ε
=

Q̃g

Q̃b

.

4.2 Investors make investigation decisions simultaneously

A second benchmark is that in which all investors make investigation decisions simulta-

neously, without the opportunity to observe whether or not the opportunity still exists.

Equivalently, this benchmark corresponds to investors committing to an investigation strat-

egy before the game begins. If multiple investors investigate and then attempt to exploit

the opportunity is randomly allocated to one of them.Note that this benchmark is closely

related to previous analysis of Bertrand competition preceded by a costly entry decision (see

references in introduction).

Let v̂ (α) denote an investor’s expected payoff (gross of investigation costs) from investi-

gation if all investors investigate with probability α. By the analogue of (5),

nαv̂ (α) =
∑

ω=g,b

Qω (α) pωπω, (14)

where the exploitation probabilities Qg (ω) and Qb (ω) are again given by (6).

9Moreover, by Proposition 1 the equilibrium exploitation probabilities Q∗

g and Q∗

b are larger for smaller
values of n.

11



When investors move sequentially they draw negative inferences from seeing that the op-

portunity remains available. This observation might suggest that exploitation probabilities

in the simultaneous-move game are higher. In fact, the reverse is the case, and exploita-

tion probabilities are lower. Formally, denote by Q̂g and Q̂b the equilibrium exploitation

probabilities in the simultaneous-move game:

Lemma 5 If n is sufficiently large that an interior equilibrium exists in the simultaneous-

move game then Q̂g < Q∗
g and Q̂b < Q∗

b.

The economic force behind Lemma 5 is as follows. Consider the commitment interpre-

tation of the simultaneous-move game: each investor decides on an investigation probability

before the game begins, and then the investors investigate and choose whether to exploit in

a randomly determined order. When it is an individual investor’s turn to move, there are

two possibilities: either (i) the opportunity remains available, or (ii) it is already exploited.

Case (i) is exactly the situation that arises in the main sequential-move analysis; but case

(ii) is strictly worse for an investor, since in this case the investigation cost κ yields zero

benefit, but the investor is committed to investigate with probability α. Consequently,

v̂ (α) < v (α) , (15)

which indeed can be seen formally from the comparison of (5) and (14). It follows from

(15) that the equilibrium investigation probability is lower in the simultaneous-move setting,

yielding Lemma 5 (see appendix for details).

While exploitation probabilities are lower in the simultaneous-move game than in the

main sequential-move analysis, investor welfare is exactly the same (and equals zero) in both

cases, provided only that n is large enough to deliver an interior equilibrium in both cases.

It is worth highlighting that the ratio of good to bad opportunities, pg
pb

, plays a different

role in the sequential- and simultaneous-move games. This is easiest seen by considering

a reduction in pg
pb

that is accompanied by changes to πg and πb that leave pgπg and pbπb

unchanged. In the sequential-move game this change lowers equilibrium exploitation proba-

bilities (Proposition 2). Economically, the smaller ratio of good to bad opportunities leads to

more negative investor inferences from the observation that the opportunity remains avail-

able. In contrast, in the simultaneous-move game this change leaves exploitation probabilities

unaffected.
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4.3 Exogenous signals

A third benchmark is the case in which acquisition of signals σi is exogenous. Specifically:

Exactly as in the baseline analysis, investors sequentially encounter the opportunity in ran-

dom order. Different from the baseline: upon encountering the opportunity, an investor i

immediately observes a signal σi of the opportunity’s quality. The investor then decides

whether to pay a cost κ̌ in order to exploit the opportunity. Exactly as in the benchmark

case of endogenous signal acquisition, in equilibrium an investor only exploits the opportu-

nity following a good signal. The fact that the cost κ̌ is paid only after observing the signal

generates a mechanical advantage to an investor in the exogenous-signal case relative to the

endogenous-signal case. In order to avoid this mechanical difference between the cases I

assume

κ̌
∑

ω=g,b

pω Pr (σi = g|ω) = κ, (16)

i.e., the expected cost of exploitation for a single investor is equal across the exogenous- and

endogenous-signal settings.

An important first step is to note that if the number of investors n is sufficiently large

then it cannot be an equilibrium for an investor to exploit with probability 1 after observing

a good signal. The reason is that, in this case, the observation that the opportunity remains

available would indicate that all previous investors have observed a bad signal, and this

information would overwhelm an investor’s single good signal. Accordingly, the equilibrium

must take the form of: each investor who observes a good signal exploits the opportunity

with probability γ ∈ (0, 1). I focus on the case of n sufficiently large for the remainder of

the discussion.

Analogous to (4), define v̌ (γ) as the expected payoff of an investor who observes a good

signal, gross of exploitation cost κ̌. Note that the probability that an opportunity of quality

ω is exploited by some investor is

1− (1− Pr (σi = g|ω)γ)n = Qω (γ) .

Consequently, the expected payoff v̌ (γ) is given by an analogous formula to (5):

n





∑

ω=g,b

pω Pr (opportunity remains|ω)Pr (σi = g|ω)



 γv̌ (γ) =
∑

ω=g,b

Qω (γ) pωπω.
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The same steps as in (7) yield

Pr (opportunity remains|ω) =
Qω (γ)

Pr (σi = g|ω)nγ
,

hence

v̌ (γ) =

Qg(γ)
Qb(γ)

pgπg + pbπb
Qg(γ)
Qb(γ)

pg + pb
=

Qg(γ)
Qb(γ)

pg
1→εg

+ pb
εb

Qg(γ)
Qb(γ)

pg + pb
v (γ) > v (γ) . (17)

As in baseline analysis, Lemma 2 implies that v̌ is decreasing in γ, generalizing the above

observation that if projects with good signals are exploited with high probability then the

observation that the opportunity remains available conveys negative information. The in-

equality in (17) reflects the advantage that an investor enjoys in the exogenous-signal case

of choosing whether to pay the exploitation cost only after seeing the signal realization.

More interestingly, the advantage that an investor derives from paying the exploitation

cost only after seeing the signal exceeds the increase in investigation costs embodied in (16).

Consequently, the equilibrium exploitation probability is higher in the case of exogenous

signals than in the endogenous signal baseline:

Lemma 6 If n is sufficiently large that the equilibrium of the exogenous-signal game is

interior then Q̌g > Q∗
g and Q̌b > Q∗

b .

The intuition for Lemma 6 is that (16) scales up the cost κ using the prior distribution

of project quality (pg, pb). In contrast, in equilibrium an investor faces an adversely selected

pool of projects, making the ability to defer paying the exploitation cost more valuable than

implied under the prior distribution.

5 Summary

I analyze a setting in which investors sequentially encounter a potentially profitable invest-

ment opportunity, and decide both whether to investigate its quality and whether to exploit

the opportunity. Once exploited, the opportunity is unavailable to future investors. The

key friction is that an investor observes only whether the opportunity remains available,

but is ignorant about the number of investors who have already investigated the opportu-

nity. The probability that the opportunity is exploited decreases in the number of investors.

Safe opportunities are exploited more often than risky ones, even controlling for average

profitability. Higher exploitation probabilities are generally associated with lower observed

Sharpe ratios.
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A Proofs

Proof of Lemma 1: First, α = 0 cannot be an equilibrium, as follows. In this case, no

investigation occurs, and the observation that the opportunity remains available conveys no

information, so every investor who encounters the opportunity believes the probability that

the opportunity is good is pg. But then assumption (2) implies that an individual investor

would gain by deviating and investigating.

For the remainder of the proof, denote the exploitation probabilities after a good signal,

no signal, and a bad signal by βg, β0, βb. Note that βg ≥ β0 ≥ βb, with βg = β0 = 1 if

βb ∈ (0, 1) and βg = 1 and βb = 0 if β0 ∈ (0, 1) and β0 = βb = 0 if βg < 1. Note first that

α > 0 and βg = 0 cannot be an equilibrium, since in this case an investor would do better

by avoiding the investigation cost κ.

Second, α > 0 and βb = 1 cannot be an equilibrium, as follows. In this case, no updating

occurs, so every investor who encounters the opportunity believes the probability that the

15



opportunity is good is pg. But then assumption (1) implies that β0 = 0, in turn implying

βb = 0, a contradiction.

Third, α > 0 and βg < 1 cannot be an equilibrium, since in this case an investor is at best

indifferent between exploiting and doing nothing after observing a signal g, and so would do

better by deviating to no-investigation and avoiding the investigation cost κ.

Fourth, α > 0 and βb ∈ (0, 1) cannot be an equilibrium, as follows. From above, βg = 1.

So observing that the opportunity remains available leads an investor to revise beliefs about

project quality downwards; and seeing a bad signal leads to a further downwards revision.

Then (1) implies that βb = 0.

Fifth, and finally, a similar argument implies that α > 0 and β0 > 0 cannot be an

equilibrium.

Combined, these observations imply that in any equilibrium α > 0, βg = 1 and β0 =

βb = 0, completing the proof.

Proof of Lemma 2: By l’Hopital’s rule, as α→ 0

Qg

Qb

→
1− εg
εb

=
1

E
> 1.

Evaluation of Qg

Qb
at α = 1 is immediate. The remainder of the proof establishes that Qg

Qb
is

monotonically decreasing in α ∈ (0, 1).Write A = 1 − εg and B = εb, and note that B < A.

I establish that

1− (1−Aα)n

1− (1−Bα)n

is decreasing in α ∈(0, 1), i.e., that

A (1−Aα)n→1 (1− (1− Bα)n) < B (1− Bα)n→1 (1− (1−Aα)n) ,

or equivalently,
A

B

(1−Aα)n→1

(1−Bα)n→1 <
1− (1−Aα)n

1− (1−Bα)n
.

This inequality holds with equality at n = 1. Consequently, it suffices to show that for any

n ≥ 1,

1− Aα

1− Bα
<

1→(1→Aα)n+1

1→(1→Aα)n

1→(1→Bα)n+1

1→(1→Bα)n

.

Write xA = 1 − Aα and xB = 1− Bα, and note 0 < xA < xB < 1. The above inequality is

16



equivalent to
x→1
B − 1

1− xn
B

<
x→1
A − 1

1− xn
A

.

Hence it suffices to show that
x→1 − 1

1− xn

is decreasing in x ∈ (0, 1), i.e., that

−x→2 (1− xn) + nxn→1
(

x→1 − 1
)

< 0,

or equivalently,

−1 + (n + 1)xn − nxn+1 < 0.

The LHS equals zero at x = 1, and the derivative of LHS with respect to x is

n (n + 1)xn→1 (1− x) > 0,

thereby establishing the required inequality and completing the proof.

Lemma A-1 The relation between Qb and Qg is given by

Qb = 1−
(

1− E
(

1− (1−Qg)
1
n

))n
(A-1)

Qg = 1−
(

1− E→1
(

1− (1−Qb)
1
n

))

.n (A-2)

For n ≥ 2: Holding Qg fixed, Qb is increasing in n; and holding Qb fixed, Qg is decreasing

in n.

Proof of Lemma A-1: Equation (A-1) follows straightforwardly from 1 − (1− εg)α =

(1−Qg)
1
n and α = 1→(1→Qg)

1
n

1→εg
. Similarly, (A-2) follows straightforwardly from 1 − εbα =

(1−Qb)
1
n and α = 1→(1→Qb)

1
n

εb
.

Rearranging (A-1) gives

ln (1−Qb) = n ln
(

1− E
(

1− (1−Qg)
1
n

))

. (A-3)

I show that the RHS of (A-3) is decreasing in n, i.e.,

ln
(

1− E
(

1− (1−Qg)
1
n

))

+
(

−
1

n2

)

n
E · ln (1−Qg) · (1−Qg)

1
n

1− E
(

1− (1−Qg)
1

n

) < 0, (A-4)
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which is equivalent to

(

1− E
(

1− (1−Qg)
1
n

))

ln
(

1− E
(

1− (1−Qg)
1
n

))

< E · (1−Qg)
1
n · ln (1−Qg)

1
n .

Hence it suffices to show that, for any x ∈ (0, 1),

(1− E (1− x)) ln (1− E (1− x)) < Ex ln x.

This inequality holds with equality at E = 0, 1. The RHS is linear in E . Hence it suffices to

show that the LHS is convex in E , which is indeed the case since its derivative with respect

to E is

− (1− x) ln (1− E (1− x))− (1− x) ,

which is increasing in E . This establishes (A-4).

Rearranging (A-2) gives

ln (1−Qg) = n ln
(

1− E→1
(

1− (1−Qb)
1
n

))

. (A-5)

I show that the RHS is increasing in n, i.e.,

ln
(

1− E→1
(

1− (1−Qb)
1
n

))

+
(

−
1

n2

)

n
E→1 · ln (1−Qb) · (1−Qb)

1
n

1− E→1
(

1− (1−Qb)
1
n

) > 0, (A-6)

which is equivalent to

(

1− E→1
(

1− (1−Qb)
1
n

))

ln
(

1− E→1
(

1− (1−Qb)
1
n

))

> E→1 · (1−Qb)
1
n · ln (1−Qb)

1
n .

Hence it suffices to show that, for any x ∈ (0, 1),

(

1− E→1 (1− x)
)

ln
(

1− E→1 (1− x)
)

> E→1x lnx.

This inequality holds with equality at E→1 = 0, 1. The RHS is linear in E→1. Hence it suffices

to show that the LHS is convex in E→1, which is established in the first part of the proof.

This establishes (A-4) and completes the proof.

Proof of Proposition 1: The equilibrium value of Qg

Qb
is independent of n. Consider the

ratio Qg

Qb
as a function of Qg. By Lemma 2, it is a decreasing function; and by Lemma A-1 the

18



function decreases as n increases. It follows that the equilibrium value of Qg falls. Similarly,

consider the ratio Qg

Qb
as a function of Qb. Again by Lemma 2, it is a decreasing function;

and by Lemma A-1 the function decreases as n increases. It follows that the equilibrium

value of Qb falls, completing the proof.

Derivation of (10): Fix Qg. From (A-1),

1−Qb =
(

1− E
(

1− (1−Qg)
1
n

))n
= exp







ln
(

1− E
(

1− (1−Qg)
1

n

))

1
n






.

Note that

∂ ln
(

1− E
(

1− (1−Qg)
1
n

))

∂
(

1
n

) =
E ln (1−Qg) · (1−Qg)

1
n

(

1− E
(

1− (1−Qg)
1
n

)) → E ln (1−Qg) as n → ∞.

So by l’Hopital’s rule, as n → ∞,

1−Qb → (1−Qg)
E .

Proof of Proposition 2: Denote ψ = Qg

Qb
, and denote by ψ0 the value of ψ prior to any

parameter changes. The equilibrium condition is

εb
ψpgπg + pbπb
ψpgE + pb

= κ. (A-7)

If pg remains unchanged and πg and/or πb increase then it is immediate that ψ decreases

and hence (by 2) that α, Qg and Qb all increase.

Next, consider the case in which pg increases. From (A-7), and using pb = 1− pb,

(

∂ψ

∂pg
pgπg +

∂ (ψ0pgπg + pbπb)

∂pg

)

(ψ0Epg + pb)−

(

∂ψ

∂pg
Epg + ψE − 1

)

(ψ0pgπg + pbπb) = 0,

i.e.,

∂ψ

∂pg
=

(ψE − 1) (ψ0pgπg + pbπb)−
∂(ψ0pgπg+pbπb)

∂pg
(ψ0Epg + pb)

pgπg (ψ0Epg + pb)− Epg (ψ0pgπg + pbπb)

=
(ψE − 1) (ψ0pgπg + pbπb)−

∂(ψ0pgπg+pbπb)
∂pg

(ψ0Epg + pb)

pgpbπg − Epgpbπb
.

Note that ψE < 1 by Lemma 2. Moreover, the equilibrium condition implies ψ0pgπg+pbπb >
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0. Hence if ∂(ψ0pgπg+pbπb)
∂pg

≥ 0 then ∂ψ
∂pg

< 0, implying (by Lemma 2) that α, Qg and Qb are

all higher, completing the proof.

For reference, note that if both πg and πb are constant then.

∂ψ

∂pg
=

(ψE − 1) (ψpgπg + pbπb)− (ψπg − πb) (ψEpg + pb)

pgpbπg − Epgpbπb

=
ψEpbπb − ψpgπg − (ψpbπg − ψEpgπb)

pgpbπg − Epgpbπb

=
ψ (Eπb − πg)

pgpbπg − Epgpbπb
= −

ψ

pgpb
.

Proof of Proposition 3: Denote φ = Qgpg
Qbpb

and πg = ∆+ πb. The equilibrium condition is

εb
φπg + πb
Eφ+ 1

= εb
φ (∆ + πb) + πb

Eφ+ 1
= κ.

For use below, note that certainly

φπg + πb > 0. (A-8)

Differentiating with respect πg yields

(

∂φ

∂πg
πg + φ

)

(Eφ+ 1)− (φπg + πb) E
∂φ

∂πg
= 0,

and hence
∂φ

∂πg
= −

φ (Eφ+ 1)

πg (Eφ+ 1)− (φπg + πb) E
= −

φ (Eφ+ 1)

πg − Eπb
.

Similarly, differentiating with respect to πb (holding ∆ = πg − πb fixed) yields

(

∂φ

∂πb
πg + φ+ 1

)

(Eφ+ 1)− (φπg + πb) E
∂φ

∂πb
= 0

and hence
∂φ

∂πb
= −

(φ+ 1) (Eφ+ 1)

πg (Eφ+ 1)− (φπg + πb) E
= −

(φ+ 1) (Eφ+ 1)

πg − Eπb
.

The derivative of the Sharpe ratio (11) with respect to πg is

φ
1
2 (πg − πb)

→1 +
∂φ

∂πg

1

2

(

φ→ 1
2πg − φ→ 3

2πb
)

(πg − πb)
→1 −

(

φ
1
2πg + φ→ 1

2πb
)

(πg − πb)
→2 (A-9)
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which has the same sign as (multiplying by φ
3
2 (πg − πb)

2)

φ2 (πg − πb)−
(

φ2πg + φπb
)

−
φ (Eφ+ 1)

πg − Eπb

1

2
(φπg − πb) (πg − πb)

and hence the same sign as (dividing by −πb)

φ (φ+ 1)−
(Eφ+ 1)

−πg
πb

+ E

1

2

(

−
φπg
πb

+ 1

)(

−
φπg
πb

+ φ

)

and hence the same sign as (multiplying by 2
φ

(

−φπg
πb

+ Eφ
)

)

2 (φ+ 1)

(

−
φπg
πb

+ Eφ

)

− (Eφ+ 1)

(

−
φπg
πb

+ 1

)(

−
φπg
πb

+ φ

)

. (A-10)

From (A-8), −φπg
πb

> 1. To establish the comparative static in πg I show that (A-10) is

negative if −φπg
πb

> 1 and E > 1
9 . Evaluated at −φπg

πb
= 1, expression (A-10) equals 0.

Consider

2 (φ+ 1) (z + Eφ)− (Eφ+ 1) (z + 1) (z + φ) . (A-11)

This is a concave quadratic in z. So to establish that (A-10) is negative it suffices to show

that the derivative of (A-11) with respect to z is negative when evaluated at z = 1, i.e.,

2 (φ+ 1)− (Eφ+ 1) (z + φ)− (Eφ+ 1) (z + 1)|z=1 < 0,

i.e.,

2 (φ+ 1)− (φE + 1) (1 + φ)− 2 (φE + 1) < 0,

i.e.,

−Eφ2 − φ (3E − 1)− 1 < 0. (A-12)

If E ≥ 1
3 then the proof is complete. If instead E ∈

(

0, 13
)

, any roots of the quadratic in

(A-12) are positive. The determinant of this quadratic is

(3E − 1)2 − 4E = 1− 10E + 9E2 = (1− 9E) (1− E)

which is negative for E ∈
(

1
9 , 1

)

. Hence for E ∈
(

1
9 ,

1
3

)

the quadratic in (A-12) is negative

for all φ, completing the proof of the comparative static in πg.

Finally, the derivative of the Sharpe ratio (11) with respect to πb, holding ∆ = πg − πb
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fixed, has the same sign as

φ
1
2 + φ→ 1

2 +
1

2

∂φ

∂πb

(

φ→ 1
2πg − φ→ 3

2πb
)

which has the same sign as (multiplying by 2φ
3
2 )

2φ (φ+ 1)−
(φ+ 1) (Eφ+ 1)

πg − Eπb
(φπg − πb)

which has the same sign as (multiplying by πg→Eπb
φ+1 )

2 (φπg − Eφπb)− (Eφ+ 1) (φπg − πb) = (1− Eφ) (φπg + πb) . (A-13)

By Lemma (2), Eφ = E Qg

Qb

pg
pb

< pg
pb

. Combined with (A-8) this establishes that (A-13) is

positive if pg ≤
1
2 , thereby completing the proof.

Proof of Lemma 4: From (A-18) and (A-19), as ε → 0 and n → ∞, Qg approaches the

solution to Q0,∞
g

Q0,∞
g pgπg

Q0,∞
g pg − pb ln

(

1−Q0,∞
g

) = κ.

Note that, by assumption ((2)), Q0,∞
g ∈ (0, 1). Since Q̃g → 1 and Q̃b → 0 as ε → 0, this

establishes that Q̃b < Qg < Q̃g. It remains to order Q̃b relative to Qb.

To do so, use (10) to write the equilibrium condition (for n → ∞) in terms of Qb, i.e.,

(

1− (1−Qb)
1−ε
ε

)

pgπg +Qbpbπb
(

1− (1−Qb)
1−ε
ε

)

pg
1→ε +Qb

pb
ε

= κ.

The LHS is decreasing in Qb (Lemma (2)). Hence Qb > Q̃b if and only if the LHS evaluated

at Qb = ε exceeds κ. Using

lim
ε→0

(1− ε)
1−ε
ε = e→1,

as ε→ 0 the LHS evaluated at Qb = ε approaches

(1− e→1) pg
(1− e→1) pg + pb

πg,

completing the proof.
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Proof of Lemma 5: Note that

lim
α→0

Qω (α)

nα
= Pr (σi = g|ω) .

Hence by assumption(2),

κ < lim
α→0

v̂ (α) . (A-14)

Moreover, Qω (1) → 1 as n → ∞. By assumption (1), let n be large enough that

v̂ (1) < 0. (A-15)

Let α̂ be an equilibrium investigation probability of the simultaneous move game. By (A-14)

and (A-15) it follows that α̂ ∈ (0, 1), with

v̂ (α̂) = κ.

From (15) it follows that

v (α) > κ.

The result follows from Lemma (2), completing the proof.

Proof of Lemma 6: The equilibrium condition determining γ in the exogenous-signal game

is v̌ (γ) = κ̌, which by (16) and (17) can be written as

((1− εg) pg + εbpb)

Qg(γ)
Qb(γ)

pg
1→εg

+ pb
εb

Qg(γ)
Qb(γ)

pg + pb
v (γ) = κ,

or equivalently as
(E→1pg + pb)

(

Qg(γ)
Qb(γ)

Epg + pb
)

Qg(γ)
Qb(γ)

pg + pb
v (γ) = κ.

Since Qg(γ)
Qb(γ)

is less than E→1 but exceeds 1, the expression multiplying v (γ) lies between 1

and
(

E→1pg + pb
)

(Epg + pb) > 1.

It follows that the equilibrium value of γ in the exogenous-signal game exceeds the equilib-

rium value of α in the endogenous-signal game, completing the proof.
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B Additional Appendix: Case, εb = 0

In this case, Qb ≡ 0,

Pr (opportunity available) =
Qg (α) pg
(1− εg)nα

+ pb,

and

v (α) =
Qg (α) pgπg

Qg(α)pg
1→εg

+ pbnα
.

Recall

Qg (α) = 1− (1− (1− εg)α)
n ,

and hence

1− (1− εg)α = (1−Qg)
1

n .

So v can be written directly in terms of Qg as

v0 (Qg) ≡
(1− εg)Qgpgπg

Qgpg + pbn
(

1− (1−Qg)
1
n

) . (A-16)

For εb > 0, from (A-1),

v =
(1− εg)Qgpgπg + (1− εg)

(

1−
(

1− E
(

1− (1−Qg)
1
n

))n
)

pbπb

Qgpg +
(

1−
(

1− E
(

1− (1−Qg)
1

n

))n
)

E→1pb
.

By l’Hopital’s rule,

lim
E→0

(

1−
(

1− E
(

1− (1−Qg)
1
n

))n
)

E→1 = n
(

1− (1−Qg)
1
n

)

,

and so

lim
εb→0

v =
(1− εg)Qgpgπg

Qgpg + pbn
(

1− (1−Qg)
1
n

) , (A-17)

which coincides with (A-16). By the same arguments,

lim
εg=εb→0

v =
Qgpgπg

Qgpg + pbn
(

1− (1−Qg)
1
n

) . (A-18)

Note, moreover, that

lim
n→∞

n
(

1− (1−Qg)
1
n

)

= − ln (1−Qn) . (A-19)
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Note that

lim
Qg→0

v0 (Qg) = (1− εg) pgπg,

which exceeds κ by assumption (2). Moreover, v0 is decreasing in Qg by the following result.

Lemma A-2 The ratio is 1→(1→Qg)
1
n

Qg
is increasing in Qg ∈ (0, 1) for any n ≥ 2.

Proof of Lemma (A-2): I establish that

1

n
(1−Qg)

1
n
→1Qg −

(

1− (1−Qg)
1
n

)

> 0.

Define

f (x) = αxα (1− x)− (1− xα) x.

It suffices to show that f (x) > 0 for all x ∈ (0, 1) and α < 1. Differentiating,

f ′ (x) = α2xα→1 (1− x)− αxα + αxα→1 · x− (1− xα)

= α2xα→1 +
(

1− α2
)

xα − 1

f ′′ (x) =
(

(α− 1)α2 + α
(

1− α2
)

x
)

xα→2.

Note that f (0) = f (1) = 0; that f ′ (x) > 0 for all x sufficiently small while f ′ (1) = 0; and

that f is concave if x < α
1+α and convex if x > α

1+α . It follows first that f (x) > 0 for all

x ∈ [ α
1+α , 1) and then that f (x) > 0 for all x ∈ (0, α

1+α ] also, completing the proof.
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C Additional appendix: Explicit evaluation of (4)

Pr (ω|σi = g, opportunity available)

=
n
∑

k=1

(Pr
(

ω|σi = g, opportunity available, agent i is kth in line
)

×Pr
(

σi = g, opportunity available, agent i is kth in line|σi = g, opportunity available
)

)

=
n
∑

k=1

(
Pr
(

σi = g, opportunity available, agent i is kth in line|ω
)

pω

Pr
(

σi = g, opportunity available, agent i is kth in line
)

×
Pr
(

σi = g, opportunity available, agent i is kth in line
)

Pr (σi = g, opportunity available)
)

=
n
∑

k=1

Pr (σi = g|ω) 1
n
(1− αPr (σi = g|ω))k→1 pω

Pr (σi = g, opportunity available)

=
Pr (σi = g|ω) pω

Pr (σi = g, opportunity available)

1− (1− αPr (σi = g|ω))n

nαPr (σi = g|ω)
.

Moreover,

Pr (σi = g, opportunity available|opportunity available)

=
Pr (σi = g, opportunity available)
∑

ω̃ Pr (opportunity available|ω̃) pω̃

and

Pr (opportunity available|ω)

=
n
∑

k=1

Pr
(

opportunity available|ω, agent i is kth in line
)

Pr
(

agent i is kth in line|ω
)

=
1

n

n
∑

k=1

(1− αPr (σi = g|ω))k→1

=
1− (1− αPr (σi = g|ω))n

nαPr (σi = g|ω)
.

Hence expected payoff from investigation is

∑

ω=g,b

πω Pr (ω|σi = g, opportunity available) Pr (σi = g, opportunity available|opportunity available)

=
∑

ω=g,b

πω
Pr (σi = g|ω) pω

Pr (σi = g, opportunity available)

1− (1− αPr (σi = g|ω))n

nαPr (σi = g|ω)

Pr (σi = g, opportunity available
∑

ω̃ Pr (opportunity available|ω̃) p
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=
1

nα

∑

ω=g,b (1− (1− αPr (σi = g|ω))n) pωπω
∑

ω=g,b
1→(1→αPr(σi=g|ω))npω

nαPr(σi=g|ω)

.
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